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Preface

Although Mathematical Olympiad competitions are carried out by solving prob-
lems, the system of Mathematical Olympiads and the related training courses can-
not consist only of problem solving techniques. Strictly speaking, it is a system of
mathematical advancing education. To guide students, who are interested in and
have the potential to enter the world of Olympiad mathematics, so that their math-
ematical ability can be promoted efficiently and comprehensively, it is important
to improve their mathematical thinking and technical ability in solving mathemat-
ical problems.

An excellent student should be able to think flexibly and rigorously. Here, the
ability to perform formal logic reasoning is an important basic component. How-
ever, it is not the main one. Mathematical thinking also includes other key aspects,
such as starting from intuition and entering the essence of the subject, through the
processes of prediction, induction, imagination, construction and design to con-
duct their creative activities. In addition, the ability to convert the concrete to the
abstract and vice versa is essential.

Technical ability in solving mathematical problems does not only involve pro-
ducing accurate and skilled-computations and proofs using the standard methods
available, but also the more unconventional, creative techniques.

It is clear that the standard syllabus in mathematical education cannot satisfy
the above requirements. Hence the Mathematical Olympiad training books must
be self-contained basically.

This book is based on the lecture notes used by the editor in the last 15 years
for Olympiad training courses in several schools in Singapore, such as Victoria
Junior College, Hwa Chong Institution, Nanyang Girls High School and Dun-
man High School. Its scope and depth significantly exceeds that of the standard
syllabus provided in schools, and introduces many concepts and methods from
modern mathematics.



vi Preface

The core of each lecture are the concepts, theories and methods of solving
mathematical problems. Examples are then used to explain and enrich the lec-
tures, as well as to indicate the applications of these concepts and methods. A
number of questions are included at the end of each lecture for the reader to try.
Detailed solutions are provided at the end of book.

The examples given are not very complicated so that the readers can under-
stand them easily. However, many of the practice questions at the end of lectures
are taken from actual competitions, which students can use to test themselves.
These questions are taken from a range of countries, such as China, Russia, the
United States of America and Singapore. In particular, there are many questions
from China for those who wish to better understand Mathematical Olympiads
there. The questions at the end of each lecture are divided into two parts. Those
in Part A are for students to practise, while those in Part B test students’ ability to
apply their knowledge in solving real competition questions.

Each volume can be used for training courses of several weeks with a few
hours per week. The test questions are not considered part of the lectures as
students can complete them on their own.
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Lecture 1

Fractional Equations

Definition 1.1. An equation is called a fractional equation if it contains frac-
tional expressions where the unknown variables are appeared in their denomina-
tors.

The basic approach for solving a fractional equation is to remove the denomi-
nator if possible. However, in many cases this cannot be done by simply multiply-
ing the equation by the least common multiple of the denominators, since it will
lead to an equation of a high degree. Therefore the following techniques are often
needed.

1. Use partial fraction techniques.
2. Use techniques of telescopic sum.

3. Use substitutions of variables or expressions.
Sometimes, it is advisable to manipulate the expressions before the substitu-
tion is discovered and applied.

Examples

x+7 x+8 x+5 x+6_0

E le 1. Sol ti — - =
xample 0veequa10nx+8 T30 x+6+x+7

Solution The given equation can be simplified to

(1_x18)—(1_xi9)_(1"x16)+(l”xi7)=0’

1




Lecture 1  Fractional Equations

SO
1 1 1 1

x+8_x+9=x+6_x+7’
1 B 1
x2+17x+72  x2+13x + 42’
15
x2 4+ 17x + 72 = x2 + 13x + 42, x=—=

Example 2. Solve the following equation
1 + 1 + 1 1 1
x24+2x  x2+6x+8  x2+10x+24 5  x2+ 14x +48°

Solution By moving the term ———————— to left hand side, it follows
x2 4+ 14x + 48

that
1 1

1 1 1
2 12x 2 t6xt8 2 10x124 Xt 14xt48 5
1 1 1 1 1
+ + - =,
x(x+2) x+2)x+4) (x+4Hx+6) (x+6)x+8 5
1 1 1 1 1 1 1 1
—_ —_ - + —_ ...+ [ = -,
21\x x+2 x+2 x+4 x+6 x+8 5
11 2 X
so x“ + 8x —20=0,

X x+8 5
then (x — 2)(x + 10) = 0, namely x; = 2 and x, = —10.
—-3| - 1
Example 3. (CHINA/2005) Solve equation %i—' —1.
X

Solution Splitting the left hand side to two terms, then

|x — 3] 1
2x+1] 2 7
x—3
=3,
x+1’

x—3 x—3
=3 or =
x+1 x+1

x—3=3x4+3=>x=-3 and x—3=-3x—-3=x=0.

’

Thus, x = =3 orx = 0.

Substitutions of variables or expressions play important role in solving frac-
tional equations, as shown in the following examples.
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2x%2 4+ 1 2x+4_3
+2 2x2+4+1 7

Example 4. Solve equation

2

2
Solution Lety = , then the given equation becomes y + — = 3.
y

2
y+;=3=>y2—3y+2=0=>(y——2)(y—1)=0-

1
Wheny = 1,then2x?2 —x —1 =0,s0 x1 = 1, x, =5

1 1
When y = 2, then 2x? —2x —3 = 0,50 x3 = E(l—ﬁ),x‘t: 5(1+ﬁ).

Example 5. (SSSMO(J)/2006) Suppose that the two roots of the equation

1 1 2
X 10x—29 T x2_10x—45 X2 —10x—69

are o and B. Find the value of & + 8.
Solution Let y = x2 — 10x — 45, the given equation then becomes

1 1 2

Y16 Ty y_o4
y+8 1
y2+ 16y  y—24
y2—16y —192 = y2 + 16y = y = —6,
x2—10x —45= —6 = x2 —10x — 39 = 0.

Thus, by Viete’s Theorem, « + 8 = 10.

Sometimes the manipulations on the given equations are needed for finding
the desired substitution, as shown in the following examples.

Example 6. (CHINA/2000) Solve the system for (x, y):

xy 1 xy 1
3x+2y 8 2x+3y 7T
Solution By taking reciprocals to two sides of each equation, it follows that
2 3
4+ =38,
x Yy
3 2
—+—-=1
X Yy
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1 1
Lettingu = —, v = —, the system for (u, v) is
X y
2u + 3v = 8§,
3u+2v="7.

By solving them, it is obtained that u = 1, v = 2. Then, returning to (x, y),

1
=1 and = -,
X nd y 3
Example 7. Solve e ut'on4xz+x+4+ **+1 31
X . at1 = —
P q x2 41 x24+x+1 6

Solution Write the given equation in the form

X X

4 1— -
+x2+1+ x24+x+1

1
5 )
+ 6
then

1 1

1 1
x+= x+-+1
X X

1
6
1,
Let w = x 4+ —, it follows that
X

11

w w41
ww+1)=6=w?+w-—6=0,

“(w—-2)(w+3)=0, namely w=2orw = -3.

’

[

1
i) w=2=>x+-—=2then(x—-12=0,50x] =x2=1.
x

1
(i) w=-3=x+4—=-3thenx?>+3x+1=0,s0
x

-3-4/5 -3+ /5
X3=—2——, X4=—2—-

Example 8. Sol fon oy M8 _2x 8
xample 8. HOolve on — —_——= = —,
P equaion T TS 2 T 3 T X

Solution When both sides are multiplied by 15, the given equation becomes

2
x2+(2) =10(x—-2).
x x
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12
Let y = x — —, by completing square it follows that
x

y? — 10y + 24 =0,
-4H(»ry-6)=0 . .y=4orb6.

Then

12 .
y=4:x—;=4——>(x—6)(x+2)=0, ie x; =6,x3 = —2.

12
y=6=>x—;=6=>x2—6x—12=0, ie x3=3—+21,x4 =3+ 21

2—3x

o = 1.

Example 9. Solve equation 2x? — 3x +

Solution Since x # 0, the given equation is equivalent to

1 1
2(x2+;)—3(x+;)=1.

1 5
Lety=x+;,then2y2—3y—4= l,ie, 2y —5)(y + 1) = 0. Thus, y = 3
or —1. 5 5
) y=§=>2x+;=5:>2x2—5x+2=0=>(2x—1)(x—2)=0

1
= X1 = E,XZ =12.
) y=-1 =>x-+-; = —1 = x?+ x + 1 = 0, no real solution.

2
Example 10. Solve equation x? + ( al ) =3.
x+1

Solution By completing the square on the left hand side, it follows that
x \?  2x2
X — + =3,
x+1 x+1

2 \2 2
ad 425 3o
x+1 x+1

2

Lety = x):_1,theny2+2y—3=0=>(y+3)(y—1)=0,soy=~30r1-
2
i y=-3= = —3 = x2 + 3x + 3 = 0, no real solution.

x+1
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2
.. X 1-4/5
g y=1= =1=2x>-x-1=0= x = , X2 =
x+1

14+ /5

>

Testing Questions (A)

x34+4x2 +2x—8  2x3 4+ 5x% +4x
x24+2x-3  2x24+x+1

1. Solve the equation

x+1 x+6 x+2 x+5
x+2 x4+47 x+43 x+6

2. Solve the equation

1 1 1 i
G-Dx T xectD) T GroGt10) 12

3. Solve the equation

I 1 1
4. Solve the equati = o.
olve the equaion S Tix—8 " x2+2x—8 ' x2— 13x—8

2
. 2 X _ S5
5. Solve the equation x~ + m =7

3x2 +4x—1 _x2+4x+1
3x2—4x -1 x2—4x+1’

6. Solve the equation

7. Find all the real solutions (x, y, z) of the following system

9x2 3 9y? 3 922 3
14+9x2° 2 1 + 9y2

8. (RUSMO/1993) Find all positive solutions of the system of fractional equa-



9.

10.

11.

[a—

N

w
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tions
X1 + — = 49
X2
1
X2+ — =1,
X3
1
x3+— =4,
X4
1
X4+ — =1,
X5
1
X99 + —— =4,
X100
1
X100+ — = 1.
X1

b 5
Solve the equation in x: atx + +tx = -
b+x a+x 2

a+b a+c 2a+b+c)

b+x x+4c¢  x+b+c
¢,b+ c,a+ b+ c are all not zero).

. . X x+1 4x +a
Given that the equation =
x+1 x x(x+1)
find the value of real number a.

Solve the equation in x: (wherea+b,a+

has only one real root,

Testing Questions (B)

x2—x+1 x+1
x2 42 +x2—x+1—
x® 4+ 7x% 4+ 24x 430 2x® + 11x% 4 36x + 45
x24+5x+13 2x2 4+ 7x + 20

(RUSMOY/2005) It is known that there is such a number s such that if real
numbers a, b, ¢, d are all neither O nor 1, satisfyinga + b + c 4+ d = s and

1.

Solve equation

Solve equation

1+1+1+1—-sthen ! + ! + ! + ! =gs. Find s
a b ¢ d 7 l—-a 1-b 1—c 1—-d '
(VIETNAM/2007) Solve the system of equations
12 2 12 6
1-— = — and = —

, 1+ .
y+3x  Jx y+3x Y
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(BELARUS/2005) Find all triples (x, y, z) with x, y, z € (0, 1) satisfying

@+%—00+$—QG+5-0
=(l_g)(l_§i)(1~§).

(NORTH-EUROPEAN/2006) Given that x, y, z are real numbers which are
not all equal, satisfying

1 1 1
X+—-=y+-=z+4+—-=k,
y z x

where k is a real number. Find all possible values of k.

(GREECE/TST/2009) Find all real solutions (x, y, z) of equation

x+2?  (+4>  (+6?

y+z—2 z+x-—4 x+y—6_36’
giving x, y, z > 3.
(BULGARIA/2004) Given the system of equations
xi + yl2 = a’>+2,
- 3}_ a (a € R).

(a) Solve the system when a = 0;

(b) Find range of a such that the system has exactly two solutions.
(CZECH-POLISH-SLOVAK/2004) Solve the system of equations

1 x 1 y 1 z
—==-+1, — ==+41, —=—+1,
xy z yz x y

where x, y, z are real numbers.



Lecture 2

Higher Degree Polynomial Equations

A polynomial equation is said to be a higher degree equation if its degree is
greater than 2.

Since the general and systemic approach of polynomial equations involves
knowledge of complex numbers, in this chapter, we only discuss the kind of higher
degree polynomial equations which can be converted to quadratic equations or can
be dealt with special methods, for example by completing squares.

These are usual methods for reducing a higher degree to 1 or 2:
(i) Factorization Methods.
Here all kinds of skill for factorization that up to now we have learned are
needed, including those by finding roots of a polynomial, by using division
of polynomials and by exchanging the positions of variable and parameter,

(i1) gtgbstitution of variables or expressions.
Substitution of variables and expressions plays important role in simpli-
fying a polynomial equation and reducing its degree. However it is not
always easy to find the right substitution, and, sometimes, manipulation on
polynomials (for example, the Binomial expansion) is often necessary for
finding the appropriate substitution.

In recent years, some problems on solving system of higher degree polynomial
equations have appeared in MO competitions of countries. It is possible to reduce
the degree of equations by operations on equations and the techniques of inequali-
ties, which are different from those used for solving single higher degree equation.

Example 1. (CROATIA/2005) Find all the real solutions (x, y, z) of the equation

4xyz —x* —yt -z = 1.
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Solution
dxyz —x*—yt -zt =16 x*+ D)+ O*+2z4)—4dxyz =0
S x*=2x2+ 1)+ (p* —2y%22 + z%) + 2(x%2 — 2xyz + y?22) =0
S X212 +0%-22)2+2(x—yz)’ =0 x =+, y=+z,x = yz
& (x,y,2)=(1,1,1); (1,-1,-1); (-1,1,-1); (-1,-1,1).

Example 2. Find the maximum real roots of equation 3x7 — x* —30x5 4+ 10x2 +
3x3-1=0.

Solution By factorizing the left hand side,
3x3(x* —10x%2 + 1) — (x* — 10x2+ 1) = 0,
Bx3 = D(E*—-10x2+1) =0.

@ - 1=0=x=-

-

10 + /96
(ii) x4—10x2+1=0:>x2=—2—=5i2«/€=(«/§i«/5)2,so

x = +(V/3+V2).
Thus, the maximum root is /3 + /2.

Example 3. (CROATIA/2004) Solve equation (6x + 7)2(3x + 4)(x + 1) = 6.
Solution Multiplying both sides by 12, then

(6x + 7)?[(6x + 8)(6x + 6)] = 72,
(6x + 7)2[(6x + 7)* — 1] = 72.

Let y = (6x + 7)2, then y > 0 and

Y2—y-N2=0=>(+8)(y -9 =0=y=9= 6x+7==43.

2

) 6x-+—7=3=>x1=—§;
5
(i) 6x+7=—3=>xz=—§.

Example 4. Find product of all real roots of the equation

6

2
Ipm =
X 12

13.

6
Solution Let y = x2+2x—12, then the given equation becomes y — ; =1,

SO
y2—y—6=0=>(y—3)(y+2)=0:y=3ory=—2.
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() y=3=2x2+2x-12=3= (x-3)(x+5=0=x; =3,x, = -5;
() y=-2=2x242x—-12=-2=x3=—-1—-+11,x4=—1+ 11
Thus, product of all the roots is (3)(—5)(—1 — ~/11)(—1 + +/11) = 150.

Example 5. Find the value of the maximum real root minus the minimum real
root of equation (x2 — 5)* + (x2 — 7)* = 16.

Solution Let y = x? — 6, then (y + 1)* + (y — 1)* = 16. The binomial
expansions

G+D* =y +4° +6)> +dy+1and (y — 1)* = y* —4y® + 6y> —4y + 1
yield y* 4+ 6y2 4+ 1 = 8 or y* + 6y*> — 7 = 0. Then

Y46 -T=0= 0+ -D=0=y"=1=>y==+I
Q) y=1=2x2-6=1=x1=—-V7,x=+T;

() y=—-1=2x2-6=—1=x3=—/5,x3=+/5

Thus, the answer is N1+ 7 =247.
Example 6. Solve equation 3x* + 2x3 —7x2 —2x +3 = 0.

Solution 1It’s clear that O is not a root, therefore the given equation can be
written in the form
, 1 1
3(x°+ — | +2 —=)-7=0.
x x

1
Lety = x — X and by completing square on the left hand side, then it follows
that 3y2 + 2y — 1 = 0. Thus

1
33242y -1=0=Cy- D +1)=0=y=—lor -.

3

—1-+/5 “144/5

(6))] y=—1=>x2+x_1=0:>x1=__2£’ Xy = ‘;‘\/—’
1 1— /37 1+ /37

(ii) y=§=>3x2_x_3=():x3=T’ x4 = +2 '

For factorizing the f(x, a) in the equation f(x, a) = 0, sometimes it may be
needed to consider the parameter a as a variable and the variable x as a parameter
temporarily, as shown in the following example.

Example 7. Solve equation x* —9x3 4+2(10—a)x? 4 9ax +a? = 0 for x, where
a > 0is a parameter.
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Solution For the sake of factorizing the left hand side, if considering a as
the variable and x as a parameter, it follows that

x* —9x3 4+ 2(10 —a)x? + 9ax + a*

=a? — (2x? = 9x)a + (x* — 9x3 + 20x?)

=a? —x(2x — 9)a + x*(x% — 9x + 20)

=a?—x(2x —9a + x*(x —4)(x = 5)
=[a—x(x—=5)]a—x(x—4)]=(a—x*+5x)(a— x>+ 4x)
= (x? = 5x —a)(x? — 4x — a).

Therefore the given equation can be written in the form
x%-5x—a)(x* —4x —a) = 0.

Then

5-+25+4a xy = St/3Tia

k) 2 ’

¥ —5x—a=0=x = 2
x> —4x—a=0=x3=2—+/4+a, x4 =2+ +4+a.

Below are some examples for systems of higher degree equations.

Example 8. (CM0/2003) Find all real positive solutions (if any) to

x34+y34+423=x+y+z and
x2 4+ y?2 422 = xyz.

Solution Without loss of generality, we may assume thatx > y >z > 0.
From xyz = x? 4+ y% + z% > 2xy, we have z > 2, so that x, y, z > 2 and

G+ +2) - +y+2)=xG2-D+y0?* -1 +z(=>-1) > 6,
therefore no required solution to the given system.

Example 9. (AUSTRIA/2005) Find all real a, b, ¢, d, e, f that satisfy the system

da=(b+c+d+e)
4b = (c+d +e+ f)*,
4c=(d +e+ f +a)t,
4d = (e + f +a +b)*,
de =(f +a+b+c),
4f =(@+b+c+d)*

Solution That right hand side of each equation is non-negative implies that
a,b,c,d, e, f are all non-negative.
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Since these variables are cyclic in the equations, if two are different, there
must be two consecutive variables different, say a < b (the discussion for case
a > b is similar), then

a<b=>b+ct+dt+e<ct+dt+e+f=2b<f=2a<f
=2>b+c+d+e<a+btct+td=e<a=e<f

= f+a+bt+c<a+bt+c+d=f<d=e<d

= ft+a+b+c<e+ ft+at+b=>c<e=c<d
=>d+e+ fta<e+ fH+a+b=>d<b=>d<b< f<d,

it leads to a contradiction. Thus,a = b = ¢ = d = e = f, and from4a = (4a)*

1
wehavea =0ora = e the solution of the system are

111111
(a,b9 c, dy e, f) - (0) 07 0705 07 0) or (Z7 Z’ Z7 Z, Za Z)-
Example 10. (MOLDOVA/TST/2008) Find all solutions (x, y) € R x R of the
following system:

x2+3xy? = 49, 2.1)
x> +8xy +y* = 8y+17x. (2.2)
Solution The operation 3x x (2.2) — (2.1) gives

2x3 4 24x%y —51x% —24xy + 49 =0,
(x — 1)(2x% + 24xy — 49x — 49) = 0.

From 2.1),x=1= 3y2 = 48 = y = 14, and from (2.1) again, since x # 0,

2x2 4+ 24xy — 49x — 49 = 0 = 2x2 + 24xy — 49x = x> + 3xy?
=2x+24y—49=x2+3y2 = (x —1)2 +3(y —4)2 =0
=>x=1y=4.

Thus, the original system has two solutions for (x, y): (1,4) and (1, —4).

Example 11. (CZECH-POLISH-SLOVAK/2005) Given the positive integer n,
find all the non-negative real numbers x;, x», ..., X, such that
x1+x34+x3+-+xF=n,
n(n +1
X1+2x2+3x3+ -+ nx, = —(——2-—-—)

Solution When the first equation minus the second and then move all the
terms to the left hand side, it is obtained that
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1
0=x1+x§+x§+...+x;:_n_[xl+2x2+3x3+“_+nxn_n(n+ )]

2

=2 -20+2-D+x3-3x3+3-1)+- 4 (x —nxp +n—1).
For any positive integer kK > 2 and x > 0, by AM-GM inequality,

xk+k—1=xk+1+1+-~+12k\/kx = kx,
~—_—
k-1

and the equality holds if and only if x = 1,0 x = x3 = --- = x, = 1. Then
the given first equation yields x; = 1.
Thus, x1 = x, = -+ = x, = 1.

Testing Questions (A)

1. Solve equation (x + 1)(x + 5)(x + 9) = 231.
Solve equation (x + 2)(x + 4)(x + 6)(x + 8) = 48.
Solve equation (x — 1)* + (x —7)* = 272.

Solve equation 2x2 + 7x3 + 6x2 +7x +2 = 0.

S I SN

If the equation x* — (k — 1)x? + 2 — k = 0 has four distinct real roots, find
the range of possible values of the real k.

6. (SWEDEN/2002) Given that real numbers «, B satisfy

a3 —3a24+50¢—-17=0 and
B3—3B%2+58+11=0,

respectively, find the value of o + .
7. (POLAND/2006) Find all the real solutions of the system

x° =5y3 -4z,
y> =523 —4x,
z° = 5x3 —4y.

8. (GERMANY/2003) Find all the pairs (x, y) of two real numbers satisfying
the system of equations
x3 + y3 P 7’
xyl(x+y) = -2
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9. (USAMO/TST/2001) Find all pairs of integers (x, y) such that
X34y = (x+y)>

10. (AUSTRALIA/2008) a is a given positive number, and # is an integer >
4. Find all the n-tuples (x1, X2, ..., X,) of positive numbers satisfying the
system

x1x2(3a — 2x3) = a3,
x2x3(3a — 2x4) = a3,
Xn—2Xn—1(3a — 2x,) = a3,
Xn—1%n(3a — 2x1) = a@?,

xnx1(3a — 2x3) = a3.

11. (CZECH-SLOVAKIA-POLAND/2008) In the range of real numbers solve
the system of equations

3

x+y*=y

y + x2

’

Testing Questions (B)

1. (BULGARIA/2003) Find the number of real solutions (x, y, z) to the system

x+y+z = 3xy,
x2+y?2+22 = 3xz,
x3+y3+23 = 3yz

2. (AUSTRIA/2005) Find the conditions on k and d such that the system of
equations

x3+y3=2
y=kx+d

has no real solution (x, y).

3. (GERMANY/2005) Find all real solutions (x, y) of the system of equations

x34+1-xy?—y? =0, (2.3)
y3+1-x2y—x2=0. (2.4)
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3
4. (KOREAN MC/2000) Let 1 < a < 1. Prove that the equation

@ +1)=x+a)x +a)
has four distinct real solutions and find these solutions in explicit form.

5. (USAMO/TST/2001) Solve the system of equations:
3x—y

X2+y2
x + 3y

_x2+y2:

6. (IRE/2007) Given that r, s, ¢ are all real roots of the polynomial
P(x) = x> —2007x + 2002,

find the value of ~—+ + S~ 1 4 =1
n € value o .
F+r1 s+l i1

7. (CROATIA/TST/2007) In the range of real numbers solve the system

X+y+z=2,
x+YO0+2)+0+2)c+x)+Cz+x)x+y) =1,
x2(y +2) + y*(z +x) + 22 (x + y) = —6.

8. (AUSTRALIA/2002) When ¢ is a positive real number, find the number of
positive real solutions (a, b, ¢, d) of the system of equations

a(l—b?) =1,
b(1—=c? =1,
c(l—d?) =1,
d(1—a? =1t.

9. (USAMO/TST/2001) Find all ordered pairs of real numbers (x, y) for which:

I+ 00+ x>0 +xH =147,
and (14 y)(1+y?)(1+yH) =1+x".

10. (CZECH-POLISH-SLOVAK/2008) Find all positive triples (x, y, z) which
satisfy the system

2x3 =2y(x2+ 1) — (22 + 1),

2y =3z(p' + 1) = 2(x%2 + 1),
22° = 4x(22+ 11) =3(y2 + 1).



Lecture 3

Irrational Equations

Definition 3.1. An equation is called an irrational equation if in the equation
some expressions containing unknown variable(s) is (are) under surd form(s).

Methods for Solving irrational Equations

@) The key for solving an irrational equation is removing the surd form with
unknown variables. In this aspect, taking powers, completing squares, factor-
ization are often applied.

(i)  Use substitution of variables or expressions is one powerful tool for removing
surd forms, and by substitution, the degree of equation can be reduced at the
same time.

Examples

Example 1. Solve equation +/3x —3 + +/7x — 12 — 4/10x + 9 = 0.

Solution Move the third term on the left hand side to the right hand side,
then

V3x =3+ V7x =12 = V/10x + 9.

Taking squares to both sides, and simplifying them, then

VBx =3)(7x — 12) = 12.

17
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Taking squares again to both sides, it follows that

21x2 — 57x — 108 = 0,
Gx —12)(7x +9) = 0,

Sox1=4, xp = —77—.

By checking, only x = 4 satisfies the original equation.

Example 2. Solve equation /x — 1 + ¥/x =3+ ¥/x —5 = 0.
Solution Considering the formula: a3 + b3 + ¢ = 3abc ifa + b+ c = 0,
the given equation gives
-D+Ex=-3)+x-5=3Yx—-Dx-3)(x-5),
x—3=3(x—1Dx-3)(x-5),
Sx=3[Yx-32-Y(x-D(x-5)]=0.

Jx = =0=x; =3.
Y(x =32 = Y(x —=1)(x —5) = 0= 9 = 5, s0 no solution.
Thus, x = 3 is the unique solution.

Example 3. Solve equation 2/x(x + 6) — ./x — +/x + 6 = 14 — 2x.

Solution Considering (/X + v/ + 6)? = 2x +2/x(x + 6) + 6, write the
given equation in the form

(2x +2v/x(x + 6) + 6) — (v/x + v/x +6) —20 = 0.
Lety = 4/x + +/x + 6,then y > 0and y> —y — 20 = 0.

O-550+4 =0,
.y =5

thus,

19\?
ﬁ+¢x+6=5:>x+6=x+25—10ﬁ=>x=(E) .

X+y+z

Example 4. Solve equation vx + 1+ /y + V/z—4 = 3

Solution By completing squares,
xX+y+z
Vx+1+/y+vz— =——3—)—-
S +1-2Vx+ 14+ D+ -2/7+D+(E—-4-2vVz2—-44+1)=0
2
=>(Jx+1~1)2+(ﬁ—1)2+(Jz—4—1) -0,
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therefore
Vx+1=1,/y=1,+vz—-4=1, ie,x=0,y=1,z=5.
Example 5. Solve equation x? — 4x — 4 + xv/x2 —2x —2 = 0.

Solution Lety = vx2 —2x — 2, then 2y? + xy — x% = 0, and

2y2+xy—x2=0=>(2y—x)(y+x)=0,.'.y=;ory=—x.

@ y=226-=>\/x2—2x— =%=>3x2—8x—8=0andx20
442410 4-24/10 ,
= X1 = — (x = — s not acceptable).
() Vx2—-2x—2=—-x=-2x-2=0andx <0 = x, = —1I.

44 24/10
3 b

Example 6. Solve equation \/ 2x+V2x -1+ \/ 2x —/2x—1=2.
Solution Letu = v2x ++/2x—1,v = vV2x —+/2x—1,thenu,v > 0

and

Thus, the solutions are x; = Xy = —1.

u? — 2
u+v

therefore 2u = 2 4+ +/2x — 1. Returning to x,
2V2x +/2x—1=24+/2x—-1
=>42x+V2x—-1)=4+2x—1+4/2x -1

1
=>6x=3=>x=5.

=42x—-1,

u+v=2 and u—v=

1. . .
It is easy to see that 3 satisfies the original equation.

Example 7. Solve the equation v/4x2 + 5x — 2 — v/4x2 —3x — 2 = 2. /x.

Solution It’s obvious that x # 0, hence both sides of the equation can be
divided by /x so that the given equation is changed to the form

2 2
4x — — +5—/dx —— -3 =2.
X X
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2
By the substitution y = 4x — —, it follows that
X

Vy+5-yy-3=2.

Then
SISy F3=22 Sy F5=y-3+2
=>y+5=y+1+4/y—-3=>/y-3=1

=y =4.

Returning to x, then

1S

2 1+
y=4=>4x__=4=>2x2—2x—1=0$x= )
X

By checking, the two values are really roots of the original equation.
Example 8. Solve equation /(1 + x)2 + 15Y/(1 —x)% = 81— x2.

Solution It is obvious that x? # 1. Therefore, by moving Y1 =x2to left
hand side, the given equation can be written in the form

3 3
14+ x 1—x

\/ 15,/ = 8.
1—x+ 14+ x

T+ x 15
The substitution y = — yields y + — = 8ie. y2 -8y + 15 =0, and
- y
its solutions are y = 3 or 5.

3

71 13
(i) y=3= 4 +x=3=>1+x=27(1—x):>x1=—.

l—x 14

3

T 62
Y s 4 x=125(1—x) = xp = =

1—x 63

() y=5=

Example 9. (SSSMO/2001) If x and y are real numbers satisfying

VX2 42y +44+ /x24x—y+5=y/x2+x+3y+2+ VX2 +2x +3,
find the value of x + y.

Solution Since (x? + x +3y +2)—(x2+2y +4) = (x+y—2) =
(x2 + 2x 4+ 3) — (x2 4+ x — y + 5), the given equation can be written in the form

VX2 42y + 442+ x—y+5=Vx2+2y +4+ 8+ Va2 +x—y +5+3,
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where § = x + y — 2.

For any solution (x, y), the right hand side is a strictly increasing function of
3, so it is greater than the left hand side if § > 0 and is less than the left hand side
if § < 0. So § = 0 for any solution (x, y). Thus x + y = 2.

The given equation has infinitely many real roots, for example, any pair (x, y)
of two positive real numbers with x + y = 2 is a solution.

In mathematical competitions, some questions on irrational equations are to
analyze the parameters in equations under certain given conditions about their
real roots. The Viete’s Theorem is often applied for dealing with this kind of
problems, as shown in the following examples.

Example 10. (CHINA/2005) Given that the irrational equation in x
14 1
avx? 4+ -Vx2—=-=0
2 3
has exactly two distinct real roots. Find the range of the real number a.

Solution The substitutionw = v/x2 yields

1 1
2
—w—==0. RN
aw +2w 3 (3.1

The original equation has exactly two distinct real solutions if and only if (3.1)
has exactly one positive solution.

2. . - .
Whena = 0, then w = 3 is the unique positive solution for w.

When a # 0, by Viete’s Theorem, (3.1) has one positive root and one negative
root if and only if @ > 0.
When a < 0, then (3.1) may have two equal positive roots, and in that case

o= o)

soa = T Thus, the range of aisa > O ora = T3

Example 11. Solve equation /|1 — x| = kx, where k is a parameter with 0 <
k<1

Solution kx > 0 gives x > 0, and the given equation is equivalent to

[1— x| = k%x2.
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®

(1)

(iii)

@iv)

1.
2.

3.
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On the interval 0 < x < 1, the equation becomes k2x2 4+ x—1=0. Its
discriminant A = 1 + 4k2 > 0, so it has two roots

=1+ V14 4k2 —1—+/1+ 4k2
- 2k2 ’ 2k2 :

X1 X2 =

Here

1< V1442 <1442 +4k4=14+2k*=0<x, <1,

but x, < 0, so only x; is a root.

On the interval 1 < x if % < k, the equation becomes k2x% — x + 1 = 0 and
its discriminant A = 1 — 4k2 < 0, so it has no real roots.

On theinterval 1 < x ifk = %, the equation becomes x2—4x+4=0,ie.,
(x —2)? = 0,50 x3 = 2 is aroot.

On theinterval 1 < xif0 <k < %, the discriminant of k2x2 —x 4+ 1 = O is

positive, so

1—/1- 4k2 14+ V1-4k2
METTgr 0 BT T e

Since (1-2k2)? = 1—4k2+4k* > 1—4k? implies that 1-2k2 > /1 — 4k2,

)

(1 —2k?) — /1 —4k2
2k2
therefore xs > x4 > 1. Thus, x4, X5 are both roots.

x4—1= >0, ie xg4>1,

Testing Questions (A)

(CHNMO/2005) If +/7x2 + 9x + 13 + +/7x2 — 5x + 13 = 7x, find x.

Solve equation
x? 4+ 4x 4+ 4x/x +3 = 13.

(CHINA/2004) Solve equation
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4. Find the number of real roots of the irrational equation

1 1
\/x2+1+\/y2—4+5x/22—1=Z(x2+y2+22+5).

5. Solve equation

Ja+x+ Ja—x _a
Jatx—iJa—x x’

where a > 0 is a parameter.

6. Solve the equation

Vx2—6x+9+ V/x2+8x+16=1.

7. (CHINA/2005) Solve equation with parameter a

\/x+v2x—1+ \/x—v2x— = Ja,
(where a > 0), and discuss the solutions.

8. (CROATIA/2008) Find all real solutions of equation
x2+x+Vx2+x+7=5.

9. (CROATIA/TST/2007) Find all real solutions of equation

V2x+14+V/x+3=3+Vx+7.

10. (VIETNAM/2007) Solve the system of equations

122
y+3x  Jx
o126
y+3x Sy

11. (USAMO/TST/2001) Let a, b, and ¢ be real and positive parameters. Solve
the equation

\/a+bx+\/b+cx+«/c+ax=~/b—ax+«/c—bx+\/a~cx.
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24
Testing Questions (B)
1. Solve equation
Jx+9=2-+x+1.
2. (AUSTRALIA/2004) Find all real solutions of equation
5x —6— x?
4—xy/4—(x—-2)4/1 -55x-T= ——
Je-xyi-G-DVir G967 = 228
3. (USAMO/TST/2001) Let a and b be given real numbers. Solve the system of

equations

x—yyx2-y? y—xyxi-y?
/T—x2 + y2 ’ /T—x2 + y2
for real numbers x and y.

(BULGARIA/2007) Solve the system of irrational equations

4.
VX2 +y2—16(x+y) =9 +7 = y-2,
x+13¢x—=y = y+42.
5. (VIETNAM/2009) Solve the system of equations
1 N 1 _ 2
Vi+t2x2  J1+2)2 VT+2xy’
2
xy/x(1=2x)+ /y(1-2y) = 5

6. Find all real roots of the irrational equation

V3x2+x—14+vVx2—2x—3=+/3x2+3x +5+ Vx2 + 3.

Find the number of real roots of the irrational equation

7.
|2 —4|x| + 5] = V16— 8x + x2 — 1.
8. (CROATIA/TST/2008) Find all real solutions of equation

(16x%% + 1)(»>* + 1) = 16(xy)'*?.
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Indicial Functions and Logarithmic Functions

Definition 4.1. A function of the form y = a* is said to be an indicial function,
where a is a constant (called base) witha > 0 and a # 1, and x is the independent
variable with the range (—oo, +00), i.e. R.

y = a* is a strictly increasing function with the domain (—oo, +00) and the
range (0, +00) when a > 1; and is a strictly decreasing function with the domain
(—00, +00) and the range (0, +00) when 0 < a < 1.

Definition 4.2. The logarithmic function y = log, x, wherc ¢ > 0,a # | and
x > 0is defined as the inverse function of indicial function y = . So its domain
is (0, +00) and its range is (—o0, +00).

Similar to the indicial functions, y = log, x is a strictly increasing function
when a > 1; and is a strictly decreasing function when 0 < ¢ < I,

The graph of y = a* and the graph of y = log, x are symmetric with respect
to the line y = x, as shown in the following diagram.

4 Y=aX Y=qx 4
3
1 1
-6 —4 —201 12 4 6 —201 1 4 6
-2 -2 y=logax
-3 -3
case 1: a>1 case 2: 0<a<1

Basic Operations on Indicial Functions And Logarithmic Functions

Fora > 0and a # 1,

25
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@ a*a? =a*;
() (@) =a?;
Gii)  (ab)* = a*b*.

For M,N >0,m,n € R,a,b>0anda # 1,b # 1,
(iv)  logarithmic identity: x = al%8ax;
(v)  log, MN =log, M +log, N;

M
(vi) log, v log, M —log, N;

(vii) log, M" =nlog, M,

log, N 1
%% T In particular, log, b =

(viii) log, N =

log, a log,a’

(ix) MPYealN = NzaM for M, N # 1.

Examples

Example 1. (SSSM0/2003) Find the smallest natural number n which satisfies
the inequality 122%° < 30,

Solution Change the both sides to let them have same power, then compare
their bases.

12200 < 4300 o (144)190 < (n3)100 & 144 < 3.
Then 5% < 144 < 62 implies thatn = 6.

Example 2. How many integers x satisfy the equation (x*—2x — 4y 32 = 19

Solution For discussing the equation f(x)# () = 1, there are three possible
cases: (i) g(x) = Obut f(x) # 0; (il) f(x) = 1; (i) f(x) = —1 and g(x) is an
even number.

(i) When x2 +3x + 2 = 0 and x2 — 2x — 4 # 0, then x = —1 or —2;

(ii) when x2 —2x —4 = 1, then x = 1 — v/6 or 1 + v/6;

(iii) when x? —2x —4 = —1 and x2 + 3x + 2 is an even number, then x = 3
or —1.

Thus, there are 3 desired values of x.

Example 3. (KOREA MC/2000) Find all real numbers x satisfying the equation
2 43 -4+ 65 -9 =1
Solution Setting 2* = a and 3* = b, the given equation becomes

1+a?+b>—a—-b—ab=0.
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Multiplying both sides of the last equation by 2 and completing squares, then
(1-a)’+@-b?*+®-1*=0.
Therefore @ = b = 1, namely 2* = 3* = 1. So x = 0 is the unique solution.

Example 4. (USAMO/TST/2001) Find all real numbers x for which 10* + 11% +
12*¥ = 13* + 14*.

Solution It is easy to check that x = 2 is a solution. We claim that it is the
only one. In fact, dividing by 13* on both sides gives

10 "+ 11 "+ 12"_1+ 14\*
13 13 13) 13) °

The left hand side is a strictly decreasing function of x and the right hand side is
a strictly increasing function of x. Therefore the two curves can have at most one
point of intersection.

Example 5. The number of solutions for x in equation

52X _26-5% + /52 —26.5% + 26 = —24
is
A)1  B)2 (©3 (D)4 (B)S.

Solution The substitution y = +/52¥ —26- 5% + 26 yields y> 4+ y —2 = 0,
therefore y = 1. Then

V52% —26-5% +26=1= (5" —1)(5* —=25) =0 = x; =0 xy = 2.
The answer is (B).

Example 6. (SSSM0/2009/Q12) Suppose that a, b and ¢ are real numbers greater
than 1. Find the value of

1 1 1
+ + :
L+logez, (§)  1+4+1logpe. (§) 14 log,2, (é)

c

Solution The formula for changing base gives log, v = og, ifu,v >0
and u,v # 1, s0
1 1 1
1 +log,2 (£) " 1+ logyz, (%) i 1 + log,2, (%)
1 1 1

= +
log,2,(abc)  logyz,(abc) + log,2,(abc)
= Ioga,,(,(uzh)(hz(')(('za) = logabc(abc)3 = 3.
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log; 4(log; 5 —log; 2)

E le 7. (SLOVANIA/2004) Evaluate 5%, wh = .
xample 7. ( )Evaluate 54, where a log, 25(log, 8 — log, 4)

Solution First of all, we simplify the index a:

log, 4(log; 5 —log;2) _ log;2?-log; 3  log; 3 | 5
— — — — 0 2,
log; 25(log; 8 —log; 4)  log;5%-log; 2 log; 5 )

5
therefore 5¢ = 5'°8s - X

Example 8. Solve equation x + log;(3* — 24) = 4.
Solution The given equation yields log;(3* —24) = 4 — x, so 3* > 24 and

3 —24=3%*%= —8-1,
3x
(3%)? —24-3* —81 =0,
(3* +3)(3* —27) = 0,
3% 4 3>3, 3% =27=33 ie,x=3.

Example 9. Solve equation logso(x + 3/x) = %log3 X.
1
Solution Let? = 3 log, x, then x = 3% = 27" and

logse (27" + 31) =1,
27t + 3t = 30",

(%) + () -

t t
1
Define f(t) = (E) + (E) ,t € R, then f is a strictly decreasing function

onRand f(1) = 1. Thus, # = 1, and hence x = 27" = 27.
Example 10. (CROATIA/2008) Solve the system of equations

5
log, x +log, y = > 4.1

x+y=12. “4.2)

Solution The given equations implies that x, y > 0 and x,y # 1. From
4.1)
2(log, ¥)?> —5log, y +2 =0,
(2 logx y - 1)(10gx y = 2) = 07

1
logxy=50r2=>y=«/forx2.
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i) y=Vvaa1R2-—x=/x=/x=3=x=9,y=23;
i) y=x?=>1R2-x=x2=3x=3=>x=3,y=09.
Thus, there are two solutions: (9, 3) and (3, 9).

Testing Questions (A)

(SSSMO/2003) Which of the following numbers is the greatest?
(A) 2300 (B) 3200 (C) 4100 (D) 2100 + 3100 (E) 350 + 450.
152010 +1 152011 + 1
or ?
152011 +1 152012 +1
(SSSMO0/2007/Q11) Suppose that

Which is bigger:

log,[log; (log, a)] = log;[log,(log, b)] = log,[log, (logs )] = 0.
Find the value of a 4+ b + c.

Given that a,b,c (a < b < c) are natural numbers, and x, ¥, z,w are real
numbers such that

1 1 1 1
a*=b? =c*=90% and — + — + - = —,
Xy z w

prove thata + b = c.

) 2
Solve equations 1310811(*~10x+23) _ 7log;; 13

Evaluate log, (v/4 + v/15 — V4 — 4/15).
If x >0,y > 0and 2lg(x —2y) = 1gx + lgy, then the value of x : y is

1
(A) 4; B)1; (©C)1or4, (D) Z; (E) none of preceding.
If logy2 x +1log,2b =1,b > 0,b # 1 and x # 1. Then x is equal to

1 1
@) 3 B) ©)b%  (D)b; (B)b.

(SSSMO/2010)If a > b > 1 and = /1229, find the value

of

log, b logya

1 1
log,p b loggpa’
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10. Find the sum of all real numbers x for which
(3* — 9)% + (9% — 81)% = (9* + 3" — 90)°.

11. (CROATIA/2007) Solve equation 151985 x1085 45 — 1,

Testing Questions (B)

1. (USAMO/TST/2001) Find all real numbers x for which
8% +27* 7

12 +18* 6

2. (ROMANIA/2003) Given that the positive numbers a, b,c,d satisfya > ¢ >
d > b > 1and ab > cd, Prove that the function f : [0, +00) — R defined
by

fx)=a"+b*—c*—-d*
is strictly increasing.

3. (CROATIA/2005) Prove that for each positive integer n > 2,

Xn: (log%(k3 +1)— log%(k3 - 1)) <1.

k=2
4. (ROMANIA/1990) Find all real solutions to the equation
2% 4+ 3% 4+ 6% = x%.
5. (THAILAND/2003) Find all ordered pairs (x, y) of two real numbers which
satisfy the system of equations

XY= R, 4.3)
x?y = 1 (4.4)

6. (SLOVENIA/2005) Calculate the value of
llog, 1] + [log, 2] + [log, 3] + - -+ + [log, 256].
7. (BULGARIA/2007) Find range of the real parameter a such that the inequal-
ity

1
log,(@* + 1) + m <x—1+log,(@*-1)

holds for all x € (0, 1].



Lecture 5

Trigonometric Functions

Definition 5.1. Trigonometric Functions For Acute Angles

. a b
sinf = —; cosf = —;
c c
c
a b a
tanf = —; coth = —;
b a
c
secl = —; cscd = —. 2]
a

Definition 5.2. Trigonometric Functions For Any Angles

)

1. sinf = X; cosf = z.
r r

y
P(x,y)
tan@:z; cotf = —; :
X y r E
OAf!
sec9=—r—; csc¢9=£. | /0
X y '
v/
P’ (x", y")

31
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Lecture 5 Trigonometric Functions

2. Positive and negative angles: Angles measured from x-axis in an anti-
clockwise direction are positive angles. Angles measured from x-axis in
a clockwise direction are negative angles.

3. The signs of each trigonometric function function in different quadrants are

+: sinf & cscf
all (+)
— others
+: tanf@ & cotf | +: cosf & sech
- others —: others

4. Each of the six functions are periodic with a common period 27 (or 360°).
Both sin x and cos x have range [—1, 1], both tanx and cotx has range
(=00, +00), and both | sec x| and | csc x| cannot be less than 1.

The functions sin x, tan x, csc x are odd functions, and cos x, cotx, sec x

are even functions.

Basic Properties of Trigonometric Functions

1. The graphsof y =
follows:

sinx,y = cosx,y = tanx,y = cotx are sketched as

Y=sinx

" mN A % 0 AN w
Y=cosx
............................ b
RN RN -
- N\x/ = N/ [0 NFS E NXRS &
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Y=tanx . Y=cot x

[S)
(STt

2. Each of the six functions is a periodical function. y = sinx and y = cosx
take 27 as their minimum period; and each has the range [—1, 1]. y = tan x
and y = cotx take 7 as their minimum period, and each has the range
(—00, +00).

3. y = sinx,x € R is an odd function, and is an increasing on (=%, 3], with
the range [—1, 1].

y =cosx,x € Ris an even function, and is decreasing on [0, ], with the

range [—1, 1].

y = tanx is an odd function, and is increasing on (— %, %), with the range
(—00, +00).

y = cotx is an odd function, and is decreasing on (0, 7r), with the range
(—o0, +00).

4. The functions y = sin™!

range [-5, 7.
The functions y = cos™
range [0, r].

X is increasing, it has the domain [—1, 1] and the

! x is decreasing, it has the domain [—1, 1] and the

The functions y = tan™!

the range (=7, 5).

x is increasing, it has the domain (—o0, +00) and

The functions y = cot™! x is decreasing, it has the domain (=00, +00) and
the range (0, 7).

Below are their sketches, in that order:

y=sinlx y=coslx Y=tan'lx Y=cot-Iy

r e A N

7 b Ak

Tq9 1% -4 0
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Examples

Example 1. For « € (0, Z), arrange (sin)**%, (cos @)*n® (sine)™® in de-
scending order.

. . . i1
Solution Since 0 < sina < cosa < 1for0 <o < 7
(cos@)®™® > (sin@)™® and (sin)™* > (sina)**%,

therefore ‘ 4
(cos @)™® > (sina)*™™% > (sina)***.

Example 2. Compare the values of cos(cos x) and sin(sinx), if 0 < x < 7.

Solution Firstof all, m > %—cosx > %— 1 > 0and
T . T . b4 T
5—cosx——smx—5— 2s1n(x+—4—)25—«/§>0.

(i) When0 <x < E,theangles a = %—cosx,az = sinx are both in [0, 7].

Since sinu is increasing on [0, ], so

cos(cos x)—sin(sin x) = sin (—2— — cos x)—sm(sm x) = sinag—sinaz > 0.
.. b4
(ii) When ) <xZ<m,

11 b4 .
Efcxl:E—cosx, 0<ay=sinx <1

and
a1+a2=%—cosx+sinx5%+ﬁ<m

7
SO > < a; < m — oy. Hence

cos(cos x) = sin(er;) > sin(r — @z) = sinay = sin(sinx).
Thus, cos(cos x) > sin(sin x) for x € [0, ].

Example 3. (CMC/2009) In the following functions, the even function with % as
its minimum period is

(A) y =sin2x +cos2x;  (B)y = sin2xcos2x;

(C) y = sin? x + cos 2x; (D) y = sin? 2x — cos? 2x.
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Solution In (A) take x = % then y = 1, and take x = —% then y = —1,
so y is not an even function.

The functionin (B)is y = 2 sin4x, so it is not an even function.

L . l+cos2x . oo
The function in (C) is y = — S0 its minimum period is 7.
The function in D) is y = — cos 4x, so it satisfies the requirement.

Example 4. (CMC/2009) Find the range of the function f(x) = sin* x - tan x +

cos* x - cot x.

. . si x cos’x  sin®x +cos®x 2-— % sin? 2x
Solution Since f(x) = +— = - = -
cosx  sinx sin x cos x sin 2x

ifletz = sin2x, thent € [-1,0) U (0, 1] and

2-32 2 3

fx)=g@) =

2 3
Since 2/t and —% are both decreasing on [—1,0) and (0, 1], so g(¢) = T it is

decreasing on [—1, 0) U (0, 1], therefore the range of g () is (—oo, —%] u [%, +00).

1 1
Thus, the range of f(x) is (—oo, —5] U [5 +oo).

Example 5. Prove that the function f(x) = cos x3, x € R is not periodic.

Solution For the sake of contradiction, suppose that T is a period of f. Then
f(T) = f0)=1= f(V2kn) = f(¥2kn +T), k € Z.

Therefore there exists an integer m such that T3 =2mmorT = ¥ 2mm, where
m # 0. Similarly, for k = 2m, there exists n € Z such that

(v3 4mm 4+ T)? = 2nn,
Thus,

(V4mz + V2mn)? = 2n7w = 2mr (Y2 + 1)} = 2nn
=>mQ2+3V4+32+1)=n= Y4+ %:%_1=> Vi+ V2eq.

Leta = ¥/2,thena® +a € Q. Sincea® =2 € Q,s0a®—1 = 1 € Q. Then

a’ -

= — € = a € Q,
a’+a+1 Q=acQ

a—1
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which is impossible: It is easy to show that Y2 € Q¢ by contradiction. Thus, the
contradiction proves the conclusion that 7' does not exist.

Example 6. For 6 € [0, 7] defined f(6) = sin(cos #), g(f) = cos(sinf). If
a= max f(0),b= min f(f),c = max g(0), andd = min g(0), then
0<f<m 0<0<m 0<0<m

0<f<m
which of the following relations is true?
(A)b<d<a<c; B)d <b<c<a

©)b<d <c<a D)d <b<ac<c.

Solution On [0, ] the function y; = cos 6 is decreasing, and on [—1, 1] the
function sin y; is increasing, so @ = sin1,b = sin(—1) = —sin 1.

On [0, 7] the function y, = sin 6 has range [0, 1], and the function cos y is
decreasing on [0, 1],s0 ¢ = cos0 = 1,d = cos 1.

Further, 1 > % implies thata = sin1 > cos 1 =d.

Thus, b < d < a < c, the answer is (A).

6 sin* x — 7 sin® 2

Example 7. Given the function f(x) = n Sin” X+ . (i) Find the

cos 2x
domain and range of f; (ii) determine if f is an odd function or even function.

6sin* x — 7sin® x + 2 _ (3sin2x—2)(2sin2x—1)
cos 2x N cos 2x
. 2 5 3 1
=2 —3sin” x = 3cos x—l:icos2x+5.
. T, ) . kn m
Since cos 2x # 0,50 2x # kﬂ+5,1.e., the domain of f is {x 1 x # - + 20

Solution (i)

1 1
The range of f is [—1, 5) U (E,Zjl.
(ii) Since cos 2x is even function, so is f.

Example 8. (CMC/2008) Given that f(x) = cos 2x—2a(1+cos x) has minimum

value —3 find the value of a.

2 1
Solution f(x)=2C052x—1—2a—2acosx=2(cosx—a5) ——a’-
2a — 1.

(1) When @ > 2, the minimum value of fis 1 —4a < —7, and the value is
obtained when cosx = 1.

(2) When a < —2, the minimum value of f is 1, and the value is obtained when
cosx = —1.
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1
(3) When —2 < g < 2, the minimum value of f is —Eaz —2a — 1, and the

1.

2.
3.

4.

5.
6.

7.
8.

value is obtained when cos x = %.
. 1, .. . 5
By solving —Ea —2a—-1= —7 it is obtained that a* + 4a + 1 = 0, so

a=-2+43 or a=-2-4/3.

Since |a| < 2,s0a = —2 + /3.
Testing Questions (A)

(USAMO/TST/2005) Let 0° < 6 < 45°. Arrange
f = (tan0)™°, 1, = (tan 0)°', 13 = (cot )%, 14 = (cot )7,
in decreasing order.
Prove that cos(sin x) > sin(cos x) for x € [0, 7].

Given f(x) = atanx — bsinx + 2 and f(7) = 9. Find the value of f(—7).

Cos X

b L sinx . sin x 9
For x € (0, Z)’ leta = cosx*™*"" b =sinx* ", ¢ = cosx**" " and

. - sin X . .
d = sinx**"" . Arrange a, b, c, d in ascending order.

Find the minimum period of the function f(x) = cos(sin x), where x € R.

(CMC/2008) Given that the lengths of three sides BC, CA, AB of AABC
are a, b, ¢ respectively, and a, b, ¢ form a geometric progression. Find the
range of the value of the expression

sin A cotC + cos A
sinBcotC + cos B’

Let f(x) = sin* x — sin x cos x 4 cos* x, x € R. Find the range of f.

(CSMO0/2004) Given that for any value of 6 in [0, 7], the inequality

b4 6 .
«/§(Za+3)cos(9—z)+ m—2s1n20 <3a+6

always holds. Find the range of a.
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9. Prove that the function f(x) = —x + sinx (x € R) is not periodic.

10 (CMC/2008)Leta = sin(sin(2008°), b = sin(cos 2008°), ¢ = cos(sin 2008°)
and d = cos(cos 2008°), then the order of their values is

(A)a <b<c<d; B)Yb<a<d<c; Oc<d<b<a
D)d <c<a<b.

Testing Questions (B)

1. Prove that when the function f(x) defined on R is periodic, and its minimal
positive period is Tp, then all the period of f must be a multiple of Tp.

2. (RUSMO/2003) Find all angles « for which the three-element set
S = {sina, sin 2, sin 3}

is equal to the set
T = {cosa, cos2a, cos 3a}.

3. Prove that the function f(x) = cosx*, x € R is not periodic.

4. (CMC/2008) If 2008 = 291 4 292 4 ... 4 297, where a1, 02, ...,0Qn are
distinct non-negative integers, compare the sizes of the values

n n n
sin E o, cos E o, tan E o;.

5. (St.Petersburg MC/1999) Find all continuous functions f : R = R such that

fGsinzx) = f(x)cosmx for all x € R.



Lecture 6

Law of Sines and Law of Cosines

(I) The Law of Sines (or called as Sine Rule shortly): In any triangle ABC
with the interior angles ZA4, /B and ZC, it is always true that

a b c
sinA sinB sinC’

where a, b, ¢ are thee lengths of the sides BC, CA, AB respectively.
Further, the Extended Sine Rule is always true:

a =2RsinA, b=2RsinB, ¢ =2RsinC,

where R is the radius of the circumcircle of the AABC.

Proof.
(1) When ZA is acute, as shown in the diagram (1),
a =2Rsin A’ = 2R sin A.
(i) When ZA is obtuse, as shown in the diagram (2), then

a =2Rsin A" = 2rsin(w — A) = 2Rsin A.

) N
/
A B C

0 0
B\/C Al
(1) 2

39
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(I The Law of Cosines (or called as Cosine Rule shortly): In any triangle
ABC with the interior angles ZA, ZB and ZC, it is always true that

a? = b2+c2—2bccos A, b* = c?+a®?—2cacos B, ¢2 = a?*+b*-2abcosC,

where a, b, ¢ are thee lengths of the sides BC, CA, AB respectively.

Proof.
C C
b/l \e h
A c—X D X BA cBX D
)] )] 3)

(i) When ZA is acute, as shown in the diagram (1) or (2), then
a®? = h%+ x2? = (bsinA)? + (c —bcos A)?
= b2sin? A+ c2 4+ b%cos®> A—2bccos A
= b?% 4 c?—2bccos A.

(ii) When ZA is an obtuse angle, as shown in the diagram (3),

a? = h*+(c+x)? = (bsin A)*>+(c—bcos A)? = b?+c*—2bccos A.

O
The cosine rule can be expressed in the form
b2 4+ 2 — g2 2 2 _p2 2 p2_ (2
COSA:___F_C___, cosBzc_ia___’coscza_.-*__—c’
2bc 2ca 2ab

so the cosine rule means that the interior angles of a given triangle are determined
by the lengths of three sides.

The following theorem has wide applications, and can be proven by applying
the cosine rule.

Theorem I. (Stewart’s Theorem) For a triangle ABC, if D is an point on the
line segment BC such that BD = p,CD = q, then
AD? = M —
P+q
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Proof. As shown in the right figure, applying the cosine rule to AABD and
AABC gives

c?+ p?— AD? a? + c2 - b2
— =cosB=———. A
2pc 2ac
Note thata = BC = p + ¢, therefore
b2 _ a2 c b
AD?=c24p24 2P 4,
(p +q)c* +b*p— pc?
= - +p’=(p+q)p
b2 + C2
= ——-—-—ﬁ s g - pq. B p D 49 ¢
O
Examples

Example 1. (Formula for a median) When A D is the median on the side BC of
the AABC, then
1
AD = 5\/2b2 +2¢2 —a2.

1
Solution Applying the Stewart’s Theorem to the case p = g = Ea gives

la 1 1
AD? = 2= + ) — 2a? = 2207 + 26— a?).
a

1
Therefore AD = 2 V2b2 +2c2 —qa2.

Example 2. (Formula for an angle bisector) In AABC when AD is the angle
bisector of the Z A, then

AD = ﬁ—\/bcs(s —a),

4

1
where s is the semi-perimeter of AABC,i.e., s = E(a +b+c).

Solution Let BD = p, DC = q. The angle bisector theorem gives P _ %,
q

SO .
ac ab

b+c

p=
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Then the application of the Stewart’s Theorem gives

AD? — b*ac +c*ab  a*bc he — a’bc _ be[(b 4 ¢)* —a?]

~ ab+o) b+c)3? (b+c3? (b +c)?

_ bcb+c—a)b+c+a) 4bc(s —a)s

- (b+c)? ICEEE

2
Therefore AD = bic Vbes(s —a).
c

Example 3. (Heron’s Formula) The area of AABC, denoted by [ABC], is given
by

[ABC] = V/s(s —a)(s — b)(s — ),
where s = %(a +b+c).

Solution It suffices to find the height A on BC. Let AD L BC at D, where
D is on the line segment BC, then

A
cz—p2=h2=£)2—q2=>c2—b2=p2—q2
=>p-—q=32
Associate it with p 4+ g = a, it follows that ¢ h b
1c2—b2+ c2+a?-b?
= — a =
P 2 a 2a
1 c2 —b? a2+ b%—c? B p D4 C
q:—a—— et s
2[ a ] 2a

then applying the Stewart’s Theorem gives

2 _ 4a2c2 _ (C2 +a2 __b2)2

W = c*-p

4q?
_ (ac—c?—a*+b*)(ac 4+ ¢ +a* - b?)
N ) 4a?

= 5 0* - -a?] [ +a?-b7]
= %(b—a+C)(b+a—c)(a+c_b)(a+c+b)

4(s —a)(s —c)(s — b)s
a? ’

Therefore

h = %\/s(s —a)(s —b)(s —¢) and [ABC] = Vs(s —a)(s — b)(s — ¢).
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Note: In above proof of Heron’s Formula, it was assumed that D is on the
line segment BC, but it is easy to see that the formula is still true for any obtuse
triangles.

. sina sinc  sin(a —c¢)
E le4. (BELARUS/2003) G = = , whi ,b,c,
xample4. ( ) Given snb — sind _ sin(b —d) wherea, b, ¢
d € (0, 7). Provethata = b,c = d.

Solution Since a = ¢ implies thata = ¢ = 0, but it is impossible, soa # c.
Suppose that a > ¢, then the given equalities implies that » > d, and

sin(r —a) _ sinc sin(a — ¢)

sin(t —b) ~ sind  sin(b —d)’

Let the AABC satisfy LA = w —a, 4B = c,._éC =a-c, and.ADEF
satisfy /D =n—b,/E =d,/LF = b —d. Since s.mA = s¥nB = s?nC
sin D sin E sin F
BC AC AB
EF  DF DE’
therefore AABC ~ ADEF, /A =/D,/B =/E,ie.a=b,c=d.

, by
sine rule it follows that

Example 5. If the lengths a, b, ¢ of three sides of AABC satisfy 2b = a + ¢,
find the value of 5cos A —4cos Acos C + 5cosC.

Solution By the sine rule, the relation 2b = a + ¢ implies that 2sin B =
sin A 4 sinC. Then

sin(d + C) = sinA4 + sinC
=>2sinA+CcosA+C =sinA+CcosA_C
2 2 2 2
:200sA+ =cosA_C
2 2

Therefore

5cosA—4cos AcosC + 5cosC = 5(cos A + cos C) —4cos Acos C
A+C A-C
cos

= 10cos —2[cos(A + C) + cos(4 — C)]
A+ C A-C A A-C
= 10cos 42_ cos — 4[cos? ; ¢ + cos? — 1]
A A+C A+C
= 20 cos? +C _ 4[cos® ——-—'2_—— + 4 cos? % -1 =4

Note: Inthe proof, applying the sine rule to convert the relation among sides
to that among angles plays important role.
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Example 6. (CROATIA/2004) Prove that the inequality

cosA cosB cosC> 3
a3 b3 ¢3 T 2abc

holds for any triangle ABC, where a, b, c are the lengths of three sides, and
/A, /B, ZC are their opposite inner angles respectively.

1
Solution The cosine rule and the inequality x + — > 2 for x > 0 give that
x

cosA cosB  cosC 24+ c2—a? a?+c2—b% a?+b*-c?
a3 b3 3 2a3bc 2b3ca 2¢c3ab

1 a\2 b\? b\> c\2 c\2 a\2
= - - - - = =) -3
R GCIROROIRORBE
1 3
>§—(2+2+2 3) = Sabe’
Example 7. (CMC/2008) Let a,b, ¢ be lengths of three sides of AABC, and
b2 =ac.If ZB = x and f(x) = sin (4x - %) — —, find the range of f(x).

Solution The cosine rule gives

. a?+c2-b2 2ac—ac 1
oS X = ==
2ac - 2ac 2
7
Since) < x <m,s00 < x < za.nd—z < 4x—% < ?ﬂ Therefore

1 1
) < sin (4x - %) < 1 and the range of f(x) is [—1, 5]

Example 8. Given that in the AABC, acos A = bcos B. Determine the shape
of the AABC.

Solution1 By the cosine rule,

b2 2_ .2 2 2 _p2
acosA=bcosB & a- te a 4 te

2ac
& a?(b? + c? —a?) = b*(a? +c 2_p2) & a?c?—a* - b3 +b* =0

& @2 =b¥)(?—a?-b?)=0&a=bhora 2 1 p2 =2,

Thus, AABC is isosceles or right-angled triangle.

Solution2 The sine rule gives 2R sin A cos A = 2R sin B cos B,sosin24 =
sin2B.
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Since 0 < 2A4,2B <2m,50 A = Bor2A = nw —2B. A = B implies that
AABC is an isosceles triangle.

24 = 7 —2B,then A + B = % s0C = % so AABC is a right triangle.

Thus, AABC is isosceles or right-angled triangle.
Note: In the proofs, we focus on the relation of sides by using the cosine
rule; and we focus on the relation of angles by using the sine rule.

Testing Questions (A)

1. In AABC, AB = AC, the angle bisector BD of the ZB intersects AC at
D,and BC = BD + AD. Find ZA in degrees.

2. InAABC, AB =4,BC =7,AC = 10, D is on AC such that BD = 4.

Find AD : DC.
3. (CROATIA/2007) For the AABC with semi-perimeter p, prove that
C B B B+C
p? = b? cos? > + c?cos? ) +2bccos3 -cos—2— - cos -12— .
4. In AABC, LA =45°,b = 2 and [ABC] = 2. Find the value of

a+b+c
sinA +sinB +sinC "’

5. Given that the circumcenter of acute triangle ABC is D, the circle passing
through A, B, D intersects AC and BC at M and N respectively. Prove
that the radius of the circumcircle of AMNC is equal to the radius of the
circumcircle of AABD.

6. (CROATIA/2008) In the AABC, the angle bisector BK of ZB intersect AC

aa K.If BC =2,CK =1,BK = %,ﬁndareaofAABC.

7. (CMC/2008) Let a, b, ¢ be the lengths of sides BC,CA, AB of the acute
triangle ABC, and sin A = 2a sin B. if the circumradius of the AABC is

3
%, find the range of the perimeter of the AABC.

8. (USAMO/TST/2005) In triangle ABC, show that

abc
[ABC)
(¢) 2RsinAsinBsin(C' =r(sinA + sin B + sinC).

(a) 4R = (b) 2R?*sin Asin BsinC = [ABC];
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Testing Questions (B)

1. (CROATIA/2004) If the lengths of three sides of a triangle a, b, ¢ satisfy

b |p2+c?—a? ¢ _ | +a*-b? a _|a®>+b>=c?
a bc b ca e ab ’
find the three angles.

2. (SMO/2009)Let ABC be a triangle with sides AB =7, BC =8and AC =
9. A unique circle can be draw touching the side AC and the lines BA
produced and BC produced. Let D be the centre of this circle. Find the
value of BD?.

3. (CMC/2009) One diagonal AC of the cyclic quadrilateral ABCD partitions
the interior angles A and C as four angles o1, a2, @3, @4, as shown in the
given graph. Prove that

sin(a; + ) sin(erz + 3) sin(ors + o14) sin(erq + 1)
> 4sina sinap sinas sin o4.

4. (SERBIA/2009) Given that the triangle ABC has unequal sides. The angle
bisectors of ZBAC and ZABC intersect their opposite sides at the points
D and E respectively. Let ZBAC = a, ZABC = . Prove that the angle
included by the lines DE and A B is not greater than L%ﬂ
5. (USAMO/TST/2005) In triangle ABC, show that
A. B . C
(@) r =4Rsin 0} sin 0 sin —2—;
abc

b A+b B C=—.
(b) acosA+ bcos B + ccos 7R2



Lecture 7

Manipulations of Trigonometric Expressions

Trigonometric formulae have widespread applications in trigonometry and geom-
etry, in particular, it is a powerful tool for solving geometric complicated calculate
problems. In this lecture we are not going to discuss these complicated problems,
but focus on the following aspects only.

1. The evaluation and simplification of trigonometric expressions;
2. The evaluation of trigonometric series;

3. Trigonometric identities of triangles.

Examples

Example 1. (CMC/2009)Evaluate cos 10° cos 50° cos 70°+sin 10° sin 50° sin 70°,

Solution Rewrite the given cos 10° cos 50° cos 70° + sin 10° sin 50° sin 70°
to

sin 20° sin 40° sin 80° + cos 20° cos 40° cos 80°,

then

8 sin 20° sin 40° sin 80° = 4(cos 20° — cos 60°) sin 80°
= 45in 80° cos 20° — 2 5in 80° = 2(sin 100° + sin 60°) — 2 sin 80°

= 25in60° = /3,
1
8 cos 20° cos 40° cos 80° = — - 8 5in 20° cos 20° cos 40° cos 80°
) sin 20° )
= sin120° - 4 5in 40° cos 40° cos 80° = 707 2 sin 80° cos 80°
= .sin 160° =
S 20° sin 160 1,
3+1
therefore cos 10° cos 50° cos 70° + sin 10° sin 50° sin 70° = 1/—-—§+—

47
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Example 2. (SLOVENIA/2004) Evaluate sin® 75° — cos® 75°.
Solution Applying the factorization of a® — b® gives

sin® 75° —cos875° = (sin* 75° — cos* 75°)(sin* 75° + cos* 75°)
= (sin® 75° — cos? 75°)(sin? 75° + cos? 75°)
[(sin® 75° + cos? 75°)? — 2sin” 75° - cos? 75°]

1
= —cos150° l—isin2150°

_ V3 _1\_1¥3
2 8) 16’
. sin(o + B) tan o
Example 3. (CMC/2008) Given ————= = 3, find the value of .
sin(a — B) tan

Solution The given equality gives
sine cos B + cosa sin 8 = 3(sin cos f — cos & sin f),
namely

. ) tano  sina cos
sinacos B =2cosasinf, .. = - b =
tanf  cosasinf

4
Example 4. (SM0O/2010) If cota + cot f +coty = —g,tana +tanB +tany =

17 17
3 and cota cot 8 + cot Bcoty + coty cotax = -3 find the value of tan(x +
B+y).

Solution Letx =tanw,y =tanf and z = tan y. Then

xytyztezx 4 1)
xXyz 5 '
17
X+y+z = r (7.2)
17
xty+z _ 17 (1.3)
xyz 5

5 2
(7.2) + (7.3) gives xyz = —g then (7.1) yields xy 4+ yz + zx = 3 Thus

tan(o 4 B) + tany

tan(e + 6 +y) = 1 — tan(a + B)tany
_ (tana +tanB +tany —tano tan ftany)/(1 — tan o tan f)

T - - — 1-
U meind ey oo o/ — e )

T1-(y+yztzx)  1-@2/3) =1L
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" sin 72 sin(a + 2L
Example 5. Prove that Z sin(a + kB) = 2 .( L P
et sin 5B

Solution Let S = sin(x + B) + sin(x + 28) + - -- + sin(a + nf). Then

S -sin —2~ Z sin — sm(a + rB)

n

Z [cos (a +(r— E)ﬂ) — cos (cx +(r + %)ﬂ)]

': (a + %ﬂ) —cos (a + @+ %),B)ﬂ]
n

sin — sin a+n+1ﬂ
np n+1 2 2
=sm73m a+Tﬂ S8 = .

= =
—_

sin -z-ﬁ

Example 6. Prove that for any natural number # and real number x with 2kx #£
(m + %)n forallk e Nand m € Z,

tanx + 2tan2x + 22tan2%x 4 --- 4+ 2" tan 2"x = cotx — 2" cot 2"+ x
Solution For any real o # (m + %)n,

2tana 1
tan2¢ = ————— = cot2x = —(cota —tanc)
1 —tan? 2
= tana = cota — 2cot2a = 2F tan 2k x = 2K cot 2k x — 2k+1 cot 2K+ x

fork =0,1,2,---,n. Thus,

tan x + 2tan2x + 2% tan2%x + --- + 2" tan 2"x
= (cot x —2 cot2x)+ (2 cot 2x —22 cot 22x) 4+ - -4 (2" cot 2" x —2" 1 cot 2" 1 x)
= cotx — 2"l cot 2" H1x.

22
Example 7. (CMC/2008) Given sec x + tanx = EE csCX +cotx = ﬂ, where
n
(m,n) = 1. Findm + n.

. 1+sinx 22 1+ sinx + cosx 29
Solution. —4m8MW =—= —M = —,
COS X 7 1+ sinx —cosx 15

14sinx +cosx 2cos’ 3 +2sin3 cos 3
1 + sinx — cos x Zsin2§+25in§cos§
1+ cosx 2 cos?

X
cscx + cotx = — =2
sin x 2sin 5 cos 5

X
= cot— and

¢
= cot —,
2
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29
therefore m_Z and m +n = 44.
n 15

The identities in the following example are those involving three interior an-
gles of a triangle, the results can be readily applied.

Example 8. Given that A, B, C are three inner angles of the AABC. Prove the
following identities

A B C
@) sin A + sin B + sinC = 4 cos — c0s — €0S —;

2 2 2
. . A B C
(i) cos A + cos B +cos C =1+4sm55m55m—2—;

(iii) tan A + tan B + tan C = tan Atan B tan C;

@) tmianl fanBan 41 Cand o1
i an — tan — + tan — tan — + tan —tan — = 1;
v I T T} )

W) t — 4+ cot — + cot — = cot t t
— 0_ C —_— = — — —
v co2 2 02 002002c0 X

(vi) cot Acot B +cot BcotC + cotC cotA = 1.

Solution

A+ B A—B
(i) sinA +sinB +sinC = 2sin ; cos 5 + sin(4 + B)

. A+ B A-—B A+ B
= 25sin 2 cos + cos >

2

. A+B A B C
= 4sin cos — cos — = 4C0s — COS — COS —.
2 2 2 2 2
A+ B A—B
(ii) cos A + cos B 4+ cos C = 2cos —i2- cos 5 —cos(4 + B)
A+ B A—B A+ B
= 2cos + cos — (2cos? + -1
2 2
1+ZCosA+B cosA_B A+S
= — cos
2 2 2
. C . B A
= 1+ 4sin — sin — sin —.
2 2 2

(iii) tan A + tan B + tanC = tan(4 + B)(1 —tan Atan B) + tanC
= —tan C(1 —tan Atan B) + tan C = tan A tan B tan (.
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. A B C C A
@iv) tanElanE+tan—tan—+tan—tan5

2 2 2
A B C B C
=tan—2—(tan5 +tan5) +tan3tan5
=tanétan(—li+£) (l—tanétang) +tan£tan£
2 2 2 2 2 2 2

=t AcotA 1 tanBtanC +tanBtanC—l
Ty oty 2 2 My T

A C
(v) When the both sides of (iv) are divided by tan 0} tan > tan > the equality (v)
is obtained at once.

(vi) When the both sides of (iii) are divided by tan A tan B tan C, then (vi) is ob-

tained at once.

Testing Questions (A)

(SSSMO0/2007) Evaluate 256 sin 10° sin 30° sin 50° sin 70°.

(CMC/2008)Letay, az, . . ., a, be the sequence of all irreducible proper frac-
tions with the denominator 24, arranged in ascending order. Find the value

of
n
Zcos(a,-n).
i=1

Prove that
sin % cos(a + "%lﬂ)

1
sin 5 B

cos(a + B) +cos(a +2B) + - - + cos(a + np) =

(SSSMO0/2009) Find the value of
(cot25° — 1)(cot 24° — 1)(cot 23° — 1) - -+ (cot 20° — 1).
(CROATIA/2004) Prove that tan” 15° + cot” 15° must be an even positive
integer for any positive integer n

Prove that for any positive integer 7,

tan no
tan o tan 2« + tan 2cr tan 3o + - - - + tan(z — o tanna =

—n
an o

where tana # 0 and tanka # +oofork =1,2,...,n.
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7. (CMC/2009) Given 0 < & < 7, < B < 2m. If the equality
cos(x + «) + sin(x + B) + V2cosx =0

holds for any x € R, find the values of o and B.
8. (SSSMO/2004) Find the value of sin? 1° 4 sin? 2° 4 sin® 3° + - -+ sin® 360°.
9. (AIME/2000) Find the smallest positive integer n such that

1 1 1 1
sin 45° sin 46° + sin 47° sin 48° o sin133°sin134°  sinn®’
6 3
10. (CMC/2009) Given sina + sin 8 = %—,cosa +cosf = é, find the

value of cos?

a—B
>

Testing Questions (B)

b4 2r 4r T
1. (CMC/2009) Evaluate cos - cos 5~ cos s + cos '
2. (USAMO/TST/2005) Evaluate cos 36° — cos 72°.
cos 100°

3. 2 = °, .

(SSSMO0/2009) If [ 45in25° 005 25° 03 50° tan x°, find x
4. (USAMO/TST/2005) Prove that

1 1 1 cos 1°

- ; + — ; + .- - p .
sin 1° sin 2° sin 2° sin 3° + sin 89° sin 90° sin? 1°

2 2
5. Prove that (i) tan % tan ?]T =+/5; (i) tan® % + tan? ?n

10.



Lecture 8

Extreme Values of Functions and Mean Inequality

The following methods to find maximum or minimum values of a function are
discussed in this lecture:

(I) The extreme values of a function can be determined based on the analysis of
the tendency of its change, since if an extreme value of f(x) is taken at some
point xo, then the tendency of change of f(x) must be changed at xq. For
this it is important to consider the graph of the function, like in the case that

f(x) contains absolute value signs.
(II) For quadratic function y = ax?+bx +c, the completing the squares method

is powerful for getting its extreme values. However, when dealing with the
quadratic function of multi-variables or conditional extreme value problems,
completing the squares alone is not sufficient, it should be complemented with
some other techniques, like canceling variables or substitution of variables,

etc.

(IIT) To determining the range of one variable x; in a quadratic function of two
variables x1, x5, it is often useful to consider x; as a constant at the moment
and investigate the resulting quadratic equation of another variable x5, then
the non-negativity of its discriminant will yield an inequality of the variable

X1, from which the range of x; is obtained.

(IV) Instead of using the discriminant in the method (III), we can get an inequality

in x1 by using some inequalities on the other variables also. (cf. Example 5).

(V) The Mean inequality (cf. Appendix B) can be used to enlarge or compress the
value of a function considered, so that a constant upper bound or lower bound

of the function is obtained, then the remaining work is to show the constants
are reachable by the function.
(VD) By introducing trigonometric transformations, many functions can be con-

verted to simple functions of six basic trigonometric functions, so that the
techniques for dealing with trigonometric functions can be used for getting

their extreme values.

53
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Examples

Example 1. f(x) = |x| +2|x — 1] + |x = 2| + |x — 4] + |x — 6] + 2|x — 10|,
where x € R. Find the minimum value of f.

Solution For any real numbers a and b with a < b, the function g(x) =
|x —al| + |x — b], —00 < x < 400, can be written in the form

a+b—2x if x <a,
gx)=4 b—a ifa <x <b,
2x —(a + b) if b < x.

So g(x) is decreasing on (—o0, a], constant b — a on [a, b], and increasing on
[, +00).

Thus, g takes its minimum value b — a whena < x < b.

Since |x|+|x—10]|, |x—1|+|x—10]|, |x —1]|+|x —6]|,and |x —2|+|x —4| take
their minimum values on [0, 10], [1, 10], [1, 6] and [2, 4] respectively, therefore f
takes its minimum value when x € [2, 4], and by lettingx = 2, f(2) =2 +2 +
0+ 2+ 4 + 16 = 26 is the minimum value of f.

Example 2. (CHINA/2005) Given |y| < 1 and 2x + y = 1, find the minimum
value of 2x2 + 16x + 3y2.

Solution |y|<1,2x+y=1&2x=1-y,-1<y<1=0=<x=<1
Therefore

2x2 4+ 16x +3y2 = 2x24+16x+3(1—2x)2 =14x2+4x+3
1\*> 19
= 14 - .
(x+7) + 7

Thus, the minimum value of the given expression is taken when x = 0, so itis 3.

Example 3. (CMC/2009) Let x, y be real numbers satisfying 2x + y > 1. Find
the minimum value of the function of two variables u = x2 + 4x + y? —2y.

Solution If complete squares for x and y separately, then the condition 2x +
y > 1 cannot be satisfied. Now let z = 2x + y, thenz > 1,y = z — 2x and

u = x2+4x+(z—-2x)2-2(z—2x)=5x>—4dzx +8x +2> -2z
4 4 4
2 2 2 2
= — - Z(z— -2z —
S(x 5(z 2)x + 25(z 2) )-I— (z z 5(2 2) )

2 2 22467—-16 1+6—16 9
s(x-2¢-2) +2H02710, 1+ -2
5 5 5 5

2 2
The equality holds whenz = 1, x = g(z —-2) = —g. Thus, Unin = —3
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3x2—2x +2
x242x+2°
Solution Consider the value of y is taken in its range, so y is considered as

a constant. By moving the denominator to the left hand side, then an equation in
X is obtained

Example 4. Find the maximum value and minimum value of y =

X2 +2yx +2y =3x2+2x +2 & (y = 3)x2 +2(y — Dx + 2y —2) = 0.

The equation must have real roots, so its discriminant is non-negative, i.e., if y #
3, then
O-1-0r-32y-2)=0=y2-6y+5<0
=>@-DO@-5=<0=1=<y<s5.
When y = 3, then x = —1. Thus, yyin = 1 and ypay = 5.

Example 5. (USAMO/1978) Given that the real numbers a, b, ¢, d, e satisfy a +
b+c+d+e =8and a?+b%+c?+d?+e? = 16. Find the maximum value of e.

Solution First of all we prove the following inequality: For any real a, b, ¢, d
4@ +b2+c?2+d*» > (@+b+c+d)>
and the equality holds if and only ifa = b = ¢ = d. In fact,
4@ +b2+c?2+dH)—(a+b+c+d)?
=3(a*+b*+c?+d?) —2(ab +ac +ad + be + bd + cd)
= (a® —2ab + b?) + (% —2ac + c?) + (a® — 2ad + d?) + (b* — 2bc + ¢c?)
+(b? —2bd + d?) + (c? — 2cd + d?)
=@-b2+@-c+@—d?+@b-c?+G-d?*+(@c—-d)?>0.

Thus,a +b+c+d = (8 —e) and a® + b? + ¢ + d? = 16 — e? gives the
inequality in e
(8 —e)? < 4(16 — e?),

5e2 — 16e < 0,
16
Se(e——)so,
5
0 < <16
e < —.
- -5
16 6 16
It’s easy to see that e = 5 whena =b=c=d = 3 Thus e = 5

Example 6. (CROATIA/2004) Given a > 0. Find the minimum value of the
function f(x) = x5 + % (x > 0).
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Solution By AM-GM inequality,

6 6
_ s, @ _ a a a a_|say_o [(3)
Sx) x+5x+5x+5x+5x+5x_ x (Sx) (5)’

6
the equality holds if and only if x> = Si ie. x = \/g . Thus the minimum
x

value of the function is
6 6
a a\s
5 = 6 (—) ’

Example 7. (SM0/2003) Find the maximum value of
xXyz
(1 + 5x)(4x + 3y)(5y + 62)(z + 18)

as x, y and z range over the set of all positive real numbers. Justify your answer.

xyz
(1 + 5x)(4x + 3y)(5y + 62)(z + 18)’
I = xyz _ 1

(1 +5x)(dx +3y)(5y + 62)(z + 18) ~ 20(1 +)(1 + B)A + )1 +8)’

where

Solution lLet] = then

3 6 18
a=5x,ﬂ=—y,y=—z,8=—,
4x Sy z
hence a, B, 7,8 are all positive with - -y - § = 81 = 34. Then the mean
inequality gives

I+a)1+81A+y)A+06)
=14+@+B+y+8)+ @B +ay+as+ By +ps+yd)

+(aBy + afs + ays + Bys) + aBys
>1+4@-py- O +6@ By-9F +4@-By-O +apoy:s

= 256.
Hence [ < ! Since 1 ! he B §=3,i h
—.Since ] = —— whena = 8 =y =6 = 3, 1.e., whe
= 5120 0" T 5120 Y € Whel
3 12 . 1
X = g,y = —5—,2 = 6, it proves that Imax = 3120°

Example 8. (CMC/2009) Given that the lengths of three sides of AABC are
3,4 and 5. P is a point variable in the interior of AABC (not on its bound-
ary). Find the maximum value of product of distances from P to the three sides
AB,BC,CA.
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Solution Leta = BC =3,b=CA=4,c = AB = 5,then AABC isa
right triangle with ZC = 90°. Use hg, hp, he to denote the distances from P to
BC, CA, AB respectively, then

ahg + bhy, + che = 2[ABC] = 12,

therefore, by the mean inequality,

3
hahph, = %&’M < _1_ ahg + bhy + ch,
abc abc 3
43 16

60 15
The equality holds when ah, = bhy, = ch. = 4, ie., [PAB] = [PBC] =
[P CA], which means that P is the center of gravity of AABC.

Thus, the maximum value of izhph, is T

-3
Example 9. (CMC/2008) Find the maximum value of z = m:_—? where
xX—y

x,y satisfy (x —3)%2 4+ 4(y — 1)? = 4.
Solution Letx =3+ 2cosf, y =1+ sin6, then

xX+y—3 2cosf +sinf + 1
x—y+1 2cosf —sinf + 3"

When z has taken a value in its range, move the denominator to the left hand side,
then
2z —2)cos — (z + 1)sinf +3z—1=0.

) l—tanzg ) 2tan%
Using cos 6 = —— g sinf = ——=—, then
1+ tan? 3 1 4 tan? 3

6 6
(Z+1)tan25~2(z+1)tan5+52—3=0.

When z # —1, then the discriminant of the quadratic equation in tan -g— is nonneg-
ative, so

1
ZA=(z+1)2—(z+1)(5z—3)20=>zl—150=>—1<z§1.

Whenz = —1thenx+y—-3=—(x—y+1),sox =1lorcosf =—1,y = 1.
Whenz:1,thentan%=l,sox:3,y=2. Thus,

Zmax = 1, Zmin = —1.
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1 1 1
Example 10. (CROATIA/2005) If k, m, n are positive integers with —+ —+— <
m n

k
1 1 1
1, find the maximum possible value of — + — + —.
k m n
. 1 1 1
Solution Let M(k,m,n) = T r—n-+ " . WLOG, we may assume k < m <
n. Below we discuss three cases: k = 2,k = 3,k > 4.

1 1 1
(i) Whenk = 2,since - + — + — < 1, thenm > 2.
2 m n

1 1
(1) If m = 3, then . < 3 i.e. n > 6. Fromn = 7, we obtain

1 1 1 41

1 1
(2) If m = 4, then ; < 1 ie.n > 4. Fromn = 5, we obtain

1 1 1 19
max{M}—E Z+§—2—0.
1 1 1 1 1 1
@3) Ifm>4,from-+—+—-<-+-+-=1and5<m <n,we
. 2 m n 2 4 4
obtain ) | 1 9
My= -4+ -4+ -=—.
maxiM}=2+5+3= 1
(i) When k = 3, we consider the cases m = 3 and m > 3.

1 1
(1) If m = 3, then . < 3 ie. n > 3. Fromn = 4, we obtain max{M } =

11
E.
2 Ifm>3,fromm=n=4wehavemax{M}=%.
(iii) Whenk24,froml+l-+-—1—<l+1—1—1 < 1 we obtain max{M } =
k m 4 4
Thus, max{M } = ﬂ

42
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Testing Questions (A)

3
If the minimum value of f(x) = |x + 1| + |ax + 1|,x € R is X find the
possible values of the real parameter a.

Find the minimum value of the function

y=02+4x +5@%+4x+1)+3x2+12x+5, xeR.

2
(CMC/2009) For natural number # and function f(x) = —z—x%, let its
x2+x
maximum value be a,, and it minimum value be b,, find a,, — b,.

(CMC/2009) Given that A(0, @) (a > 1)is on the y-axis, M(x, y) is amoving

1
point which moves on the curve y = Exz — 1|. Find the minimum value

of the distance |AM |, in terms of a.

(CMC/2009) a, b are positive constants. Find the minimum value of f(x) =

2 2
a4 + _b_., O<x <1
X 1—x
5-4 2
(CMC/2008) Find the minimum value of the function f(x) = #,

where —00 < x < 2.

(HUNGARY/2003) Given that the non-negative numbers x, ¥, z satisfy x% 4
13
V2+22+x+2y+3z2= T

(i) Find the maximum value of x + y + z;

V22-3
7

(i) Provethatx +y + 2z >

(CMC/2009) In a tetrahedron PABC, ZAPB = /BPC = /CPA = 90°,
and the sum of all edges is S, find the maximum volume of such tetrahedra.

(JAPAN/2005) Given that a, b are real numbers such that a + b = 17, find
the minimum value of 24 + 42,

(IMO/1976) In a convex quadrilateral of area 64 cm?, the sum of the lengths
of a diagonal and a pair of opposite sides is 16+/2 cm. Suppose the length
of the other diagonal is x cm. Find the value of x.
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Testing Questions (B)

(CMC/2009) If f(x) = x* —2x—|x—1 —a|—|x—2|+4,x € Ris always
non-negative, find the minimum value of the real parameter a.

(CMC/2009) Given the function f (x) = 3ax? — 2(a + b)x + b, where
a > 0,b € R. Prove that

|f(0)] < max{f(0), f()}, if0=x=L

2010
(CMC/2009) X1, X, .. ., X2010 > O and Y x7°* = 1. Find
i=1

‘ 2010 xiz()og
mm% ; 1_":‘2009} ’
and prove your result.
(USAMO/2002) Find the maximum value of
S=(1-x)A—y)+1—x2)(1—2)
ifx24+x3 =y} +y3 =c%

(IRE/2003) Given a,b > 0. Find the maximum positive integer ¢ such that
for any positive real number x,

1
¢ < max ax+ bx—l——

bx



Lecture 9

Extreme Value Problems in Trigonometry

Basic Methods for Solving Trigonometric Inequalities and Trigonomet-
ric Extreme Value Problems

1. Make use of the boundedness and monotonic intervals of the six basic
trigonometric functions.

2. Make use of trigonometric identities to simplify or convert the given in-
equality or trigonometric function.

3. For finding the extreme values of a given trigonometric function, the prin-

’ ciple of extremum property is often useful.

4. Apply some basic inequalities involving a triangle, like

lacosx + bsinx| < va? + b2.
(Refer to Appendix C for more).

5. Sometimes, by using substitutions of variables or expressions, a trigono-
metric inequality or a trigonometric extreme value problem can be con-
verted to an algebraic inequality or an algebraic extreme value problem.

Examples

Example 1. (RUSMO/2004) Let a, b, ¢ be positive numbers, satisfyinga + b +
c = %, prove that

cosa + cosb + cosc > sina + sinb + sinc.

F11
Solution a+5 < z =a< E_b = cosa > cos (% —b) = sin b since

cos 0 is decreasing on the first quadrant.

Similarly, cos b > sinc and cosc¢ > sina. Adding them up gives the conclu-

sion at once.

61
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sin(x + 45°)

sin(x 4 60°)’
find product of the maximum value and minimum value of f(x).

Example 2. (CMC/2008) Given the function f(x) = € [0°,90°],

Solutions By the substitutionz = x + 45°, x € [0, 90°],

sin z

fx)= f(z—45°) =g(2) = Sz + 15

, z €[45°,135°.

For any 45° <z < 135°and 0° < Az < 1°,

sin(z + Az) sinz
sin(z + Az + 15°) B sin(z + 15°)
sin(z 4 15°) sin(z + Az) —sinz sin(z + Az + 15°)
sin(z + Az + 15°) sin(z + 15°) ’

8(z + Az) —g(2)

The denominator is always positive. For the numerator,

sin(z + 15°) sin(z + Az) —sinzsin(z + Az + 15°)

= sin(z + 15°)[sinz cos Az + cos z sin Az]
—sinz[sin(z + 15°) cos Az + cos(z + 15°) sin Az]

= sin Az[sin(z + 15°) cos z — sinz cos(z + 15°)]

=sin Azsin1° > 0,

therefore g is increasing strictly on its domain, and so is f. Thus,

sin 45° «/.’Z
= V2, min{f(0)} = ——5 = 7

sin 135° _
sin 150°

max{ f (x)} =

and their product is

Example 3. (CMC/2008) Find the maximum value of the function
y:cos3x+sin2x—cosx, x € R.

Solution By using the trigonometric identities and then using the AM-GM
inequality,

y = sin’x —cosx(l— cos? x) = sin? x (1 — cos x)

22X

. . X . X
= 2sin? xsin? = = 8sin* = cos
2 2 2

2 X
2 3
A (sin2 Z+ sin® S + 2 cos? %) _ 32

2 X 5 X
= 4sin? = -sin® = - 2cos
2 2

3



Lecture Notes on Mathematical Olympiad 63

The equality holds if and only if sin® % = 2cos? —;f, namely tan § = =+ /2. Thus,

32
Ymax = '2_,?

Example 4. (CMC/2008) Find the maximum value of the function

y = [sin(Z 4 ) —sin (Z = x)]sin (% ).

and find the set of corresponding values of x where f takes its maximum value.

Solution Simplify the function and then use the R-formula,

. (T . (T . T
y = [sm (Z +x) —sin (Z —x)] sin (E +x)
2 2 3 1
= £(sinx+cosx)~—i(cosx—sinx) £c05x+—sinx
2 2 2 2
3 1 6 2
= +/2sinx Tcosx+§sinx =7sinxcosx+7sin2x
6 2 2 3 1 2
= % sin2x + JT_(I —cos2x) = \/T_ (% sin2x — ECOSZX) + \/T-
N Ty A2
= (2 -)+ 7
2 2 342
therefore ymax = \/7_ + % = Tf’ and the corresponding set of x is

{x:x:kn—i—%,kez}.

Example 5. (CMC/2010) Given that the three sides of A A BC have distinct lengths,
the angle bisectors of ZA, ZB, ZC intersects the perpendicular bisectors of BC,
CA,AB at D, E, F respectively. Prove that the area of AABC is less than that
of ADEF.

Solution From the assumptions it is easy to show that A, B,C, D, E, F are
concyclic. We may assume that the circumradius of AABC is 1.
Since

b 1
[ABC] = % = 2sin Asin BsinC = - (sin24 + sin2B +sin2C)
and

1
[DEF] = E(sin(A—i—B)+sin(B+C)+sin(C+A)) = %(sinA-I-sinB—i—sinC),
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from
sin2A + sin2B + sin2C
1 1 1
= —2—(sin 2A +sin2B) + E(sin 2B +sin2C) + E(Sin 2C + sin2A4)
= sin(A + B)cos(4 — B) +sin(B + C)cos(B — C) + sin(C + A) cos(C — A)
< sin(A + B) + sin(B + C) + sin(C + A) =sin A4 + sin B + sinC,

it follows that [ABC] < [DEF], as desired.

Example 6. (INDIA/2007) The three sides of AABC have lengths a, b, ¢, and
the corresponding angle bisectors have lengths wa, wp, We respectively. If the
circumradius of the AABC is R, prove that

a2 +b% b24+c2 ?+a?
+ +
We Wq Wp

> 4R.

Solution By Stewart’s theorem,

bc bc 2bc A
_ 2 _42] = / — —
Wq \[(b Fse [(® + ¢)? —a?] 5 2(1 + cos A) cos

+c b+c 2

and similarly,

2ca B 2ab C
wp = cos —, c coSs —
c+a 2 a+b 2
Therefore
2 h2 b2 2 2 2
a“ + n +c+c+a S AR
We Wa Wp
B2 +cAHb+o)  (+ad)c+a) @+b)a+b)
4Rbc cos % 4Rca cos -121 4Rab cos %
B2+ )b +c)sind (2 +a?)(c+a)sing | (a® +b*)(a+b)sin &
2abc 2abc 2abc
> 1.

Since b2 + ¢2 > 2bc and b + ¢ > a and the similar inequalities, it suffices to
show that
. A B C
s1n5+sm3 +sm5 > 1.
n—A =wm—-B n-C

Since 5 + > + 5 = m, therefore

JT_A—kcosn_BjL s”_C 1+ 4si A’nBQinC>]
co = sin — sin — sin — ,
2 2 2 2 2
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thus,

A . B . C b4
s1n§+s1n—+sm—=cos

n w—B N n—C o1
cos cos .
2 2 2 2

Example 7. (CWMO/2008) Let A, B, C be three angles in (0, 12’-) satisfying

sin2A4 + sin2B + sin2C = 4 cos A cos B cos C,

find the maximum value of cos A cos B cos C.

Solution Letx = cos®? A4,y = cos? B,z = cos?C, then x,y,z € (0, 1),
satisfying

Va(l=x)+ Vy(l —y) + Vz(1 —2) = 2/xyz.
By the AM-GM inequality,

2EE = XG0+ yG-) + VEE-3)

- 1 [x+3B-3x) y+@B-3y) z+4+(3B3-32)

: 75[ 2 2 T2 ]
1

= 3‘2[ el +y+z)<i—fi/m

Let ¢/xyz = p, then

33
2p35—2—f—ﬁp2©4p3+2ﬁp2—3ﬁ50

3
@(2p—«/§)(2p2+2x/§p+3)§O<:>2P—«/§SO¢>pS§

34/3
Thus cos Acos BecosC = /xyz = p3 < —f;——f, the equality holds when x =

3so
=Z= -,
Y 4

343
max{cos Acos BcosC} = ——;L_
Example 8. (CMC/2009)In AABC,
(x/gsinB —-COSB)(\/ESinC —cosC) =4cos BcosC

and AB + AC = 4. Find the range of BC.
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Solution Dividing both sides of the given equality by cos B cos C gives

(v/3tan B — 1)(+/3tanC — 1) = 4,

3tan BtanC — +/3tan B — v/3tanC + 1 = 4,
V3(tan B +tanC) = 3(tan Btan C — 1),
tan(B + C) = —+/3.

2
Since0 < B+ C < m,soB+C = ?n,A = —732 AB + BC = 4 gives
AB = 4 — AC. By the cosine rule,
AB? + AC? —2AB - ACcos A

(4— AC)? + AC? — (4— AC) - AC
3AC2 —12AC + 16 = 3(AC —2)> + 4 > 4.

BC?

Therefore 2 < BC < AB + BC = 4, the range of BC is [2,4).

Example 9. (CMC/2009) Let y = sinx + cos x + tanx + cot x + sec x + csc x.
Find the minimum value of |y|.

Solutions Let t = sinx + cos x, where |f| < /2, |t] # 1, thensinx cos x =
[P
—(“—1)and
S =1

1 sinx + cos x

y = sinx +cosx + — ;
sin x cos x sin x cos x

= t+ 2 + 2t =1+ 2
- 21 2-1 t—1

2
(t—1+——)+1.
t—1

The function f(u) = u + %u > 0 is decreasing on (0,1]. When v/2 > ¢ > 1

-1 D
and u = E—,then0<u< V2-1
V2 V2

y=x/§f(u)+12(«/5—1+—\/§2—_1—)+1=3\/§+2.

When —v/2 <t < 1,then —y = 1 —t + ;2 — 1 which takes its minimum value

1—1¢
5 = lie.t = 1 — /2, and the minimum value is 22 —1.
Thus, |Y|min = 2+v/2 — 1.

and

when
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Testing Questions (A)

(CMC/2008) Given @ € R and

sin(x + &) + sin(x — ) —4sinx b4
= ) € 07 - ]
/) cos(x + ) + cos(x — ) — 4cos x X ( 4)
find the range of f.

(CMC/2008) Given that the minimum period of the function f(x) = cos? 0x+
cos O0x sinfx i 1s > , find the maximum value of 6 f(x).

(CMC/2010) Given that the minimum value of the function y = (a cos® x —
3) sin x is —3, find the range of the real number a.

(CMC/2010) Let a, b, c be the lengths of three sides of the right triangle
ABC, where ¢ be the length of the hypotenuse AB. Find the range of y
given by

a2 +b 43

Ccla+b+o)*

(THAILAND/2004) Letn > 2, a1, 0, ..., o, € R. Find the minimum value
of
Z cos?(a; —aj).
1<i<j<n

(CHINA/2005) Prove that in an acute triangle ABC, if R and r are the cir-
cumradius and inradius of AABC, then

abc r

V2(@? + b2)(b? + c2)(c? + a2) 2R’

(CNMO/2007) Let o, B € (o, %) find the maximum value of

2
(1 - \/tan%tang)

A=
cota + cotf

in3

3
(CMC/2008) Find the minimum value of & 4+ 5% | ¢ (o, Z).
cosa sino 2

27 3
= <B>-f—, ©) 1; (D)i

(A)
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9. (CROATIA/2007) In an acute triangle ABC, Ay, By, Cy are the midpoints of
BC, CA, AB respectively. O is the circumcenter and the circumradius is 1.

Prove that
1 N 1 n | -6
0OA; OB, oc, —

10. (CMC/2008) Given that cos x + cos y = 1, Then the range of sin x — sin y
is

A [-1,1; B [-22; ©I0,V3 ((D)[-v3V3]

Testing Questions (B)

1. (RUSMO/2004) For what positive integer n does the inequality
sinna + sinnf + sinny <0

hold always for any three interior angles e, B, y of any acute triangle?
2. (CROATIA/2004) Given the real numbers x, y, z. Prove the inequality

. . . 3
S]l’l2XC05y +sm2y +COS Z +Sln22'COSX < 5

3. (CMCR010)Forany x; > 0,i = 1,2,...,n,if let x,41 = X3, prove that

Z et M
(xk + 1)2 (k1 + D7 V2

4, (SMO/2008)Let 0 < a,b < % Show that

5 5

cos2a  sin?asin®bcos? b

> 27 cosa + 36sina.

5. (ROMANIA/2006) Prove that for a, b € (0, %) and n € N, we have

sin” a + sin” b - sin” 2a + sin” 2b
(sina + sinb)® ~ (sin2a + sin2b)"*’




Lecture 10

Fundamental Properties of Circles

I A circle is symmetric with respect to its center, and also axisymmetric
with respect to its each diameter. Therefore any equal angles at center are
subtended by equal chord and equal arcs, and vice versa.

1I. A diameter bisects a chord and its subtended arc if and only if the diameter
is perpendicular to the chord. By use of this property, it is easy to prove
that two arcs between two parallel chords are equal.

IMI.  An angle at circle is equal to half of the angle at center subtended by the
same chord or the same arc. An angle at center can be measured by its
subtended arc, in degrees. Therefore an angle at circle can be measured, in
degrees, by half of its subtended arc.

In particular, the angle at circle subtended by a diameter must be 90",

IV.  For acircle of a radius R and a chord with a length 2/, the perpendicular

distance of the center from the chord, denoted by d, is given by

d=vR_I2.

Examples

Example 1. (SSSM0/2005) In the diagram, P, Q and R arc three points on the
circle whose centre is O. The lines PO and
OR are produced to meet at S. Suppose that
RS = OP,and ZPSQ = 12° and ZPOQ = x°.
Find the value of x.

(A) 36 (B) 42 (C) 48
(D) 54 (E) 60

Solution Connect PR, OR. Then OR = RS implies that ZSOR = ZPSR =

69
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12°, hence
ZSPR = 6°.
Since % = /PRQ = ZSPR + PSR = 18°, therefore x = 36, the answer is
(A).

Example 2. Let AABC be an equilateral triangle inscribed in a circle, and let M
be a point on the arc BC. Prove that MA = MB + MC.

Solution Itis clear that AM > CM. On AM take a point D such that AD

= CM. 1t suffices to show that MB = MD. A
Since AB = BC,AD = CM and LBAM =
/BCM,

. AABD = ACBM.

Thus, BM = BD and ZABD = ZCBM. For
the ABMD, /DBM = LABC = 60°, Thus,
ADBM is equilateral, so MB = MD.

Example 3. (SSSMO0/2009) Let ABCD be a quadrilateral inscribed in a circle
with diameter AC, and let E be the foot of perpendicular from D onto AB, as
shown in the figure below. If AD = DC and the area of quadrilateral ABCD is
24 ¢m?, find the length of DE in cm.

(A)3V2,  (B)2v/6;,  (O)2v7;  (D)4v2;  (B)6.
D

B

Solution Let 7 be the radius of the circle and ZCAB = 6. Connect DB.
Then

1 1
[ABCD] = [DAB]+[DCB] = S AD-ABsin ZDAB + 5CD-CB sin LBCD.
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24 = %«/Er -2r sin(90° — 6) - sin(45° + 0)
+%«/§r -2rsin@ - sin(135° — 6)

= r2[cos O(sin 6 + cos 0) + sin O(sin 6 + cos 6)] B

= r2(sin 6 + cos 0)% = [v/2r - sin(45° + 0)]?

= DEZ.

. DE = /24 = 2./6, the answer is (B).

B

Example 4. (CHINA/2002) In the circle ® O, the radius r = 5 cm, AB and CD
are two parallel chords and AB = 8 cm, CD = 6 cm. Find the length of the
chord AC.

Solution As shown in the diagrams (1) and (2) below, there are four possible
cases.

)

In the diagram (1), the longer length of AC is given by
AC = /(4=3)2 + (4 + 3)2 = /50 = 5+/2;
and the shorter length of AC is given by
AC = /(A =32 + 12 = 2.
Similarly, as shown in the diagram (2), the longer length of AC is given by
AC = V(4 +3)2+ (4432 =7V2;
and the shorter length of AC is given by

AC = (4 +3)2 + 12 = 5V2.
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Thus, the length of the chord AC may be V2,532 01 74/2.

Example 5. (BMO/2003) The triangle ABC, where AB < AC, has a circumcir-
cle S. The perpendicular from A to BC meets S again at P. The point X lies on
the line segment AC, and BX meets S again at Q.

Show that BX = CX if and only if PQ is a diameter of S.

Solution As shown in the diagram,

ZCBP + /BCA = LCAP + /BCA = 90°. ¢ c
LCBP + LQBC = ZQBP.
.. PQ is a diameter of S & ZQBP = 90°

& /CBP + £LQBC = 90° 4
& /BCA = /QBC A
& BX =CX.

B

Example 6. (CHINA/2005) Given that the AABC is inscribed in the circle © O,
such that the diameter CD is perpendicular to AB at E. The chord BF intersects
CD and AC at M and N respectively, and BF = AC. Connect AD, AM . Prove
that

(i) AACM =~ ABCM;

(ii) AD-BE = DE - BC;

(iii) BM? = MN - MF.

Solution (i) Since CD is the perpendicular bisector of the chord AB, so

AM = BM, AC = BC,

F
and CM is shared, therefore AACM = 4 ‘
ABCM (S.S.S.). /V

3 BE BC D C
AD-BE = DE-B =
@ii) C & DE <D E M
From
/ADE = /ADC = /CBA = Z/CBE B
and

LDAE = /DAB = 4D = ZBCE,

BE
it follows that ADAE ~ ABCE,so — = E
DE AD
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(iii) Connect AF. BF = AC =BAF=AFC, so
AB=FC
which implies that ZCBF = ZAFB. Since AACM =~ ABCM,

LAFM = ZAFB = ZCBF = ZCBM = LCAM = ZNAM,

MN MA
therefore AMAN ~ AMFA, so YA = ME’ namely

MA? = MN - MF, or BM?> = MN -MF
since BM = AM.

Example 7. (CHNMOL/2004) The circumcircle ® O of the quadrilateral ABCD
has a radius 2. AC and BD intersect at E, such that AE = EC. Given that
AB = \2AE, BD = 2+/3, find the area of ABCD. -

Solution AE = EC and AB = v2AE give AB? = 24E? = AE - AC,

SO
AE
j_g = S5 Since ZEAB = /BAC, it AVD
follows that C
O

3

AABE ~ ANACB, so that
/ABE = /ACB = /ADB, . AB=AD. B

Therefore A bisects the arc BAD, so OA L
BD. Let H be the point of intersection of
AO and BD, then OH | BH and

1
OH = /22— (V/3)2 = 1,AH = OA—-OH = 1= [ABD] = 5-2«/3-1 = /3.

Since AE = CE = [BCE| = [ABE],[CDE] = [ADE] = [CBD] = [ABD),
it is obtained that
[ABCD] = 2[ABD] = 2+/3.

Example 8. Given that P is a fixed point on the angle bisector of the ZCAB.
Construct a circle passing through A and P. If the circle intersects the sides AB
and AC at points M and N respectively, prove that the value of AM + AN is
independent of the choice of the circle.

Solution For any chosen circle that passes through A and P, letd = AP
and write ZMAP = /ZNAP = «. Connect MP, NP.
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Applying the cosine rule to AMAP and APAN
respectively, since PM = PN, it follows that

PM? =d? + AM? —2d - AM cosa,
PN2=d?+ AN2—-2d - AN cosc,

or

AM? —2d cosa - AM + (d?> — PM?) =0
AN? —2d cosa - AN + (d? — PM?) = 0.

A M B

The values of PM, PN are given if the circle is drawn, then the corresponding
values of AM and AN are the roots of the quadratic equation
x2—2dcosa - x + (d2 — PM?) =0,

and by the Viete’s theorem, AM + AN = 2d cos«, which is independent of the
choice of the circle.

Testing Questions (A)

1. (SSSMO0/2010)In the figure below, AB and CD are parallel chords of a circle
with centre O and radius r cm. Itis given that AB = 46 cm, CD = 18 cm
and ZAOB = 3ZCOD. Find the value of r.

A

B

2. (CHNMOL/2004) If the shortest distance of a given point to a given circle is
4 cm and the longest distance is 9 cm, then the radius of the circle is

(A)2.5cm; (B)2.5cmor6.5cm; (C)6.5cm; (D)5cmor 13 cm.

3. (IRE/2003) P, Q, R, S are four distinct points on the circle © O, where PS
is the diameter, QR || PS, and PR, QS intersect at- A. B is a point in
the plane such that the quadrilateral POAB is a parallelogram. Prove that
BQ = BP.
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4. (SMO/2003) Let ABC be an equilateral triangle inscribed in a circle and P
a point on the minor arc BC. Suppose that AP intersects BC at D with
PB =21 and PC = 28. Find PD.

5. (CHINA/2004) ©O is a circle of radius 1, the point P is on the circle. If 4
and B are on © O such that ZAPB = ZAOB, find the length of the chord
AB.

6. (CMO/2004) Let A, B, C, D be four points on a circle (occurring in clock-
wise order), with AB < AD and BC > CD. Let the bisector of angle
BAD meet the circle at X and the bisector of angle BCD meet the circle
at Y. Consider the hexagon formed by these six points on the circle. If four
of the six sides of the hexagon have equal length, prove that BD must be a
diameter of the circle.

7. (CHNMO/TST/2003) A convex n-sided polygon has a circumcircle and an
inscribed circle, its area is B, and the areas of its circumcircle circle and
inscribed circle are A and C respectively. Prove that 2B < A + C.

8. (GERMANY/2005)Let A, B, C be three distinct points on the circle ©® 0. By
passing through B, C respectively make lines 4 and g such that # 1 BC at
Band g 1 BC atC. Given that the perpendicular bisector of AB intersects
h at F, and the perpendicular bisector of AC intersects g at G. Prove that
BF - CG is independent of the choice of A when fixing B and C.

9. (INDIA/2006) In a cyclic quadrilateral ABCD, AB = a, BC = b,CD =
¢, ZABC = 120°, ZABD = 30°. Prove that
i c=a+b;
) |Jeta—-+c+b =+c—a-b.

10. (BMO/2005) Let ABC be an acute-angled triangle, and let D, E be the
feet of the perpendiculars from A4, B to BC, CA respectively. Let P be
the point where the line A D meets the semicircle constructed outwardly on

BC, and Q be the point where the line BE meets the semicircle constructed
outwardly on AC. Prove that CP = CQ.

Testing Questions (B)

1. (BMO/2003) Let ABC be a triangle and let D be a point on AB such that
4AD = AB. The half-line £ is drawn on the same side of AB as C,
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starting from D and making an angle of 6 with DA where 6 = ZACB. If
the circumcircle of A BC meets the half-line £ at P, show that PB = 2PD.

2. (CHNMOL/2005) It is given that the AABC is inscribed in the ©O, AD is
the diameter of the ©® 0. The points E and F are on the extensions of AB
and AC respectively, and the line segment EF intersects the ©O and AD
at M, N and H respectively, where H is the midpoint of OD.

3
Given that MD = DN, EH — HF = 2, tana = T where ZACB = «,
and EH, HF are two real roots of the equation x? — (k + 2)x + 4k = 0.
(i) Find EH and HF. (i) Find BC.

A
B Ay
N T
E MQEN F

D

3. (BELARUS/2003) Given that ABCD is a convex quadrilateral, and AC L
BD at O. Suppose that 01, Oz, O3 and Oy are the centers of the inscribed
circles of AAOB, ABOC, ACOD and A D OA respectively. Prove that

@) the sum of diameters of the ©® 01, ©0,, ©03 and © 04 is not
greater than (2 — +/2)(AC + BD).

(i) 0102+ 0203 + 0304 + 0401 < 2(~/2—1)(AC + BD).

4. (AUSTRIA/2005) Construct the semi-circle I” with the diameter AB and the
midpoint M. Now construct the semi-circle I'; with the diameter M B on

the same side as I'. Let X and Y be points on I, such that the arc B’B( is

1.5 times of the arc BAY . The line MY intersects the line BX in D and the
semi-circle I" in C. Show that Y is the midpoint of CD.

5. (RUSMO/2009) Let ABC be a given triangle and BD (D € AC) its interior
angle bisector. The line BD intersects the circumcircle £2 of triangle ABC
at B and E. Circle  with diameter DFE cuts §2 again at F. Prove that BF
is the symmetric line of a median of the triangle ABC with respect to the
line BD.



Lecture 11

Relation of Line and Circle and Relation of Circles

The main focus for investigating relation between line and circle is their tangency.

®

(i)

(iii)

@iv)

v)

A line / is tangent to a circle © O if and only if / meets ©® O at one point
A such that/ L OA. In this case A is call the tangent point or the point of
contact, and [ is called tangent to the circle at A.

When the two tangent line introduced from any exterior point P of a circle
©O0 have two tangent points A and B, then

PA = PB, ZPAB = ZPBA; OP 1 AB, LZAPO = ZBPO.

Alternate segment theorem: An angle included by a tangent and a chord
through the tangent point is equal to the angle in the alternate segment.

Intersecting chords theorem: When two chords AB and CD intersect at
an interior point P of a circle, then AP - PB = CP - PD.

The circle which is tangent to three sides of a triangle is called the inscribed
circle or shortly incircle of the triangle. Its center, called incenter, is the
point of intersection of three angle bisectors of the three interior angles,
and its radius is called inradius.

The analysis of relation among circles is based on that of two circles.

(vi)

(vii)

(viii)

When two circles © O; and © O, are intersected at points A and B, then
the line O; O, is the perpendicular bisector of A B, there are two external
common tangents, and they are symmetric with respect to the line O; O;.
When two circles ©0; and © O, are tangent (internally or externally),
there is one common tangent which is perpendicular to Q1 O,. When © O,
and © O, are externally tangent each other, there are two external common
tangents also, which are symmetric with respect to the line O; O5.

When two circles © O; and © O, are separated externally, they have a pair
of external common tangents and a pair of internal common tangents, and
each pair is symmetric with respect to the line O, 0.
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Examples

Example 1. Prove that a quadrilateral has an inscribed circle if and only if its two
sums of the lengths of two opposite sides are equal, in particular, a parallelogram
has an inscribed circle if and only if it a thombus.

Solution As shown in the figure below, Suppose that the quadrilateral has an
inscribed circle, and E, F, G, H are the tangent points of the circle on the sides
DA, AB, BC and CD respectively. Then
AE = AF,BF = BG,CG = CH and

DH = DE implies that A E BB

AB+CD = AF + BF +CH + DH

= AE+BG +CG + DE
(AE + DE) + (BG + CG)
AD + BC.

D H C

Conversely, if suppose that the quadrilateralABCD satisfies the condition
AB + CD = BC + AD, then it is always possible to make a circle such that
it touches the sides AB, CD and AD at some points E, F, H on AD, AB,CD
respectively.

If CB is not tangent to the circle, then make the second tangent line from C
to the circle. Suppose that the tangent intersects the line AB at some point B’,
where B # B’. From above reasoning it follows that

AB'+CD = B'C + AD.
Then
AB+CD = BC+AD = |AB—AB'| = |BC—-B'C| = BB' = |BC—B'C|.

However, applying the triangle inequality to the ABB’'C shows it is impossible.
Thus, B and B’ must coincide, i.e., CB must be a tangent to the circle, namely,
the circle is the inscribed circle of ABCD.

When a parallelogram A BCD has an inscribed circle, then AB = CD,BC =
AD and24AB = AB+CD = BC+AD =2BC,s0 AB = BC = CD = AD,
i.e.,, ABCD is a thombus. Conversely, if ABCD is a rhombus, the conclusion
then is clear from above reasoning.

Example 2. (CMC/2009) Given that PA, PB are the tangent lines from P to the
circle © 0, and the line segment P CD is a transversal of ®O0, and E is the point

of intersection of AB and PD. Prove that iC— = —CE
PD DE
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A

’ ‘Ny

B

PC PAC PBC
Solution Connect AC, AD, BC and BD. Thenﬁ = {PAD]] = EPBD}'

By the alternate segment theorem,

ZLPAC = ZPDA = APAC ~ APDA

and
LPBC = LPDB = APBC ~ APDB,
[PAC] _ AC? [PBC] _ BC? AC _ BC
th f = y = . Th y T/ = —— d
C€01 [PAD] ~ 4D>’ [PBD]  BD®> " "AD  BD
2 AC B
PC _AC? _AC BC L

PD ~ AD2 ~ 4D BD

Since AACE ~ ADBE and ABCE ~ ADAE,

AC AE BC CE

DB - DE ™ D4~ AE 1.2
Thus, the combination of (11.1) and (11.2) gives

PC _AC BC _AC BC _AE CE _ CE
PD AD BD DB DA DE AE DE

’

as desired.
Example 3. (CMC/2009) It is given that the inradius of the AABC is 2, and

tan A = —i find the minimum value of the area of AABC.

DA

o
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Solution Let BC =a,CA=b,AB =c¢,0D L AB at D, then

b _
b+c—a=2AD:>AD=————+; .
A 4 2
Let x = tan —. Since —= = X = 2x2 —3x —2 =0, then
2 3 1—x2

2x2-3x-2=0& 2x+1D(x-2)=0=>x=2(."x>0),

A
theref0r62=DO=tan5‘AD =24AD = AD=1= b+ c—a =2. Since

tan A 4 = sin 4 4 sA 3
anAd = —— s =—, cosdA =—=,
3 % 5 5

b 1 2
soa+b+c= izi.Zz[ABC]z 5bcsinA= gbc. From

a+b+c=2b+c)—(b+c—a)=2(b+c)-2

it follows that be = 5(b +¢) —5 > 10+/bc =5, i.e,, (vbc)?> —10+/bc + 5> 0.
Therefore

10 + +/80
Jhe > _+2__ = 54245, or be > 45+ 20/5.

2
Thus, [ABC] = gbc > 18+8+/5, and the equality holds when b = ¢ = 5424/5.

Example 4.

(CHINA/2005) AB is the diameter of the © O
with AB = a. C is a point on the tangent line
to the circle at 4, and AC = AB.

The line segment OC intersects ©O at D,

and the extension of BD intersects AC at E, D D
as shown in the given diagram. N
Find the length of AE. ZAN
A E C
Solution Connect AD. Then AD is the altitude of the Rt AABE on BE.
From AADE ~ ABDA,
AE _AB _ AC
DE ~ AD AD’
By the alternate segment theorem, Z1 = Z2. OB = OD implies £2 = /3, s0
/1 = /2 = /3 = /4, therefore ACDE ~ ACAD. Then
AC  CD
AD ~ DE’
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AE CD
Therefore — = ——, namely AE = CD.

DE DE cD CE
ACDE ~ ACAD implies also -AE- = C—D,i.e., CD? = CE-AC, therefore
AE? = CE - AC.

Let AE = x,then CE = a—x and x? = a(a—x) which gives x> +ax—a? = 0,
thus

AE =x =

a (the negative root is not acceptable).

—a+ a2 +4a>  J/5-1
2 2
Example 5.

(CMC/2010) AABC is inscribed in the © O
with AB = AC. The line M N is tangent to
thecircleat C, BD || M N and AC intersects
BD at E, as shown in the given diagram.

(i) Prove that AABE =~ AACD:;

(i) Find AE if AB = 6, BC = 4.

Solution (i) For triangles ABE and ACD, since AB = AC, LZABE =
ZACD and by the alternate segment theorem and BD | M N,

LCAD = LNCD = £ZBDC = ZBAC = ZBAE,

therefore AABE =~ AACD (S.A.A)).
(ii) Then
ZBAC = LCAD, BE=CD = 4BDC = ZCBD, BE =CD
= BE =CD = BC =4.
Let AE = x. Then AAEB ~ ADEC implies that
CD 4x 2x

DE = AE-—= == ===,
AB 6 3

2
The intersecting chords theorem yields x (6 — x) = 4 - ?x’ then it gives that

—6 g8 10 Th AE_IO
x = 3= 3 us, =3

Example 6. (CMC/2010) A circle of radius 2 and a circle of radius 3 are tangent
externally at 7. The line M N is an external common tangent, where M, N are

MT
the two tangent points. Find the value of NT
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Solution As shown in the right diagram,
let the radii of the ®C and ©D be 2 and
3 respectively, and let ZMCT = 6, then

N
M S
/NDT = 7 — 6. By the alternate segment é\/

theorem,

1 1

Therefore ZMTN = % From T introduce TS L MN at S, Then T'S is the

altitude on the hypotenuse of the RtAM TN. By the projection theorem of right
triangles,

NTZ - NS-NM NS DT 3

Example 7. (MACAO/2001) A big circle © O of radius R, a circle © B of radius
2r, and two circles ©A, ©A’ of radius r are tangent pairwise, as shown in the

MT> MS-MN _MS _CT 2=>MT_\/§_¢6
NT V3 37

following left diagram. Find the ratio %
o
) e

k‘hm
M OB N

Solution By symmetry, the centers O and B are on the internal common
tangent of the © A and ®4’, so it suffices to consider a half of the graph, as shown
in the right digram above.

Let MO = x, MB = y,then MN =x+ R=y +2r,sox =y +2r — R.
Since AO = R —r, AB = 3r, by the Pythagoras’ theorem,

y2 = MB? = AB2— AM?> =8r2 = y = +/8r,x = 2+ V/8)r — R.
x2 = MO? = AO? — AM? = (R —r)?> —r? = R*> = 2Rr,

50 [2 + v/8)r — R]> = R? —2Rr, which gives (2 +2+/8)R = (2+ v/8)r, thus,

ro_ 24248 14242

R~ @++B? 2(2+17

(1+2V2)(vV2-1)? _4V2-5
2 o2
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Testing Questions (A)

(CHINA/2005) ABCD is an inscribed square of the circle ©O. P is the
-~ PE
midpoint of the minor arc AB, PD intersects AB at E. Find the ratio DE"

(SSSMO0/2010) In the figure below, ABC is an isosceles triangle inscribed in

acircle with centre O and diameter A D, with

AB = AC. AD intersects BC at E, and B

F is the midpoint of OF. Given that BD is

parallel to FC and BC = 2+/5 cm, find the

length of CD in cm. A OF\ E/P
375

(A) 7 B)V6; (C)24/3;

D) V7; (B)2V6. ¢

(FINLAND/2004) Two circles of radii r and R respectively are tangent exter-
nally. Find the length of the line segment on the internal common tangent
which is between the two external common tangent lines of the two circles.

(NEW ZEALAND/2004) Given that four circles are inside a convex quadri-
lateral, such that each are tangent to two sides of the quadrilateral, and each
are tangent to other two circles externally. If the quadrilateral has an in-
scribed circle, prove that at least two of them have equal radii.

(THAILAND/2004) It is given that the circle o is the circumcircle of equilat-
eral AABC, and the circle w; is tangent to @ externally at a point differing
from A, B, C. The points Ay, By, C; are on w; such that AA;, BB; and
CC; are tangent to w;. Prove that the length of one of AA;, BB, CC; is
equal to the sum of lengths of the other two.

(CMC/2009) When put some smaller circles of radii 1 into a big circle of
radius 11, such that each small circle is tangent to the big circle internally,
and any two small circles have no overlapped part. How may small circles
can be put in at most?

(A) 30; (B) 31; (©C) 324 (D) 33.
(JAPAN/2008) ABCD is a square of side 1, M is center of the circle taking

AD as the diameter, E is a point on the side A B such that CE is tangent to
OM . Find the area of ACBE.
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8. (SMO/2009) Let O be the center of the circle inscribed in a rhombus ABCD.
Point E, F, G, H are chosen on sides AB, BC, CD and DA respectively so
that EF and GH are tangent to the inscribed circle. Show that EH and FG
are parallel.

9. (Newton’s Theorem) Given that the convex quadrilateral ABCD has an in-
scribed circle,and the circle touches the sides AB, BC,CD, DA at E, F,
G, H respectively. Prove that the line segments AC, BD, EG, FH inter-
sect at one common point.

Testing Questions (B)

1. (CMC/2008) It is given that the circle ©O touches the sides AB and AC
of the AABC at P and Q respectively, and tangent internally to the cir-
cumcircle of AABC at D, as shown in the left diagram below. Prove that
ZPOQ =2/MDC, where M is the midpointof PQ.

A

2. (CMC/2010) Given that the incenter of AABC is I, and the ©/ touches
AC, AB at E and F respectively. M is a point on the line segment EF, as
shown in above right diagram. Prove that the areas of triangles M AB and
MAC are equal if and only if M/ L BC.

3. (AIME/2010)In AABC with AB = 12, BC = 13,and AC = 15, let M be
a point on AC such that the incircles of AABM and ABCM have equal

AM
radii. Let p and g be positive relatively prime integers such that YA B.

. q
Find p + q.

4. (ESTONIA/TST/2008) A, B are two fixed points on the circle I'1. The circle
I is tangent to AB at B and its center is on I'y. The line ADE intersects
> at D, E, and the line BD intersects I'; again at F'. Prove that BE is
tangent to Iy if and only if DF = DB.



Lecture 12

Cyclic Polygons

An n-sided polygon (n > 4) is said to be a cyclic polygon if it is inscribed in a
circle. In this case, the n vertices are said to be concyclic.

The main part of this lecture is on cyclic quadrilateral, since it is foundation
for investigating cyclic polygon.

Criteria for determining a cyclic quadrilateral

)
@y

(II0)

av

V)

A quadrilateral ABCD is cyclic if and only if its four interior angles satisfy
LA+ LC = 4B + 4D = 180°.

A convex quadrilateral is cyclic if and only if any exterior angle equals to
its opposite interior angle.

A convex quadrilateral ABCD is cyclic if and only if the two angles
subtended by a same side of ABCD are equal, for example, ZACB =
ZADB, which are subtended by the side AB.

(Inverse intersecting chords theorem) When two line segments AC and
BD are intersected at a point P, the quadrilateral ABCD is cyclic if if
AP -PC = BP - BD.

When two line segments AC and BD are not intersected but their exten-
sions are intersected at a point P, then the quadrilateral ABCD is cyclic
if and only if PA- PD = PB - PC.

The proofs of necessity of (I) to (II) are the direct applications of the funda-
mental properties. The sufficiency of (I) to (V) can be proven by contradiction.
The proof of necessity of (V) can be found in next lecture.

In the examples below, some are to prove that points are concyclic, and some
are the applications of concyclic points for solving other geometric problems in-
volving circles.
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Examples

Example 1. (RUSMO/2008/R4)In AABC AB > AC, the tangent line at B to
the circumcircle intersects the line AC at P. D is the symmetric point of B with
respect to P, E is the symmetric point of C with respect to the line BP. Prove
that the quadrilateral ABED is cyclic.

Solution By the alternate segment theorem, /LPBC = ZBAC = ZPAB,

PA PB
t fore APBC ~ APAB,s0 — = —,
herefore SO 7B PC
. PA-PC = PB? = PD?,
PA PD
or — = ——. Since ZAPD is shared,
PD PC

AAPD ~ ADPC (S.AS.),
. LCAD = /PAD = LPDC.

C and E are symmetric in the line BP implies that ZPDC = ZPDE =
/BDE and ZPBC = ZDBE, so that

/BAD = /PAD + ZPAB = /PDC + LPBC = /BDE + ZDBE
= 180° - 4BED.

Thus, the quadrilateral ABED is cyclic.

Example 2. (CMC/2010) As shown in the given diagram below, ABCD isacon-
vex quadrilateral, ZABC = /ADC, E, F,G, H are the midpoints of AC, BD,
AD, CD respectively. Prove that

(i) E,F,G, H are concyclic;

(il) ZAEF = LACB — LACD.
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Solution (i) Connect EG, EH, FG, FH,GH, then FG | BA, FH I
BC, so
ZGFH = ZABC.

Similarly, ZGHF = ZACB. Since DGEH is a parallelogram, so
/ZGEH = Z/ADC = ZABC = /GFH,

therefore EF GH is cyclic, i.e., E, F, G, H are concyclic.

(i) EFGH is cyclic = ZGEF = /GHF = /ACB, and EG | CD
implies that ZAEG = ZACD, therefore

LAEF = /GEF — LAEG = LACB — ZACD.

Example 3. (SNOVENIA/TST/2008-2009) In the acute triangle ABC, 1) is on
AB, the circumcircles of ABCD and AADC intersect AC and BC' at the points
E, F respectively. Let the circumcenter of ACEF be O. Prove that the ¢ir
cumcenters of AADE, AADC, ADBF, ADBC and the points 1 and O are
concyclic, and OD | AB.

Solution Let 04, O,, O3,

04 be the circumcenters of trian-
gles ADE, ADC, DBF, DBC
respectively. Then 0;0, is
on the perpendicular bisector of
AD, and O3 O4 is on the perpen-
dicular bisector of DB.
Use «, B,y to denote the inte-
rior angles of AABC and let
Ty, T, T;, T4, Ts5 be the
midpoints of the line segments
AD,CF,BD,CE,CD respec-
tively.

ADFC iscyclic gives ZDFB = «. Oj is the circumcenter of A DBF implies
that ZDO3T3 = «, and similarly, ZDO0,Ts = Z/DAC = a.

Besides, O3, Ts, O4 are collinear, so0 ZD0,04 = £D0,Ts = a = £DO03T;,
therefore

03, 04, O3, D are concyclic.  Similarly, O4, D, Oy, O, are concyclic.

Therefore O; and O3 are both on the circumcircle of A O, O4D. Besides, ZDO, 04 =
o, £0204D = B implies that ZO4 DO, = y.

On the other hand, CT4OT; is cyclic, so ZT40T> = 180° — y, therefore
0, 03, D, O4 are concyclic. Thus, Oy, O,, O3, O4, O, D are concyclic.
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Since 400403 = ZT404T3 = 180°-ZCAB = 180°—<x,and ZD004 =
ZDO03T3 = a,s0 OD || 0304, hence OD L AB.

Example 4. (CROATIA/2009) ABCD is a convex quadrilateral, the circumcir-
cle of AABC intersects CD, DA at P, Q respectively, and the circumcircle of
AACD intersects AB, BC at R, S respectively. The lines BP, BQ intersect the
line RS at the points M, N respectively. Prove that M, N, Q, P are concyclic.

Solution The angles at circle subtended by a
same chord are equal, so
/ZBQC = /BAC,/ZCQP = ZCBP. Since
/BSR = ZRAC = /BAC = £LBQC, hence

/BMN = 180° — ZBMS
— /SBM + /BSM = /CBP + BSR
= /CQP + ZBQC = LBQP = /NQP.

Thus, M, N, Q, P are concyclic.

Example 5. (ITALY/TST/2009) Given that © O; and © O; intersect at M and N.
the common tangent which is closer to M is tangent to the circles at A and B
respectively. C and D are the symmetric points of 4 and B with respect to M
respectively. The circumcircle of ADCM intersects ©O; and ©O; at E and F
(which defer from M) respectively. Prove that the circumradii of AMEF and
ANEF are equal.

Solution Take the point N’ such that NEN'F is a parallelogram.

Suppose that the Extensions of AD and BC in-
tersect © 01 and © O, at E’ and F’ respectively.
Since M, C, F, E, D are concyclic,

/IMFC = /MDC = ZMBA = ZMFB.
There are B, C, F are collinear, F = F’. Simi-
larly, E = E’.

Let the ray NM intersect AB at L. Then

ALAM ~ ALNA = LA?> = LM - LN and
similarly LB? = LM - LN, therefore LA = LB.

AC, BD bisect each other = ABCD is a parallelogram = MN || BF || AE.
Therefore O, O is perpendicular to AE and BF, and A, M, B and E, N, F are
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symmetric with respect to the line Oy O,, which implies that ZENF = ZAMB
so that

ZEN'F + LEMF = LENF + ZEMF = LAMB + /EMF
= LAMB + LEMN + LFMN = ZAMB + ZAEM + /BFM
= LAMB + ZBAM + ZABM = 180°,

therefore MEN'F is cyclic. Therefore the circumradius of AMEF is that of
AEN'F. Since ENFN' is a parallelogram, so AEN'F =~ AENF, so the
circumradius of AEN'F is equal to that of ANEF.

Example 6. (CMC/2010) M is the center of equi-
lateral triangle A;A2A3, N is an arbitrary point
in the plane that the triangle lies,the circle taking
MN as a diameter intersects the lines M A; at B;,
i = 1,2, 3. Prove that

MB?} + MB} + MB? = NB? + NB? + NB2.
Solution The five points M, By, B,, N, B3 are concyclic, and ZB;MB; =
1200, SO LBl BzB3 = 60° and
4B1B3B, = LB1MBy = ZA{MB, = 60°, A

therefore A By B, B3 is equilateral. Let s be the
length of its sides.
Lemma: If P is a point on the circumcircle of
equilateral triangle ABC, then the value of

PA% + PB? + PC?

is independent of the choice of P. P

In fact, let a be the lengthof AB, PA = x, PB =y, PC = z,thenx = y+z
(cf. Example 2 in Lecture X), therefore, by applying the cosine rule,

X2 +y2 422 = (p+2)?+ 2+ 22 =207 + 22 + y2)
= 2BC? =242

the Lemma is proven. By the lemma,
MB?} + MB + MB? = NB? + NB? + NB? = 252,

Example 7. (VIETNAM/2009) Let A, B be two fixed points and C is a variable
point such that ZACB = « which is a constant and 0° < o < 180°. Let D, E, F
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be the projections of the incenter I of AABC on its sides BC, CA, AB respec-
tively. Denote by M, N the intersections of the lines A7, BI with the line segment
EF, respectively. Prove that the length of M N is constant and the circumcircle
of ADMN always passes through a fixed point.

‘Solution Since ZCEF = 90°—1/C =180°—
LAIB = ZAIN,so I, N, E, A are concyclic.
Since I, E, A, D are concyclic also, so I, N, E, A, D
are concyclic.
Similarly, B, F, M, I, D are concyclic. Therefore

ZANB = LAEI = 90°, ZAMB = ZBFI = 90°. E

Therefore M, N are both on the circle taking AB as
the diameter. A DO B

Taking O as the midpointof AB, then ZMON =2/ZMAN =2/MBN =
ZMAN + ZMBN = /ZNDI + ZMDI = Z/MDN, so M,N, D, O are con-
cyclic, hence the circum circle of AMND passes through the fixed point O.

On the other hand,

MN = ABsin ZNAM = ABsin ZIEF = ABsin%

which is a constant,

Kxample8. (BELLARUS/2009) Let X, X, X be points on the sides A B, AC, BC
of AABC respectively, such that XX; L AC, X1X2 L BC,X2X L AB. Let
Y. Y. Yz be points on BC, AC, AB respectively, such that YY; L AC,Y1Y> L
AB. Provethat Y,Y L BCif XY || AC.

Solution As shown in the graph below, when XY || AC, then ZYXX; =
£XX1Y1 = 90°. Considering ZX; XoY = 90°, it follows that X, X, X5, Y are

concyclic, and X17Y is a diameter of the circle. Use I to denote the circle.
Since ZYY1X; =90° soYyisalsoon I".

Since ZXY,Y; = 90° and ZXYY, = 90°, so 5
X,Y,,Y,,Y are concyclic. Therefore Y, is on I’ X Y
also. s X
Since ZX,XY, = 90°, so X,Y; is the diameter of AN
I'. Thus, Y, <l

LY,YX, = 90° = Y,Y 1 BC. A= c
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Testing Questions (A)

(RUSMO/2008/R4) The points M, N are on the sides AB, AC of AABC
respectively but not A, B,C, and MC = AC, NB = AB. P is the sym-
metric point of A with respect to the line BC. Prove that PA is angle
bisector of the ZMPN.

(CROATTA/2009) Given that CH is the altitude of the acute triangle ABC,
O is the circumcircle of AABC and T is the projection of C on the line
AQ. Prove that the line TH passes through the midpoint of the side BC.

(ITALY/2009) The acute AABC is not equilateral, I' is its circumcircle, the

angle bisector of ZBAC intersects BC at K. The midpoint of the arc BC
(which contains A) is M. The line MK intersects I" again at A’. The
tangents to I” at A and A’ respectively intersect at 7. The lines passing
through 4 and A’ and perpendicular to AK and AK’ respectively intersect
at R. Prove that T, R, K are collinear.

(BELARUS/2008) In the convex quadrilateral ABCD, BC = CD, AB #
AD, ZBAC = ZDAC. The circle passing through A4, C intersects AB, AD
at M, N respectively. If BN = a, find DM

(SMO/TST/2008) Let ® O be a circle, and let ABP be a line segment such
that A, B lieon ©O and P is a point outside ® 0. Let C be a pointon © O
such that PC is tangent to © O and let D be the point on ® O such that CD
is a diameter of ® O and intersects AB inside ©® 0. Suppose that the lines
DB and OP intersect at E. Prove that AC is perpendicular to CE.

(CMC/2008) In the given diagram, A B is the diameter of the semi-circle O,

C is the midpoint of arc AB, M is the mid- ¢
point of the chord AC,CH 1 BM at H.
Prove that

CH? = AH - OH. .
A 0 B

(CMC/2009) As shown in the right diagram, in the AABC, AB > AC, AE
A

is the tangent line to the circumcircle of
AABC at A, D is on AB such that

AD = AC = AE.
Prove that the line segment DE passes
through the incenter of AABC.
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Testing Questions (B)

(RUSMO/2008/R4) The inscribed circle w of AABC touches the sides BC,
CA, AB at points A’, B/, C’ respectively. The points K, L on o satisfy

/AKB' + /BKA' = ZALB' + ZBLA = 180°.

Prove that the distances from the points A’, B’, C’ to the line KL are equal.

(SNOVENIA/TST/2008-2009) ABCD is atrapezium, CD, AB are the upper
base and lower base respectively and ZADC = 90°, AC L BD. From D
make DE 1 BC at E. Prove that

AE _ AC-CD
BE ~ AC?—-CD?*

(KOREA/2009) Let ®O be the circumcircle of an obtuse triangle ABC,
where ZB is obtuse. the tangent line to ®O at C intersects the line AB
at By. Let O; be the circumcenter of AAB;C. Take any point B, on the
line segment BBy (B> # B, By), and let C; be the tangent point of the
tangent from B, to © O which is closer to C. Let O, be the circumcenter
of AAB,C;. Prove that the five points O, O, O1, C;, C are concyclic if
00, L AO;.

(JAPAN/2009) Let I" be the circumcircle of AABC. The circle © O touches

the line segment BC at the point P and touches the arc BC which does not
have the point 4 at Q. If ZBAO = ZCAO, prove that /PAO = LQAO.

(IMO/Shortlist/2008) Given trapezoid ABCD with parallel sides AB and
CD, assume that there exist points E on line B C outside line segment BC,
and F inside line segment AD such that ZDAE = ZCBF. Denote by 1
the point of intersection of CD and EF, and by J the point of intersection
of AB and EF. Let K be the midpoint of line segment EF, assume it does
not lie on line AB. Prove that / belongs to the circumcircle of ABK if and
only if K belongs to the circumcircle of CDJ.



Lecture 13

Power of a Point with Respect to a Circle

The main findings on power of a point with respect to a circle are derived from
the following theorems:

Theorem 1. Let ©O be a circle of radius R. For an interior point P of the
circle, if AB is a chord passing through P, then the value of product PA - PB
is independent of the choice of the chord passing through P. In particular, the
constant value is given by taking AB L OP, soitis

R? — OPZ2.

Theorem II. Let ©O be a circle of radius R. For a point P which is outside
the circle or on the circumference, if PAB is a transversal line starting from P,
intersecting the circle at A and B, then the value of PA- PB is independent of the
choice of the transversal passing through P. In particular, the value is given by
taking the tangent from P to the circle as the transversal, so it is

OP? — R?,

Consequence: When line segments A B and CD or their extensions intersect
at P, then 4, B, C, D are concyclic if and only if AP - PB = CP - PD.

It is clear the value R? — OP? (when P is inside the circle) or OP2 — R2
(when P is outside the circle) is determined by the distance of P from the circle,
so it is defined as the Power of the point P with respect to the circle ©O.

The power of a point has many applications in investigating questions about
circles, where the concept of the radical axis is based on power of a point.

For any two non-concentric circles w; and w,, the locus of all points with
equal powers to the two circles is a line, called radical axis of the two circles.

Theorem III. When the centers of three circles wy, w2, w3 are not collinear, there
exists exactly one point whose powers with respect to the three circles are equal.
This point is said to be the radical center of the three circles.
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For given three circles, if any two have a radical axis, then the three radical
axes may be parallel each other, or concurrent at their radical center.

Key Properties of radical axis:

e Two different concentric circles have no radical axis.

e The radical axis exists for any separated two non-concentric circles, and the
radical axis is a line perpendicular to the line joining the centers of the two
circles, passing through the midpoints of the four common tangent lines of
the two circles.

e The radical axis exists for any two intersected circles, and it is the straight
line passing through the two common points of the circles.

e The radical axis exists for any two circles if they are tangent each other, and
it is the common tangent line at the common point of the circles.

Examples

Example 1. (BELARUS/2008) The pentagon ABCDE is inscribed in a circle,
the diagonals EC, AC intersect BD at the points L, K respectively. BC = +/10.
If the pints A, K, L, E are allon a circle I, find the length of the tangent from C
tol.

Solution Let the length of the tangent from C to the circle I" be a. Then
1 ~ —~
ZBKA = E(AB + CD) and C

1 —~ —~
/ZBKA = /ZCEA = E(AB + BC)
~ o~ B
implies that BC=CD. Therefore ZCBK = D
/BAC, so ABCK ~ AACB which gives

CK CB
bl K-CA = CB2. A E
cs = ac K¢

The power of C to I gives CK - CA = a?, 50
a = BC = +10.

Example 2. (HONG KONG/2006) O is the circumcenter of the convex quadri-
lateral ABCD. Given AC # BD, AC and BD intersect at E. If P is an inte-
rior point of the quadrilateral ABCD such that ZPAB + /ZPCB = LPBC +
/PDC = 90°, prove that O, P, E are collinear.
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Solution Let the circumcircles of the quadrilateral ABCD, AAPC and
ABPD be I', I't and I respectively, then the radical axis of I and I is the
line AC, and the radical axis of I" and I is the line BD.

Since P is on both I'; and I, so P is on the radical axis of I'; and ;.

Since BD and AC intersect at E, so E is the radical center of I, I and 1%,
therefore the line PE is the radical axis of I'; and I.

It suffices to show that O has equal power to I'y and I». For this note that

1
ZAPC = L[LPAB+ £LPCB + LABC = 90° + EAAOC,

1
LACO = 5(180° - ZAOC) = 180° — (90° + %AAOC)
= 180°—- ZAPC = LACP + ZCAP,

therefore ZPCO = ZCAP, ie., OC is tangent to I'; at C. Similarly, OB is
tangent to I at B. Then OC = OB implies that O has equal power to I'; and
I3, so the conclusion is proven.

Example 3. (CMC/2009) In the given dia-
gram, PA, PB are two tangents to the circle

OO at A and B. The line passing through P

intersects @O at C and D and intersects the P

chord AB at Q. Prove that \
PQ?*=PC-PD-QC-QD. B

Solution Connect OA, OB, OP. Let the point of intersection of OP and
AB be H, the midpoint of CD be M, connect OM. Then OM 1 CD and
OH 1 AB. Therefore Q, H, O, M are concyclic, hence

PQ-PM = PH - PO.

By applying the projection theorem to the RtAAPO,
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PA* = PH - PO = PA* = PQ - PM. 4

By considering the power of point P with re- 4
spect to the circle © O, it follows that P \
b

PQ-PM = PA*> = PC - PD, 3

therefore
PO(PQ + QM) = PC - PD, so that PQ2 = PC-PD—-PQ-0OM.

Since P, A, O, M and P, B, M, O are both concyclic, so P, B, M, O, A are con-
cyclic. By considering the powers of Q with respect to this circle and ©O, it
follows that

PQ-OM = QA-QB =0QC-0D
since A, C, B, D are concyclic. Thus, PQ? = PC - PD — QC - QD.
Example 4. (Euler’s Theorem) When the circumradius and inradius of AABC

are R and r respectively, and d is the distance between the circumcenter and the
incenter, then

d?>=R(R-2r), or d=+R(R-2r).
Consequence: R > 2r,and R = 2r if and only if AABC is equilateral.

Solution As shown in the diagram below, let O and I be the circumcenter and
incenter of AABC respectively. Let the extension of AI intersect the ©O at D.

Then D is the midpoint of the arc BC. Write

1 1
= —LA, = —AB;
*=3 p=3

then ZIBD = ZIBC + ZCBD =8+ a =

ZIBA + /BAL = /BID, therefore ADBI is
isosceles with DI = DB.

By considering the power of I and the sine rule, it
follows that

R2—d% = DI -IA = 2Rsina - —— = 2Rr,
Sinx

so that d2 = R? — 2Rr = R(R — 2r), as desired. The consequence is obvious.

Example 5. (CM0/2010) Two circles I'; and I intersect at A and B, as shown
in the diagram below. A line passing through B intersects Iy and I3 at C and
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D respectively, and another line passing through B intersects Iy and I at E
and F respectively. The line CF intersects Iy and I'; at P and Q respectively.

Let M and N be the midpoints of the arcs PB and QB respectively. Prove that
C,F,M, N are concyclicif CD = EF.

Solution Connect AC, AD, AE, AF, DF,CM, FN, AB. Then

£LADB = ZAFB,ZACB = LAEF,CD = EF
= AACD ~ AAEF = AD = AF

= LADF = LAFD

= LABC = LAFD = ZADF = /ABF

= AB is the angle bisector of ZCBF .

Since P?ll:A/?B, so CM is the angle bisector of
£DCF, and similarly, FN is the angle bisector of
ZLCFB. Therefore BA, CM, FN are concurrent at

the incenter / of ACFB. . . .
In view of the power of point I with respect to the circles I'; and I3, then

CIl-IM = Al -IB = NI-IF,

so C, F, M, N are concyclic.

Example 6. (APMO/2009) Let three circles I'y, I, I, which are non-overlapping
and mutually external, be given in the plane. For each point P in the plane, outside
the three circles, construct six points Ay, By, A», By, A3, B3 as follows: For each
i =1,2,3, A;, B; are distinct points on the circle I} such that the lines PA; and
PB; are both tangents to I;. Call the point P exceptional if, from the construc-
tion, three lines A; By, A B>, A3 B3 are concurrent. Show that every exceptional
point of the plane, if exists, lies on the same circle.

Solution Let O; be the center and r; the radius
of circle I} for each i = 1,2,3. Let P be an ex-
ceptional point, and let the three corresponding lines
A1B1, A2 B3, A3 B3 concur at Q. Construct the cir-
cle with diameter PQ. Call the circle I, its center
O and its radius r. We now claim that all exceptional
points lieon I".

Let PO intersect A;B; in X;. As PO; 1 A;Bj,
we see that X1 lieson I". As PA; is a tangent to I,
triangle PA; O; is right-angled and similar to trian-
gle A1 X; O,. It follows that
01X1 _ 014,
0141 O,P’

ie, 01X1-O1P = 0,43 =r?.
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On the other hand, O; X1 - O1 P is also the power of 0; withrespect to I, so that
r2 = 01X1-01P = (0,10-r)(010+71) = 0,0%—r?, (%)

and hence
r2=00}-r}=(00,-r)(001 +7).

Thus, r2 is the power of O with respect to I'1. By the same token, 2 is also the
power of O with respect to I and I'3. Hence O must be the radical center of
the three given circles. Since r, as the square root of the power of O with respect
to the three given circles, does not depend on P , it follows that all exceptional
points lieon I".

Remark. In the event of the radical point being at infinity (and hence the three
radical axes being parallel), there are no exceptional points in the plane, which is
consistent with the statement of the problem.

Example 7. (USAMO/2009) Given circles w; and w, intersecting at points X
and Y, let £1 be a line through the center of w; intersecting w; at points P and
Q and let £5 be a line through the center of w, intersecting w; at points R and S.
Prove that if P, Q, R and S lie on a circle then the center of this circle lies on line
XY.

Solution

O [0

Let w denote the circumcircle of P, @, R, S and let O denote the center of w.
Line XY is the radical axis of circles w; and w,. It suffices to show that O has
equal power to the two circles; that is, to show that

002 — 0,52 = 003 - 0,0> or 00} + 0,0 = 0032 + 0,5*.
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Let M and N be the intersections of lines 050, £; and O; O, £,. Because circles
o and w; intersect at points P and Q, we have PO 1 00, (ort; 1L 00y),
Hence

00} — 00Q% = (OM? + MO?) — (OM? + MQ?)
= (02M? + MO}) — (02M? + MQ?) = 0,0? — 0,02

or
0,07 + 00% = 00? + 0,0>.

Likewise, we have 0,07 + 0S? = 002 + 0,52. Because OS = 00, we
obtain that 007 + 0,02 = 002 + 0,52, which is what to be proved.

Testing Questions (A)

1. (CMC/2009) Given that the circle © O touches line segment AB at M and
touches the semi-circle of diameter AB at E. C is a point on the semi-circle
such that CD L AB at D and CD is the tangent line to ©®O at point F.
Connect CA, CM. Prove that

(i) A, F, E are collinear; (ii)) AC = AM; (iii)) MC? =2MD - MA.

2. (THAILAND/2007) Given that the point P is outside the circle @O and
PA, PB are tangent to ©O at A and B respectively. M, N are the mid-
points of the line segments AP and AB respectively. The extension of
MN intersects ©O at C, where N is in between M and C. PC intersects
®O again at D, and the extension of ND intersects PB at Q. Prove that
the quadrilateral M N QP is a thombus.

3. (ROMANIA/2008) Let ABC be atriangle and D, E, F are interior points of
the line segments BC, CA, AB respectively, such that

BD CE _AF

DC ~ EA  FB’
Prove that if the circumcenters of triangles DEF and ABC coincide, then
ABC is equilateral.

4. (TURKEY/2008) A circle I" and a line £ are given such that £ does not cut
I'. Determine the intersection set of the circles taking AB as diameter
for all pairs of {4, B} (lie on £) and satisfy P, Q,R,S € I such that
PQ N RS ={A}and PS N QR = {B}.
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4.
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(COLUMBIA/2009) In AABC, P is a point on the side BC, I, I, are in-

centers of the AAPB and AAPC respectively. I'1, I'; are circles passing
through P and taking I, I> as the centers respectively. Let Q be the second
point of intersection of Iy and I'». The points X1, Y are the points of inter-
section of I'} with AB, BC respectively which are closer to B, and X5, Y>
are the points of intersection of I with AC, BC respectively which are
closer to C. Prove that the three lines X;Y;, X»Y> and PQ are concurrent.

(BALTIC WAY/2007) The incircle of the triangle ABC touches the side AC

at the point D. Another circle passes through D and touches the rays BC

AD
and BA, the latter at the point A. Determine the ratio —EC—

Testing Questions (B)

(VIETNAM/2007) Let ABCD be a trapezoid with the bigger base BC in-

scribed in the circle ®O. Let P be a variable point on the line BC moving
outside the line segment BC such that PA is not a tangent to the circle © 0.
A circle of diameter PD meets ©O at E (E # D). Denote by M the point
of intersection of DE and BC, and by N the second point of intersection
of PA and ©O. Prove that the line M N passes through a fixed point.

(ITALY/TST/2008)) In the acute AABC, AM is the medianon BC, BK,CL
are altitudes, where the points M, K, L are on BC,CA, AB respectively.
The line perpendicular to AM at A intersects the lines CL and BK at E
and F respectively. Prove that

@) A is the midpoint of EF.
(i) Let I” be the circumcircle of AMEF, and Iy, I be two arbitrary

circles which are tangent to line segment EF and the arc EF that
does not contain M. If Iy and I inteersect at P and @, then
M, P, Q are collinear.

(TURKEY/TST/2009) Quadrilateral ABCD has an inscribed circle which
centered at O with radius r. AB intersects CD at P; AD intersects BC at
Q and the diagonals AC and BD intersects each other at E. If the distance
from O to the line PQ is k, prove that OE -k = r2.

(BELARUS/2009) In the acute triangle ABC, ZC = 60°, points By, Ay are
on the sides AC, BC respectively, and D is the second point of intersection
of the circumcircles of ABCB; and AACA;. Prove that D is on the side

. ..CBy CA;
ABifandonly if — + —— = 1.
1f and only 1 CB + CA
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Some Important Theorems in Geometry

Theorem 1. (Menelaus’ Theorem) If a straight line cuts the sides AB, BC
and CA (or their extensions) of a AABC at points X, Y and Z respectively,

then
AX BY CZ_

XB YC ZA
(Inverse Menelaus’ Theorem) For any given AABC, if X, Y, Z are
points on lines AB, BC, CA respectively (where exact one point is on the exten-

sion of a side, or three points are all on the extensions of sides) such that (14.1)
holds, then X, Y, Z must be collinear.

(14.1)

Theorem II. (Ceva’s Theorem) For any given triangle ABC, let X, Y, Z be
points with (i) all on the line segments BC, CA, AB; or (ii) exact one on one
side and other two on the extensions of the two sides respectively. Then the lines
AX, BY, CZ are parallel or concurrent if and only if

BX CY Az
XC ¥A'zB " e

Trigonometric Form of Ceva’s Theorem The Condition (14.2) can be re-

stated as
sin /BAX -sin ZCBY -sinZACZ

sin /CAX -sin ZABY -sinZBCZ _

1. (14.3)

Theorem III. (Simson’s Theorem) Fora AABC and a point D which is out-
side the triangle, introduce three perpendicular lines from D to the sides BC, CA,
intersecting them at Ay, By, C; respectively. Then Ay, By and C; are collinear
ifandonly if A, B, C, D are concyclic.

Note: When A4,, B, C; are collinear, the line passing through them is called
the Simson line.
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Theorem IV. (Ptolemy’s Theorem) Let ABCD be a convex quadrilateral. Then
AB-CD + AD -BC = AC -BD (14.4)

ifand only if A, B, C, D are concyclic.
Extended Ptolemy’s theorem For any convex quadrilateral ABCD, the
inequality
AB-CD + AD -BC > AC - BD (14.5)

always holds, and the equality holds if and only if A, B, C, D are concyclic.
Note: (14.5) is called the Ptolemy’s Inequality.

Examples

Example 1. (Desargues’ Theorem) For

two triangles ABC and A;B;C; in a

same plane, when the lines A4, BBj,

C C; are concurrent att a point S, then the P

three points P, Q, R must be collinear,

where the lines BC and B;C; intersect

at P, the lines CA and C; A, intersect at

0, and the lines AB and A; B intersect

at R, as shown in the right diagram. C ¢
Solution Consider the line PC; B,

as a transversal to the ASBC, by the

Menelaus’ theorem, S A, A
BP CCy SBy _
PC CiS BB B,
Since QCj A; is a transversal to ASCA, R B
SO
CQO A4 SC
QA A;S CC
Similarly, considering RBj A; as a transversal to ASAB, then
AR BBy SA; _ )
RB BiS 414
Multiplying the three equalities gives
BP CQ AR _ i
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Since P, Q, R are all at the extensions of BC, CA, A B respectively, P, Q, R must
be collinear by the inverse Menelaus’ theorem.

Example 2. (BULGARIA/2009) The inscribed circle © of AABC touches the
sides BC,CA, AB at A, B;, C; respectively. Let [ be a line passing through I
and A’, B’,C’ be the symmetric points of Ay, By, C; with respect to / respec-
tively. Prove that the lines AA’, BB’, CC’ are concurrent.

Solution Use d,(X), dp(X),d.(X) to de-
note the distances of point X from the lines
BC,CA, AB respectively. The Ceva’s theorem
in trigonometric form gives

AA’, BB’, CC’ are collinear <

sin ZCAA' sin ZABB’ sin/ZBCC’ —1
sin /ZBAA' sin ZCBB' sinZACC' B '

dy(A')/AA" d.(B')/BB’ da(C")/CC’" _
dc(A)/AA" da(B)/BB’ dyp(C")/CC"
dy(A)) d.(B') da(C') _
de(A') da(B) dp(C")
Since A’B; = A; B’ and CB, CA are both tangent to ©1, so, in degrees,

1.

LB'A\C =1 B'Ay=1 AB,= /A'B, A,
= da(B') = A1B'sin ZB'A;C = By A'sin LA'By A = dy(4).

Similarly, dp(C’) = d.(B’) and d.(A") = d,(C’), the conclusion thus is proven.

Example 3. (Carnot’s Theorem) Let P be a point on the circumcircle of AABC.
From P introduce three lines to intersect the lines BC,CA, AB at D, E, F re-
spectively, such that ZPDB = ZPEC = /ZPFB. ThenD, E, F are collinear.

Solution It suffices to show that Z/PDF + ZPDE = 180°. Since
£ZPDB = /PFB implies that BPDF is cyclic,

SO A
/ZPDF + ZPBF = 180°.

ABPC is cyclic implies that

ZPBF = ZPCE,

and ZPDE = ZPCE implies PDCE is cyclic,
1)

/LPDE = LPCE = /LPBF,
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thus, ZPDF + ZPDE = /PDF + ZPBF = 180°,so D, E, F are collinear.

Example 4. (USAMO/2010) Let AXY ZB be a convex pentagon inscribed in a
semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars
from Y onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle
formed by lines PQ and RS is half the size of ZXOZ, where O is the midpoint
of line segment AB.

Solution As shown in the diagram below,
Let T be the foot of the perpendicular from Y to
AB, then, by the Simson’s theorem, P, Q, T are
collinear and so are S, R, T'.

Since

ZYQB = LYTB = LYSB = 90°,

S,Y, Q, T, B are concyclic, so that

1
LPTS = LQTS = LQBS = LXBZ = 5 LXOZ

Example 5. (CMC/2008) Given a convex quadrilateral ABCD with ZB + 4D <
180°, P is a variable point in the same plane. Let f(P) = PA-BC + PD-CA+
PC-AB. Prove that P, A, B, C are concyclic if f(P) reaches its minimum value.

Solution As shown in the right diagram, for any point P in the plane, the
Ptolemy’s inequality gives

PA-BC + PC-AB > PB- AC,

therefore

f(P) PA-BC+PC-AB+ PD-CA

PB-CA+PD-CA

»«
A,
(PB + PD)-CA > BD - CA, ‘,/

where the equality holds if and only if PABC is B

cyclic. Therefore f(P) has alower bound BD - AC.
However, this bound is reachable when and only when P is the point of inter-

section of the circumcircle of AABC and line segment BD, so P, A, B, C are
concyclic.

vl

Example 6. (Pascal’s Theorem) If a hexagon ABCDETF is inscribed in a circle
such that the lines AB and ED produced intersect at H, the lines BC and FE
produced intersect at K, and the lines AF and CD produced intersect at I, prove
that H, K, I are collinear.
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Solution Suppose that the lines AB, CD,
EF form a AXYZ. Considering the lines
AFI,BCK,HDE as three transversals of
AXYZ, then the Menelaus’ Theorem yields

XA ZF YI
AZ FY IX

HZ EY DX

Multiplying the three equalities up and consid-
ering

XA-XB =XC-XD, YC-YD=YE-YF

. Yl XH ZK )
and ZE - ZF = ZA - ZB, we obtain x HZ KY - 1. By the inverse
Menelaus’ Theorem, I, K, H are collinear.
Example 7. (Pappus’ Theorem) Given that A, B, C are three points on a line
¢1 and a, b, ¢ are three points on another line £,. If the line segments Ab, Ba
intersect at N, the line segments Ac, Ca intersect at L and the line segments
Bc, Cb intersect at M respectively, prove that N, L, M are collinear.

Solution Consider the triangle U VW formed by the lines Ab,aC, Bc, as
shown in the given right diagrm.
There are five transversals:

ALc, CMb, aNB, CBA, abc.

Applying the Menelaus’ theorem then yields

VvC WB UA Va Wce Ub

By multiplying the first three equalities and then divided the resultant equality by
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the product of the last two equalities, it is obtained that

Thus, by the inverse Menelaus’ theorem, L, N, M are collinear.

Example 8. (Newton Line) ABCD is a quadrilateral such that the rays BA and
CD intersect at E, and the rays AD and BC intersect at F. Let N, L, M be the
midpoints of EF, AC, BD respectively, prove that N, L, M are collinear.

Note: The line passing through N, L, M is called the Newton line of the
quadrilateral ABCD.

Solution Let the midpoints of EB, EC, BC be P, Q, R respectively. Then
the midpoint theorem indicates that
0, L, R are collinear, and

OL EA E
LR  AB’
Similarly, P, M, R are collinear, and
RM _ CD O \N

MP — DE’

Besides, N, Q, P are collinear and

PN _ BF
NO ~ FC B R C F

Applying the Menelaus’ theorem to AEBC and the transversal ADF then
gives

EA BF CD _
AB FC DE ’
L RM PN EA CD BF
therefore —Q— ¢ —_ = — - C— - — = 1. By applying the inverse

LR MP NQ AB DE FC
Menelaus’ theorem to the APQR and the three points M, L, N, the conclusion
that M, L, Q are collinear is proven.
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Testing Questions (A)

1. (CMC/2009) Given that line segments AB, CD, EF are three non-intersected
chords of a circle. When three quadrilaterals are formed by taking any two
chords as a pair of opposite sides, and let M, N, P be the intersection points
of two diagonals for these quadrilaterals, prove that M, N, P are collinear.

2. (HUNGARY/2007-2008)1It is known that all the angles of the convex hexagon
A1A2A3A4 A5 Ag are obtuse, the circle I3, (1 < i < 6) has the center 4;
and such that I; is tangent to the circles I;_; and I+ externally, where
Io=1T%,171 = TI7.

Let the line passing through the two tangent points on I and the line pass-
ing through the two tangent points on I'5 intersect at a point, and the line
joining the point andA; is e. Similarly, let the line defined by the circles
I3, I's and A4 be f, and the line defined by the circles I's, I'; and Ag be g.
Prove that the three lines e, f, g are concurrent.

3. (INDIA/TST/2008) Let AABC is not isosceles, I" is its inscribed circle,
touching the three sides BC, CA, AB at D, E, F respectively. If the lines
FD, DE, EF intersect the lines CA, AB, BC at the points U, V, W respec-
tively, and the midpoints of DW, EU, FV are L, M, N respectively, prove
that L, M, N are collinear.

4. (CMC/2008) Given the diameter of circumcircle of AABC is 25, the lengths
of AB, BC, CA are all positive integers with AB > BC, and the distances
from the circumcenter O to the sides AB, BC are both positive integers,
find the lengths of AB, BC, CA.

5. (ESTONIA/TST/2009) Given that A’, B/, C’ are on the sides BC, CA, AB of

AABC t' ly t. fy. - : - : By a i th 0 h
— . . T
I‘eSpeC 1ve Y satis lng C 7 C/B p SSlng ug

p
P, Q respectively, prove that Q > 2.

BIC/ -

6. (CMC/2009) A pair of opposite interior angles, say ZA and ZC, of the cyclic
quadrilateral ABCD is partitioned by the diagonal AC as ZA = a; +
Loy, LC = a3 + ay4. Prove that

sin(er; + o2) sin(ez + 3) sin(asz + a4) sin(ag + 1)
> 4sina; sin oy sin a3 sin ag.
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Testing Questions (B)

(CMC/2010) Let O be the circumcenter of the acute triangle ABC, K a point
on BC (butitis not the midpointof BC), D a point on the extension of AK.
The lines BD and AC intersect at N and the lines AB and CD intersect at
M . Prove that if OK | M N then A, B, D, C are concyclic.

(Steiner-Miquel Theorem) A BCD is a convex quadrilateral, and the exten-
sions of AB, DC intersect at E, the extensions of AD, BC intersect at F.
Prove that the four circumcircles of triangles BCE, CDF, ADE, ABF are
concurrent at one point.

(BALKAN MO/2009) Let M N be a line parallel to the side BC of a triangle
ABC, with M on side AB and N on side AC. The lines BN and CM
meet at point P. The circumcircles of triangles BM P and CNP meet at
two distinct points P and Q. Prove that ZBAQ = ZCAP.

(CHNMO/TST/2010) ABCD is a convex quadrilateral, and the extensions
of AB, DC intersect at E, the extensions of AD, BC intersect at F. The
circumcircles of ABEC and ACFD intersect at C and P. Prove that
£4BAP = LCAD ifand only if BD || EF.



Lecture 15

Five Centers of a Triangle

Theorem 1. The three medians of a triangle intersect at one common point, de-
noted by G, and each median is partitioned by G as two parts of ratio 2 : 1. The
common point G is called center of gravity or centroid of the triangle.

Consequence An interior point P of AABC is the center of gravity of
AABC if and only if

[PBC] = [PCA] = [PAB].
(Here the notation of [X Y Z] denotes the area of AXYZ.)

Theorem II. For any triangle, the perpendicular bisectors of three sides intersect
at a common point O. The O is the center of circumcircle of the triangle, called
circumcenter of the triangle.

Theorem IIL. The three altitudes of any AABC intersect at one common point
H, called orthocenter of the triangle.

Theorem IV. For any triangle, its angle bisectors of three interior angles intersect
at one common point, denoted by I as usual, called incenter (or inner center) of
the triangle. I is the center of inscribed circle of the triangle.

Theorem V. For a triangle, the angle bisectors of one interior angle and two
exterior angles of the other two interior angles intersect at common point, called
excenter of the triangle. There are three such points for a triangle, and each is
the center of an escribed circle of the triangle.

Note: For an isosceles triangle, its center of gravity, circumcenter, orthocen-
ter and incenter are all on the symmetric axis of the triangle. For an equilateral
triangle, the above four centers coincide to one point, called center of the equilat-
eral triangle.
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Examples

Example 1. For a given AABC with G as its center of gravity and any point M
in the same plane, the following equality always hold:

MA? + MB? + MC? = GA? + GB? + GC? + 3MG>.

Note: The conclusion gives another definition of the center of gravity of the
triangle ABC': A point G is the center of gravity of AABC if and only if

GA? + GB? + GC? = min{MA? + MB? + MC?},
where M can be any point in the same plane.

Solution As shown in the figure, let G be the center of gravity and the three

medians be AD, BE,CF respectively. Use K
to denote the mid-point of AG and connect
MK, MD. Then AK = KG = GD and

MB? + MC? =2(BD? + MD?), (15.1)
MA? + MG? = 2(MK? + GK?), (15.2)
2(MD? + MK?) = 4(MG? + GK?). (15.3)

By (15.1) + (15.2) + (15.3), B D C

MA? + MB? + MC? = 3MG? + 2(BD? + GK?) + 4GK*>.
. 4GK? = GA?,
2(BD? + GK?) = 2(BD? + GD?) = GB? + GC?,
MA? + MB? + MC? = GA2 + GB? + GC? + 3GM?.

Example 2. (Euler line) For any triangle ABC, its center of gravity G, circum-
center O and orthocenter H are collinear, and G is between O and H such that
HG =206G.

Solution If A’ and C’ are the midpoints of BC and A B respectively, then
G is on AA’ and AG = 2GA’. Connect
OA’,0G. Let H' be on the extension 4
of OG such that H'G = 2GO, then
AAGH' ~ AA'OG, ie., AH' | OA,
hence AH' 1 BC since OA’ 1. BC. c’

Similarly, CH' 1 AB.
Thus, H’ is just the orthocenter H. The
conclusion is proven.
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Example 3. H is the orthocenter of an acute AABC and AH = p,BH =
q,CH = r. Show that aqr + brp + cpq = abc.

Solution Below we show the conclusion by using trigonometric method.

Let —2 b € _ _ 2R, where R
© smA sin B si cC where A4
is the circumradius of AABC. Then

LAHE = 90° — ZDAC = ZC
AE ABcos A

= p= = = 2Rcos A.
P=Gnc = “sinC
Similarly, g = 2Rcos Bandr =2RcosC.  p D “C
Therefore

aqr + brp + cpq = abc
< 2RsinA-2Rcos B-2RcosC + 2Rsin B-2RcosC -2Rcos A
4+2RsinC -2Rcos A-2Rcos B =2RsinA-2RsinB -2RsinC
<& sin A cos B cos C +sin B cos C cos A+ sin C cos A cos B = sin A sin B sinC
& tanA +tan B + tanC = tan Atan Btan C,

and the last equality is well known as a basic property of a triangle.

Example 4. (CMC/2008) In an acute triangle ABC, D, E, F are the midpoints
of the sides BC, CA, AB respectively. On the extensions of EF, FD, DE take
points P, O, R respectively, such that AP = BQ = CR. Prove that the circum-
center of A PQR is orthocenter of the AABC.

Solution Let AL, BM, CN be the altitudes of AABC, and H be the ortho-
center. Suppose that EF intersects AL at K. Then

AP?

= PK? + AK? = PH?* — KH? + AK?
= PH?(AK + KH)(AK — KH)

= PH? + AH - HL.

Similarly,

BQ? = QH?+ BH-HM and
CR?> = RH? + CH -HN.

Since AP = BQ = CR and ABLM, BCMN
are cyclic, therefore

AH -HL =BH -HM =CH -HN,
sothat PH = QH = RH, hence H is the circumcenter of A PQOR.
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Example 5. (CMC/2009) In AABC, the points D, E are on AB, AC respec-
tively such that DE || BC. The inscribed circle of AADE touches DE at M, the
escribed circle on side BC of AABC touches BC at N. BE and CD intersect
at P. Prove that M, N, P are collinear.

Solution Suppose that BE and M N intersect at P’. Since DE || BC,
BP = BC BP' = ﬂ it suffices to show that
PE_DE™PE EM"®

BN _BCorBN_EM
EM DE BC DE’

Let O;, O; be centers of the inscribed circle and escribed
circle respectively, and F, G, H, I be the related tangent
points, as shown in the right diagram. Then

EM = J(AE + DE —AD),
AH AB + BH = AB + BN
= Al = 1(AB + BC + AC),

sothat BN = AH — AB = %(AC + BC — AB). Since AADE ~ AABC, so
it is possible to let
AB BC AC

AD ~DE —AE ¥

Then
BN _ 3(AC +BC —AB) _ k(AE + DE — AD)
BC BC - 2k - DE
_ AE+DE-AD _ EM
- 2DE ~ DE’

Thus, the conclusion is proven.

Example 6. (CMC/2010) The inscribed circle of AABC has center / and touches
sides AC, AB at points E, F respectively. Let M be a point on line segment EF.
Prove that the areas of AMAB and AMAC are equal if and only if M1 L BC.

Solution Introduce MP 1 AC at P and MQ L AB at Q. Suppose that
OI touches BC at D,then ID L BC,IF 1 AB and IE 1 AC.
AF = AE implies that ZAFM = ZAEM , hence AQFM ~ APEM, so



Lecture Notes on Mathematical Olympiad 113

[MAB] MQ-AB MF AB
[MAC]  MP-AC ~ ME AC’
so [MAB] = [MAC] if and only if

AB ME

AC ~ MF’
Below is to prove that (15.4) holds if and only if
MI 1 BC.

(15.4)

When M1 1 BC, then M is on the line ID. BDIF and CDIE both are
cyclic implies that

LMIF = /B, LMIE = £C.

Then the applications of sine rule to AMIF and AMIE give

MF FI  IE ME

sinZMIF ~— sinZIMF ~ sinZEMI =~ sinZMIE’
ME sinAC _ AB
MF ~ sinZB _ AC

AB ME
C ly, when — = ——,
onversely, when —~ =
M'E  AB ME M'E
M’ then above proof indicates that —— MF = A o) ME-MF which
implies that M’ = M. Thus, M is on theline ID, i.e., IM 1 BC.

Example 7. (APMO0/2007) Let ABC be an acute angled triangle with ZBAC =
60° and AB > AC. Let I be the incenter, and H the orthocenter of the triangle
ABC. Prove that

namely —— due to sine rule again.

suppose that the line /D intersects EF at

24AHI =3/ZABC.

Solution Let D be the intersection point of the lines AH and BC. Let K be
the intersection point of the circumcircle O of

the triangle ABC and the line AH. Let the line
through / perpendicular to BC meet BC and the
minor arc BC of the circumcircle O at E and N,
respectively. We have

/BIC = 180°—(ZIBC + ZICB) H
180° — 1(LABC + LACB)

90° + £ ZBAC = 120°,
ZBNC = 180°—ZBAC =120° = /BIC. 5

=
oy
O
a

>
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Since IN 1L BC, wehave IE = EN (otherwise,say [E < EN, then ZIBC <
/NBC and ZICB < ZNCBbut ZIBC + ZICB = ZNBC + ZNCB = 60°,
a contradiction).

Now, since H is the orthocenter of the triangle ABC, HD = DK. Also
because ED 1 IN and ED L HK, we conclude that IHKN is an isosceles
trapezoid with /[H = NK.

Hence

ZAHI =180° — ZIHK = 180° — ZAKN = ZABN.

Since JE = EN and BE L IN, the triangles IBE and NBE are congruent.
Therefore

/NBE = /IBE = ZIBC = ZIBA = %AABC

and thus 3
/AHI = ZABN = EAABC.

Example 8. (TURKEY/2008) Given an acute triangle ABC, O is the circumcen-
ter and H is the orthocenter. Let A, B, C1 be the midpoints of the sides BC, CA
and AB respectively. Rays HA;, HBy, HC; cut the circumcircle of AABC at
Ayg, Bo and Co respectively. Prove that O, H and Hy are collinear if Hj is the
orthocenter of AAgByCo.

Solution Connect HB, HC, AgB, AoC, Ao A. The orthocenter of AABC
is H implies that

/BHC = 180°—(90° — ZB) — (90° — ZC) /
= /B+/C =180°— LA = LBAoC. G

Since HAq passes through the midpoint A; of BC, so
the quadrilateral BH CAy is a parallelogram, hence

ZLACAo = 90°.

Therefore AAy is a diameter of the circumcircle circle
©O0. Similarly, CCy, BBy are also diameters of ©O.

Thus, The triangles ABC and AgBoCp are symmetric with respect to 0,
hence H and Hy are symmetric in O, ie., O is the midpoint of line segment
HH,. The conclusion is proven.
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Testing Questions (A)

Let O, H be the circumcenter and orthocenter of an acute triangle ABC re-
spectively. Prove that the maximal value of [AOH],[BOH],[COH] (the
notation [X'Y Z] denotes area of AXY Z) is equal to sum of the other two.

(CMC/2008) The circle taking side BC of AABC as the diameter intersects
the lines AB, AC at points E, F respectively. The tangent lines at E, F
intersect at P. The line AP intersects the line BF at a point D. Prove that
D, C, E are collinear.

(AUSTRIA/2009) Let D, E, F be the midpoints of the sides BC, CA, AB of
AABC, H,, Hp, H, be the perpendicular feet of the three sides of AABC
respectively, and P, Q, R be the the midpoints of sides Hy H,, H. H,, H, Hp,
of AH, Hp H.. Prove that the lines PD, QF, RF are concurrent.

(IRAN/TST/2009) In triangle ABC, D, E and F are the points of tangency
of incircle with the center of I to BC,CA and AB respectively. Let M
be the feet of perpendicular from D to EF and P is on DM such that
DP = MP.If H is the orthocenter of BIC, prove that PH bisects EF .

(BULGARIA/TST/2009) The three escribed circles of A A4 BC touch the line
segments AB, BC, CA at the points M, N, P respectively. / and O are
the incenter and circumcenter of AABC respectively. Prove that if the
quadrilateral AM NP is cyclic, then
(i) M, P, I are collinear;

(i) 1, O, N are collinear.
(CMC/2008) It is known that the circumradius R of the acute triangle ABC

is 1, ZBAC = 60°, the orthocenter and circumcenter of AABC are H and
O respectively. Line OH intersects the extension of BC at the point P.

A
(i) Find area of the concave quadrilat-
eral ABHC;
(i1) Find the value of PO - OH. N
B C P

(GREECE/TST/2009) The centroid and circumcenter of AABC are denoted
by G and O respectively. If the perpendicular bisectors of GA, GB, GC
intersect pairwise at the points Ay, B;, C; respectively, prove that O is the
centroid of A4, B,C;.
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Testing Questions (B)

1. (IMO/2009) Let ABC be a triangle with circumcenter O. The points P and
Q are interior points of the sides CA and AB, respectively. The circles k
passes through the midpoints of the line segments BP, CQ and PQ. Prove
that if the line PQ is tangent to circle k then OP = OQ.

2. (CWMO/2009) D is an interior point of the side BC of an acute triangle
ABC, the circle taking BD as its diameter intersects the lines AB, AD
at X, P respectively, where P is neither B nor D. The circle taking CD
as its diameter intersect the lines AC, AD at Y (different from C) and Q
(different from D) respectively. From A introduce AM L PX at M and
AN L QY at N.

Prove that AAMN ~ AABC if and only if the line AD passes through
the circumcenter of AABC.

3. (RUSMO/2010) The lines tangent to circle w at points A and B intersect at

point O. The point / is the center of w. On the minor arc AB, a point C is
chosen not on the midpoint of the arc. Lines AC and OB intersect at point
D. Lines BC and OA intersect at point E. Prove that the circumcenters of
triangles ACE, BCD, and OCI are collinear.

4. (BELARUS/2009) Given that the diagonals AC and BD of a convex quadri-
lateral ABCD intersect at 7. the orthocenter of AABT cincides with the
circumcenter of ACDT . Prove that

@) the convex quadrilateral ABCD is cyclic;
(ii) the circumcenter of ACDT is on the circumcircle of the quadrilat-
eral ABCD.

5. (CMO/TST/2008) Given that ABC is a triangle, and a line / cuts the lines
BC,CA,AB at D, E, F respectively. 01, Oz, O3 are the circumcenters
of AAEF, ABFD, ACDE respectively. Prove that the orthocenter H of
AO10503 is on the line [.
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Solutions to Testing Questions

Solutions to Testing Questions 1

Testing Questions (1-A)

1. The application of long divisions changes the given equation to

t24 X2 to4 22
x —_— =X e —
x24+2x-3 2x2 4+ x + 1

SO

(=[x +x+1)—(x24+2x-3)] =0, e (x-2)(x2 x| 4) 0.

2

Since x* —x + 4 > 0 for all real x, x = 2 is the unique real root,

2. From the given equation,

1 1 1 |
1_x+2+1_x+7=l-x+3+l_m'
1 11 1
x+6 x+7 x+2 x+3
x+2)x+3)=x+6)(x+17),

x2 +5x +6 =x2+ 13x + 42,

x=—§.

3. The value of x must be such that all the denominators in given equation are not
1 1 1

x+k)x+k+1) x+k x+k+1

zZero, fork =-1,0,1,--.,9,

119
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the equation becomes
1 1 11
x—1 x+10 12’
12[(x + 10) — (x — 1)] = 11(x — I)(x + 10),
x24+9x—-22=0,

(x + 11)(x —2) = 0,

therefore x; = 2, xp = —11.
4. The substitution y = x2 — 8 gives
S SRS S
y+1lx  y+2x y—13x
(v +2x)(y = 13x) + (y + 11x)(y — 13x) + (v + 11x)(y + 2x) =0,
3y2 — 147x2 = 0,
y = x7x.

)

When y = —7x, then
24+ T7x—8=0=(x+8)(x—-1)=0, xy =-8, x2=1.

When y = 7x, then
2-Tx-8=0=>(x—-8)(x+1)=0, x3=8, x4=-1.

Thus, x = £1 or +£8.

5. By completing square,

X X 2+2 X _5
x+1 x+1 4
2

x2 \? x
4 +8- —5=0.
x+1 x+1

2

x
Lety = +1,then4y2+8y—5=O,SO(2y—1)(2y+5)=0,i.e.
1 5
= —or—-.
y=2%72
L, 2 1 )0 1=0= Q2x+DEx—-1)=0
— = — X — X — = X —_ =
Y= 7 xx1 2 *
1
=>X1————§,XZ—1
5 x? 2 .
y=-== = -2 = 2x* + 5x + 5 = 0 = no real solution.
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1
Thus, x; = ——=,x, = 1.
1 5 X2

6. From both sides of the given equation minus one, it is obtained that
8x _ 8x
3x2—4x—1 x2—4x+1
8x[Bx2—4x—-1)—(x2—4x+1)] =0,

x(x2-1)=0,
therefore x;1 =0, x; =1, x3=—1.

7. Itisclear that x = y = z = 0 is a solution, and x = y = z = 0 if one of
X, Y,z 18 zero.

When xyz # 0, by taking reciprocals to both sides of the first equation, it

1)’ 2
follows that I + 1 = —. Similarly,
x

3y
12 2 1?2 2
(3y) + 3z (32) + 3x
1 1 1 s >
Letu = —v=—,w=—,thenu? —2v+1=0,v2 —2w+1=
3x 3y 3z

0, w? —2u + 1 = 0. By adding them up, it is obtained that
u-1D>+@w-1)2+w-1)2=0,

1
sou:v:w:l,hencex:y:z:;.Thus,x:y:z:Oor
1 :

x=y=z=§_

8. Let x1,x2,...,Xx100 be a positive solution. Since x + y = 2,/xy for any
x,y > 0 and the equality holds if and only if x = y if x, y > 0,

1
i+ — 22,2
X2 X2
1 X
X+ —2>2 /2,
X3 X3

’
X100 X100

1 X100
X100+ — =2 [—.
X1 X1

X99 +
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Multiplying all these inequalities, it is obtained that

1 | 1
450 = (x1 + —) (x2 + —) (xloo + —) > 2100 — 4>°,
X2 X3 X1

therefore all the inequalities are equalities, so
1 1 1
X1 = —, X2 = —,, X100 = —-
X2 X3 X1

By substituting each of them into the given equations, we have

9. Itis clear that the given equation has no solution when a = b.

x
When a # b, by letting y = Z : , the equation becomes
X

L1

y y_2’
2y%2 -5y +2=0,
2y-D(y-2)=0,

1
therefore y; = =, y2 = 2.

2
Then
1
y=Zi;c=§=>2a+2x=b+x=>x=b—2a.
y=a+x=2=>a+x=2b+2x=>x=a—2b.
b+x

Thus, x = a — 2b or b — 2a when a # b, and no solution when a = b.
10. From both sides of the given equation minus 2, then

a-x a-x _ 2a-—x)
x+b x+c¢ x+b+c’
@=x)[2x+b+c)x+b+c)—2(x+b)(x+0c)] =0,

(@a—x)[B+c)x—®*+cH)] =0,

b? + c?
b+c¢ '

therefore x; = a, x; = —
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11.  From the given equation,
x2 4 (x +1)2 =4x +aq,
2x2-2x+1-a=0.
1
When A =0, then4 — 8(1 —a) = 0,ie.qa = 7

When A > 0 but x = 0 is one solution (which is not acceptable so that
there is only one real root), then a = 1.

When A > 0 but x = —1 is one solution (which is not acceptable so that
there is only one real root), then a = 5.

1
Thusa = 1,5 or 7

Testing Questions (1-B)

2 2 2

— 1 2 — 1
x + + X<+ -9 ty:x X +

x242 x2—x+1 x242

1
then y + — = 2 which implies (y —1)? = 1,50 y = 1. Thus, x2—x + | =
y

. . X
1. The given equation <

L}

x2 + 2 gives the solution x = —1.

2. By long-division, the given equation is converted to the form

x+4 2x +5

(x+2)+ =(x+2)+

x24+5x+13 2x2 4+ 7x +20°
After canceling x + 2 and taking reciprocals to both sides, it follows that
9 15
1 — = 1 .
(x + )+x+4 (xr + )+2x+5

From

= the solution x = 5 is obtained at once.
x+4 2x+5

1

111
3. Ifa,b,c,d satisfy the required conditions, then so do —, AP 7 Therefore
a c
1 + 1 N 1 + 1
1 1 1 i — 5
1—2 1—5 11— -2
C idering that ! + ! + ! + 1 d that +
onsidering tha = s an
e e e T s Pt 1= = 1=

i = 1 provided x # 0 and x # 1, we have 25 = 4,50 5 = 2.

X
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4. 1It’s clear that x,y > 0 and y + 3x # O for any real solution (x, y). By
adding up the two equations and subtracting the first equation from the sec-
ond equation respectively, the following system is obtained

1
RIS = 1, (15.5)

= 12 . (15.6)

+ y+3x

<l tl-
P

12 q
y +3x’

1
By (15.5) x (15.6), then Z__=
X

y? +6xy—27x =0,
(y—=3x)(y +9x) =0, ie y=3xory=—9.

Since x, y > 0, so y = —9x is not acceptable. By substituting y = 3x into
(15.5),
1 3
b= =12x=(1+V3)?=4+2V3, y=12+6V3.
Vx o 3x ( g

5. Since x, y,z > 0, the AM-GM inequality gives

x+1 1_x+ x+1 1>x>0
2x T2 2 2x )

1 1
and, similarly y + — — 1 > 24 >0z4+—-1> z > 0. Therefore
’ 2y 2 2

(l_";v.)(|_%)<l—i;i)>0. Z

Among the three factors on the left hand side of the last 1nequa11ty if two are
z

negative, say 1 — _xz_y <0Oand 1 - y_ < 0, then il > 1 — > 1 implies

z X

y? > 1, which contradicts 0 < y < 1 Thus,

- o0 1-250 1-E s

z x y

1 1
y+Z=—+—>2,so
yz y z

On the other hand, since 0 < x, y,z < 1, so

() 0-(5)
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where the equality holds if and only if x = % and y = z. Similarly,
1 2 yz xy
(egy-1) 2(-%)(-2)
74 1 ] 2 > (1 zx (1 J’Z)
2z - y x/

Multiplying the three inequalities gives that the left hand side of given equa-
tion is always not less than the right hand side, and the equality holds if and
1

and

onlyifx=y=z=—.

2
1 ky—1
6. The equation x + — = k gives x = 4 ,l.e.
y y
1 y
- = . 15.7
x  ky-—1 ( )
. 1 .1 .
The equation y + — =k gives — =k — y, i.e.
z z
! (15.8)
z=—" 5.
k—y
1
By substituting (15.7) and (15.8) into z + — = k, then
x
1
— 4+ (15.9)

=k
k—y ky-1
From
(159) & ky—-1+4+yk—y)=ktk—y)ky-1)
k3y —k?—k2y2 +1—ky +y2=0
ky(k? —1) — (k= 1) — »2(k> -~ 1) =0
(k> = 1)(ky —1—y2) =0.

te e

1
k*—1=0givesk = +1,and ky —1—y2 = Ogives k = y+ —. However,
y
., . . .
k = y + — implies that x = y = z which contradicts the assumption.
y

1
kzi]ispossible:x=2,y:—l,z=§ =>k=Landx =-2,y =

1
2= —2 > k= 1.
=73
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7. x,y,z>3givesy+z—2>0,z+x—4>0,x+y—6>0. The
Cauchy-Schwartz inequality then gives

@+2? 0+ @+67

y+z-2 z+4+x—-4 x+y—6

[y+z—2+z+x—4+x+y—6]-[

>(x+y+z+12)?

(x +2)? (y + 4)? (z + 6)? >(x+y+z+12)2

y+z—2 z4+x—-4 x+y—6_ 2x+y+z—6)
Therefore the given equality gives the inequality

12)2
x+y+z+127 4, (15.10)
x+y+z—6

2 4 6
and the equality holds if and only if ~ i + y+ s

z—2=z+x—4_x+y—6

= A, namely,
Ay +2)—x =201 +1),
Az +x)—y =41 +1), (15.11)
Ax +y)—z=6(+1).

2

Let w = x + y + z + 12, then (15.10) becomes 3 < 72. Since

2

ww 18 > 72 & w?—T2w+ 362> 0 & (w—36)>>0,

2

g = 72,i.e. w = 36 which means x + y + z = 24. (15.11) gives

RAr—-Dx+y+2)=124+ 1),
by solving 2(2A — 1) = A + 1 we obtain A = 1. (15.11) then becomes

y+z—x=4,
z+x—y=38§,
x+y—z=12.

By solving the system, it is found that (x, y,z) = (10,8, 6) is the unique
solution.

8. @ a=0=x=-y,502x? =2=x==x1= (x,y) =@, Dor

-11.
(b) Whena #0,letx +y =t,xy =s. Then

2 _2s=a%*+2 and - =a.
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Therefore

a’s*—2s— @ +2)=0= (@5 —a?-2)(s+1) =0

242
=5 =-1 ors=a _: ,
a
2 2 2 2
so that (s,¢) = (—1,—a) or (a _; ’a + )
a a

) If(s,t) = (-1, a) then x and y are roots of the equation z2 + az —
1 =0. Since A = a? + 4 > 0, it has exactly two distinct roots zy, z5, so
(21, z2) and (z3, z1) are two roots of the original system.

’

242 a%2+42
(ii)) Thus, the system has no other solutions for (s,0) = ( 4 ;i_ @+ ),
a a

namely, the equation

242 242
22_a+z+a+

=0
a a?

has no real solution, so its discriminant A < 0, i.e., 2 < 2. Therefore
a e (—v/2,0)uU (0, +/2). Since a = 0 also let the system have exact two
solutions, so the range of a is (—+/2, v/2).

9. Leta = f,b= %,c: i,thenabc: 1 and
z

1
a+1=f+1=—-3=(3+1)-3=c(c+1)=c2+c.
z zZx 'y y y

Similarly, b + 1 = a? + a and c + 1 = b% + b. Adding up these three
equalities, we obtain a? + b2 + ¢2 = 3. Therefore

3=a2+b2+c223(abc)%=3=>a2=b2=c2=1

’

hence among a, b, ¢ two are —1 and one is 1, or three are all 1.

(i) Whena =b=—1,c =1, then y = z = —X, no solution.
Similarly, no solutionifa = c=—-1,b=1lorb=c=—1,a = 1.

(i) Whena = b = c =1, then x = y = z, so that we have solutions

9= (h ) = ()
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Thus, the system has real solutions
wra=(5 57 o (%)
b ) = T =y T = T = or = R R d

72 f 72 NN

Solutions to Testing Questions 2

Testing Questions  (2-A)

1. Since 231 =3 x 7 x 11, letting y = x — 2 gives

O +3)+7D +11) =231,
y3 +21y%2 + 131y =0,
y(y? +21y +131) =0,
.y =0 (¥? + 21y + 131 = 0 has no real root) = x = 2.

2. Lety =x+ 5, then

=30 -D + Dy +3) =48,
(2 =9(? —1) =48,
y* —10y2 -39 =0,
(2 +3)(y2—13) =0, .. y2 =13.

Thus x; = =/ 13 —=5,x, = V13 —5.
3. Lety = x—4,then (y + 3)* + (y —3)* = 272. Since
(y +3)* = y* + 123 + 54y% + 108y + 81 and
(y =3)*=y*- 12y3 + 54y% — 108y + 81,

y* +54y +81—136=0,
(y +55)(y -1)=0,

2=1, ie. y =%l
Thus, x;1 = 3,x3 = 5.
4. Since x # 0, so

224+ 1)+ 7(x3 + x) + 6x2 =0,

1 1
2(x2+p)+7(x+;)+6=().
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1
Let y = x + —, then
pe
2y2 +7y +6=0,
3
2y+3)y+2)=0, ..y =-zory = 2.
Thus,

3 1 3
y=—§ =X+ — :—E :>2x2+3x+2=0,norealsolution.
X

1
y==2=2x+-=-2=x2+2+1=0=x; =x, = —1.
X

5. By using the substitution y = x2, the quadratic equation y2 — (k — Dy+Q2-
k) = 0is obtained, and it has two positive different real roots, therefore its
discriminant is positive.

(k—1*>—4(2—k) >0, and (k_l)_\/(k;1)2—4(2—k) N

k? +2k —7 > Ogivesthatk < —1 —2+/2ork > —1 + 2/2.
k-1 - J&k-12=4@=%)

2
ie. 1 <k < 2, therefore the range of k is

0.

> Oimpliesthatk—1 > Oand2 & -0,

—142V2 <k <2.

6. Since
o322 +50—17=(@> -3 +3a—1)+2(a—1)— 14
and
—(B* =32 +58+11) = (1-38+3B8%— B3 +2(1 - ) — 14,

each of @ — 1 and 1 — B is the real root of equation x3 + 2x — 14 = 0. Since
the cubic equation has only one real root, so

a—1=1-8, ".a+p=2.

7. Considering that the variables are cyclic in the problem, without loss of gen-
erality we may assume that z > x, y.

If x > y, then 523 = y5 + 4x < x® + 4z = 5y3, a contradiction.
Ifx <y then5z% = y° +4x <z° + 4y =5x3,s0x =y = z.

Thus, x° —5x3 +4x = x(x2—1)(x2—4) = 0,ie, x =0, £l orx = +2,
there are 5 solutions for (x, y, z) in total.
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2+y: o= 7, (15.12)
xy(x+y) = -=2. (15.13)

By (15.12) + 3 x (15.13), we obtain

(x—l—y)3 =1.

Therefore x + y = 1 and xy = —2. So (x, y) are roots of the equation
t2—-1-2=0.

Thus, (x,y) = (2,—1) or (—1,2).

9. Since x3+ y3 = (x + y)(x? —xy + y?), all pairs of integers (n, —n),n € Z,
are solutions.

Suppose that x + y # 0. Then the equation becomes
x2—xy+y*=x+y,
ie.
X2—(+Dx+y*—y=0.
Treated as a quadratic equation in x, we calculate the discriminant
A=y>+2y+1—-4y? +4y =-3y* + 6y + 1.
Solving for A > 0 yields
3—32«/5 <y < 3+32«/§.

Thus the possible values for y are 0, 1, and 2, which lead to the solutions
(1,0),(0,1),(1,2),(2,1),and (2,2).

Therefore, the integer solutions of the equation are

(x,y) = (1,0),(0,1),(1,2),(2,1), (2,2) and (n, —n), for all n € Z.
10. Multiplying the n given equations, then
n
[[x?3a—2x) = (15.14)

i=1

Sincea > O0and x; > 0,i = 1,2,...,n, by the AM-GM inequality,

x,~+x,~+3a—2x,~)3 _ 3
3 =

fori =1,2,...,n,s0x; = 3a —2xj,ie,x; =a,i =1,2,...,n.

xi2(3a —2x;) < (

Thus, the unique solution of the given equation is (a,a, ..., a).
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11. The second equation minus the first equation gives
=) ==y +(x -y =0,

so(x —y)(x2+xy +y2—x—y+1) =0. Since
1
X Axy+ytox—y+l= {6+ + - D+ -1>0,

itis obtained that x = y. Hence the given equation becomes x + x2 = x3,

and its solution are 0, %(l —+/5) and %(1 + +/5). Thus, the solutions of the
original system are

(0,0), (%(1 —/5), %(1 - ﬁ)) , (%(1 ++/5), %(1 + «/5)) )

Testing Questions (2-B)

1. It is obvious that (0,0, 0) is a solution, and it is easy to show that if one of
X, y, z is zero then the other two are zeros also.

Below we assume that xyz # 0.

X z
Leta = —,b = —. Then the system becomes
y y

a+1+b=3ay, a*>+1+b>=3ab, y@ +1+5b% =3b.

l+a+b
e — T 7
3a

Us to replace y in the system gives

1+a?+b?=3ab and (1 +a+b)(1 +a> + b3 = ab.
Letu =a + b and v = ab, then

1+u?>—2v=3v and (1 + w1 + u> — 3uv) = .

. 2 .
From the first equation we have v = ¥ 5"' 1 , so from the second equation

ut+ud—6ul+u—-2=0,
-2 +3u%+1)=0.

u = 2 implies v = 1, so that a = b = 1, which means x = y=z=1.
Thus, we obtain a solution (1, 1, 1).
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Since f(u) = u3 + 3u? + 1 has a local maximum value 5 at u = —2
and a local minimum value 1 at 4 = 0, so f(u) = 0 has unique real root
uo at (—oo, —2). By Viete’s Theorem, a, b are the roots of the equation

2
1 .
12 —upt + % = 0. Since

the equation has two distinct real solutions for (a, b). By exchanging a and
b, each pair {a, b} gives two solutions for (x, y, z), so there are 6 solutions
for (x, y, z) in total.

2. Substituting y = kx + d into x> + y3 = 2, then
(k3 + 1)x3 + 3k%dx* + 3kd*x +d*> -2 = 0.

Since every cubic equation must have at least one real root, by substituting
the x into above linear equation, we can get a corresponding y. Therefore
k3 + 1 = 0 so that the system has no real root. Thus, the cubic equation
becomes

3dx? —3d*x +d>—-2=0.

When d = 0, then the equation becomes —2 = 0, i.e. no solution.

When d # 0, the quadratic equation has no real roots if and only if its
discriminant is negative, i.e. 944 — 12d(d> — 2) < 0. Since

9d* —12d(d®>—2) <0 & 9d* —12d* +24d <0 & 24d —3d* <0
©3d2*-d?}) <06 3d2-d)4+2d +d?) <0

S dR2-d)[d+1)?+31<0&d<0ord > 2.

Thus, the conditionson k and d are k = —1,d <0Oord > 2.
3. (2.3) — (2.4) yields

3=+ x2y—xy?+x2—y2 =0,
(= +xy+y*+xy+x+y) =0,
x—y)x+y)x+y+1)=0.

When x = y, then Eq.(2.3) gives

PH1-x=x2=0=2x*=1= (x,y) =1, or (—1,-1).
When x + y = 0, then Eq.(2.3) gives

BH1-x3—x2=0=2x2=1=(x,y) =(1,=1)or(=1,1).
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When x + y 4+ 1 = 0, then Eq.(2.3) gives

BHl-x(x+1)2-(x+1)2=0=2x3+1-(x+1)3=0
=23x(x+1)=0=>x=0o0r —1= (x,y) = (0,-1) or (-1, 0).

In summary, (x,y) = (1, 1), (-1,-1), (1, -1), (-1, 1), (0, —1), (-1, 0).
Consider the given equation as a quadratic equation in a:
a? +3xa+2x>—x3—x*=0.
The discriminant of this equation is

9x? — 8x2 4+ 4x3 + 4x* = (x + 2x?)2.

Thus

-3 2x?2

a= x+(;+x)=—x+x2 or a=-2x—x2.
The first choice @ = —x + x? yields the quadratic equation x2 —x —a = 0,
. 1+ +/1+4a
whose solutions are x = —
The second choice @ = —2x — x? yields the quadratic equation x2 + 2x +
a = 0, whose solutions are
x=—=1x+1-a.

The inequalities

1-4J1+4 1+v1+4
—1—Al—-a<-14++1—-a< 2+ a< + 2+ a

show that the four solutions are distinct. Indeed,

1—JT¥4
—1+«/1—a<%©2\/1—a<3—\/1+4a

3
@6\/1+4a<6+8a<:>3a<4a2©2<a.

5. Multiplying the first equation by y, the second by x, and adding up yields

Bx—y)y —(x +3y)x
2 = 3y,
xy + 212 y

3y+1

or2xy — 1 = 3y. It follows that y # O and x =
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Substituting this into the second equation of the given system gives
3y +1\> 3y +1
—{———)-3y=0,
Y [( 2y ) T 2y Y

4y* —3y? —1=0.

or

It follows that y2 = 1 and that the solutions to the system are (2, 1) and

a,-1).

1 s—1 -1 1 1
6. LetS=__—-+2""_4 and R

F+1 0 s+1 141 = r1 T sr1 Trra
S =3—2R.

, then

r, s, t are roots of the P(x) implies that 7 + 1, s+ 1, ¢ + 1 are roots of Q(x)

defined by
0(x) = P(x — 1) = x> —3x? — 2004x + 4008,

by Viete’s Theorem,

R GEDEADFCHDEHD+ O+ DG+ =204 1
- r+DE+DE+1) T —4008 2’
Thus,S=3—-2-l=2.
2
7. Let
x+y+z=2, (15.15)
E+o+2)+0+2)z+x)+C+x)x+y)=1, (15.16)
x2(y +2) + y?(z +x) + 2%(x + y) = —6. (15.17)
(15.16) implies that x2 + y% + z2 + 3xy + 3yz + 3zx = 1, ie.
x+y+22+xy+yz+zx=1.
Combining with (15.15), it follows that
xy + yz 4+zx =-=3. (15.18)

Substituting (15.15), (15.18) into (15.17), then

x(xy +xz) +y(yz + xy) + z(xz + yz) = -6
=2xB+y2)+yB+xz)+zB+xy)=6
=>x+y+z+xyz=2,



Lecture Notes On Mathematical Olympiad 135

hence
xyz = 0. (15.19)

By Viete’s theorem, (15.15), (15.18) and (15.19) implies that x, y, z are the
three roots of the equation ¢ — 2¢2 — 3¢ = 0, which has three roots 0, —1
and 3.

Thus, the roots (x, y, z) of the original equation are

©,3,-1), (0,-1,3), 3,0,-1), 3,-1,0), (-1,0,3), (-1,3,0).

8. From the given equations, a,b,c,d,t > 0 implies 0 < a,b,c,d < 1. If
two of them are not equal, then there must be consecutive two not equal.
Without loss of generality, we may assume a # b.

Ifa < b, thena(l —b?) = b(1 —c?) = b < c, and similarly, b < ¢ =
c<d=d<a,soa <b<c<d < a,acontradiction.

A contradiction is obtainable if a > b, thereforea = b = ¢ = d. Thus it
suffices to find solutions of

a(l—a?®) =1. (15.20)

a > 1 implies a(1 —a?) < 0 and a = 0,1 implies a(l1 — a?) = 0, so
0<a<l Let M = Omaxl{a(l — a?)}. Then (15.20) has no solution if
<a<

t > M has one solutionif # = M; and two solutionsif 0 <t < M.

The value of M can be obtained as follows: Suppose that the equation
a(l —a*) = M (ie. a® —a + M = 0) has real roots {o, a, B}, where
o > 0,8 <0. Then 2a + B = 0,22 + 2af = —1. By solving them it is
obtained that @ = 1/+/3, B = —2/+/3, hence

w092

24/3
Thus, the original equation has no solution if # > —§{; has one solution if

23 23

t = T; and two solutions if 0 <t < —.

9. 'We consider the following cases.

1. xy = 0. Then itis clear that x = y = 0 and (x, y) = (0, 0) is a solution.

2. xy < 0. By the symmetry, we can assume that x > 0 > y. Then

(1+x)(1+x?)(1+x*) > 1and 1+ y7 < 1. There are no solutions in this
case.
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3. x,y > 0and x # y. By the symmetry, we can assume that x > y > 0.
Then
1+x)A+x)A+xH>14+x">1+)7,

showing that there are no solutions in this case.

4.x,y <0and x # y. By the symmetry, we can assume that x < y < 0.
Multiplying by 1 —x and 1—y the first and the second equation, respectively,
the system now reads

1-x4=(1+y)A-x)=1-x+y" —xy,
1-y'=0+x)A-y)=1-y+x"=x"y.

Subtracting the first equation from the second yields
Xyt = (=) + 7 =) =2y (x® - y). (15.21)

Sincex <y <0,x3—y%>0,x—y <0,x”—y7 <0,—xy <0, and
x% — y% > 0. Therefore, the left-hand side of (15.21) is positive while the
right-hand side of (15.21) is negative.

Thus there are no solutions in this case.

5.x = y. Then solving

l—x8=1—x+y7—)cy7=1—x-i—x7—x8

leads to x = 0, 1, —1, which implies that (x, y) = (0, 0) or (=1, —1).
Thus, (x, y) = (0,0) and (-1, —1) are the only solutions to the system.
First of all, we show an inequality:

2xK > [k — Dx — (k —2)](x2 +1)  forallk >3,x >0. (15.22)
Proof: By AM-GM inequality,

K bxk bx x4 x = (=1 TVa3ED = (k- 1,
k-3

$0 2x¥ > (k — 1)x3 — (k — 3)x. Since
(k—=Dx3—(k=3)x—[(k—D)x—(k=2)](x® +1) = (k—2)(x*—2x+1) > 0,

(15.22) is proven. The proof indicates that the equality holds if and only if
x = 1(." x = 0). Applying (15.22) to each of the three given equations,
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3z + 1) —2(x2+ 1) = By —2)(y* + 1),

22+ 1) -2+ 1) > 2x - D2+ 1),
dx(z2 +1)=30%+1) > 4z = 3)(z%2 + 1),

namely

®

(i)

(iii)

200 —x)x2+ D)+ (x —2)(x + 2) >0, (15.23)
3=+ D) +2(y —x)(y +x) >0, (15.24)
4x—2)Z2+ 1)+ 3z -y)(z+y) =0. (15.25)

When x > max{y, z}, (15.24) implies y < z, so
2(y = x)(x* + 1) + (x — 2)(x + 2)
< z=-0)RE*+1) = (x + 2)]
<(z-x)2x%?-2x+2) <0,
hence 2(y — x)(x2 + 1) + (x — z)(x + z) = 0. Then
x—yzx—z,2(x2+1)>2x2x+z=>x=y,x=z,

sox =y =z.
When y > max{y, z}, (15.25) implies z < x, so

3z—»0*+ D +200 — ) +x)
S(x=y»BOE*+1) -2y —2x]
<(x—-y)By*—4y+3) =<0,
hence 3(z — y)(y? + 1) + 2(y — x)(y + x) = 0. Then
y—z>y—x,30%+1)>20%*+1) >4y >2(y +x)

impliesthatx = yandy =z,sox =y = z.
When z > max{x, y}, (15.23) implies x < y, so

dx—2)Z2+ D +3Ez =)z +y)
<(y—z)4z2—-6z4+4)<0,

hence 4(x — z)(z2 + 1) + 3(z — y)(z + y) = 0. Then
z—x>2z-y,42*+1) >3 +1)=3Q22) 23(z +y)

impliesthatz = x,z = y,sox =y = z.

Thus, x = y = z, and, by solving 2x3 = 2x(x?> + 1) — (x? + 1) ie.
(x — 1)? = 0, we have the unique solutionx = y =z = 1.
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Solutions to Testing Questions 3

Testing Questions (3-A)

1. Write the equation in the form +/7x2 + 9x + 13 = 7x — +/7x2 — 5x + 13,

and taking squares to both sides, then

7x% + 9x + 13 = 49x2 + 7x2 — 5x + 13 — 14x+/7x2 = 5x + 13,
2/7x2 —5x + 13 =7x -2,
4(7x% — 5x + 13) = 49x2 — 28x + 4,
21x2 —8x —48=0= (Tx — 12)(3x + 4) = 0,

12 4
X = - (x =-3 is not acceptable since 7x > O) .

2. By completing square, the given equation can be written in the form

x2 + 2x)2Vx +3) + 2vVx + 32— 12 =13,
(x + 24/x + 3)2 =25,
Sox4+24/x4+3=5 or x+2J/x+3=-5.

X +2/x + =5=>x2—14x+13=0=>x1 =1,x3 =13 (N.A)).
x +2/x +3=-5= x% 4+ 6x + 13 = 0, no real solution.

Thus, x = 1 is the unique real solution.

3. 0Oisclearly not a solution, so the given equation can be simplified in the form

x2—2x—4+3vx2-2x =0.

Letw = v/x2 —2x,then w2 +3w—4 =0,s0w = 1. (w = —4 is not
acceptable since w > 0). Thus,

w=1=2Vx2-2x=1=x2-2x—-1=0=x =142

By checking, the two values both satisfy the given equation, so they are the
solutions.

4. Change the given equation to the form

2+ 1—4/x2+14+4)+ (%2 —4—-4/y2-444)
+(zZ2—1-2vz2—-1+1) =0,
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then
Wx2+1-22+ (V3?2 —4-22 + (V2Z—1-1)?2 =0,
0V/XZ+1=2,\/y2—4=2,4/22-1=1,ie,
x=:l:x/§, y=:l:2~/§, z=:l:«/§,

the number of real roots (x, y, z) is 8.

5. By rationalizing the denominator of the left hand side of the equation,
(@+x)+@—-x)+2y/(@+x)a—x) _ a
2x X’

V@a+x)a-x)=0,

o x = *a.

By checking, the two values are both roots.
6. From the given equation,

lx =3+ |x+ 4| =7

(i) When x < —4,then3 — x —4 — x = 7, therefore x = —4.

139

(i) When —4 <x <3,then3—x+x+4=7= 0-x =0, solution

set is the interval —4 < x < 3.

(iii) When3 < x,then x —3 + x +4 = 7,i.e. x = 3, so no solution.

By checking, —4 < x < 3 is the solution set.

1
7. Since x > 2 the left hand side is

Vit Vo T4 yx— Vi T = x+ var T4 20

x+4/2x—1 .
By taking squares to both side, it is obtained that
2x 4+ 2|x— 1| =a.
On the interval x > 1, the equation has solution x = 2+a ifa > 2. On

the interval x < 1, the equationis 0- x +2 = @, soany x on [, 1]isa

solution if a = 2. When a < 2 then no solution for x.
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8. Lety=+/x2+x+7,theny?+y—12=0,50y =3 or —4 (N.A.).
y=3=2/x2+x+7=3=2x>+x-2=0=>x=—2orl.
9. The given equation yields /2x + 1 -3 = 4/x + 7 — +/x + 3,50

2x+14+9—642x +1=2x+ 10 —24/x2 + 10x + 21,
x2 4+ 10x +21 =9(2x + 1),
x2—-8x+12=0, ..x=2or6.

Since /2x +1-3 = /x +7—+/x +3 > Oimpliesthat x > 4,s0x = 6

is the unique solution.

10. The given system gives the conditions x,y > O and y + 3y # 0, and the
system is equivalent to

% + % = 1, (15.26)
_% N % = - f3y, (15.27)
(15.26) x (15.27) gives ; - % = ; i23x
& y2 4+ 6xy —27x2 =0 & y = 3x or y = —9x (not acceptable).
From (15.26), y = 3x = %+% =1=x=4+2J3y =

12 + 6+/3.

11. It is easy to see that x = O is a solution. Since the right hand side is a
decreasing function of x and the left hand side is an increasing function of
X, there is at most one solution.

Thus x = 0 is the only solution to the equation.

Testing Questions (3-B)

1. Lety = Jx+9,thenx+1=y3—8 = (y —2)(y2 + 4y + 4), and the
given equation becomes

y=2=—=/( -2 +4y +4),
-2?=0U-2(*+4y +4),
-2)(0? +3y+6)=0=>y =2.




Lecture Notes On Mathematical Olympiad 141

From +/x 4+ 9 = 2 it is easy to find that x = —1.

S5x—6—-x% i -
2. — > O implies x* —5x 4+ 6 < 0, so the real solution x of the given

equation must satisfy 2 < x < 3.

Below we consider the left hand side of the given equation. Since 2 < x <
31

\/4—x\/4—(x—2)\/l+(x—5)(x—7)
= V4 x/A—G-D6-0=i-xG-x=/E-2F=x-2.

o S5x—6-—x%
Therefore the equation is simplified as x —2 = — i1e. x“—3x+
2 = 0. Then (x — 1)(x — 2) = 0 gives that
x=2
is the unique real solution.
3. Letu=x+yandv =x—y. Then
0<x>-y’=uv<l, x= +U, and y=u—v

2

Adding the two given equations and subtracting the two given equations
yields the new system

u—uuv = (a+b)v1—uv
v+ v/uv = (a — b)/1 —uv.

Multiplying the above two equations yields
uv(l —uv) = (@* - b>(1 — uv),

hence uv = a2 — b2. It follows that

u_(a+b)\/1—a2+b2 an U_(a—b)«/l—a2+b2
1—+/a?—-b? 1+vVa2—p2

which in turn implies that

(x.y) = (a + bva? — b2 b+a«/a2—b2)

VI=aZ+52° J1—a?>+b?

whenever 0 < a? — b? < 1.
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4. Letu = {/x—y, the second equation then becomes u*+13u—42=0,ie.,
(u —2)(u>® + 2u? + 4u + 21) = 0 which has a unique positive root u = 2.
Therefore

x=y+416.

Substituting it into the first equation, then

y2 -5y +3=0,
5+ 413 5-
soy = +T (since < 2 is not acceptable).
37+ V13 5+ /13
Thus, x = —, y = ——.

2 Y 2
5. The question gives the conditions: 1 4+ 2xy > 0,x(1 —2x) > O and y(1 —
2y) > 0. By solving them, it is obtained that

1 1
0<x<-— d 0<y<-.
fx<g an =y=3
1
Below we show that for 0 < x,y < 3
1 1 2
+ = . (15.28)
Vi+2x2  J1+2y2 7 JT+2xy
In fact,
1 2 4
(15.28) & <

+ + <
1+2x2 142y /(A +2x2)(1+2y?) ~ 1+2xy
1 2

<$ a—
(1+2x2+ 1+2y2 1+42xy

2 2
— <
Vax2y2 4 2x2 +2y2 +1  2xy + 1) -
[_ 2x(x —y) 2y(x —y) ]
(1+2x2)(1 +2xy) (1 +2y2)(A +2xy)
<0

2 2
VAx2y2 +£2x2 +2y2 +1  2xy + 1) B
2(x — y)*(1 — 2xy)

© T U+ 20 + 2251 + 2)2)

2 2
— < 0
Vax2y2 +2x2 42y2 41  2xy + 1)
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On the left hand side, the first term is clearly less than or equal to zero, and
for the second term,

2 2 2
< =
VAx2y2 +2x242y2 4+ 17 Jax2yZ raxy+1  2xy +1

implies that it is also less than or equal to zero, so (15.28) is proven, and the
equality holds if and only if x = y.

Thus, the first given equation means x = y, and the second equation be-
comes

Vr( =23 = y( —2y) = g

94 /73
fromwhichx = y = ———.
36
6. Letu = /3x2+x—1,v = +/x2-2x—-3,w = /3x2+3x+5 and
z = 4/x? 4 3, then
Uu+v=w+z and  u?—v?=w?-22

which yields 4 — v = w — z. Therefore ¥ = w. Then

V324 x—1=+/3x2+3x+5=>x—-1=3x4+5=x = -3,

7. Since x? — 4|x| + 5 = (|x| —2)? + 1 > 0, the given equation has the form
x2—4x|+5=|x—4|+1.
G x<0=>x2+5x=0=x=0o0r —5;
() 0<x<4=>x2-3x=0=>x=3;
(ii)) 4 < x = x2 —5x + 8 = 0, no real solution.

Thus, the number of real solutions is 3.
8. Letu = 4x!90 y = »100 then the given equation becomes
@* + D? + 1) = 4uv.
From

@+ D%+ 1) =4uv & [(uv)2—2uv+l]+(u2+v2—2uv)=0
Suw=landu=v=>u=v=1(C."uv>0),

1
it follows that x = £+ ——, y = =1, therefore

2

= (25 () (5) (-351)



144 Solutions to Testing Questions

Solutions to Test questions 4

Testing Questions (4-A)

1. 2300 = 8100 3200 — 9100 46 (A) < (B).
4100 — 2200 2300 56 (C) < (A).
2100 4 3100 5. 3100 3101 o 3200 ¢4 (D)< (B).
350 4 450 = 350 4 2100 56 (E) < (D) < (B). Thus, (B) is the greatest.

1
2. Leta = 152010, Then it suffices to compare the sizes of A = 1:a++ I and
15a + 1 Since
= ———. Sin
152a + 1

a+1 15a+1 _ (a+1)(225a + 1) — (15a 4+ 1)°

A-B = - =
15 +1 152a+1 (15a + 1)(225a + 1)
196a

0,
(5 + D22%Ba + 1)

152010 +1 152011 +1

so A > B,ie., 152910 1 | > 593 4 7'

3. Since

log,[logs(log, a)] = 0 = logs(logga) =1 = logga =3 = a = 64,
log;[log,(log, b)] = 0 = logs(log, ) =1 =log, b =4 = b = 16,
log,[log,(logs ¢)] = 0 = log,(logsc) =1 = logzc =2=c =9,

soa +b+c = 89.

4. Sincex,y,z,w#0anda = 90%,h% = 90, ¢ = 90%, it follows that
ab%c =90xt5t% —90=12.32.5,

since a = 1 implies w = 0,s0a > 1, hencea = 2,b = 3,¢c = 5, the
conclusion is proven.

1 logu 13 — logu 7
5. Since 13 ,

13log11(x2—10x+23) = 7log11 13 & 13log“(x2-10x+23) = 13logn 7

¢>10g11(x2—10x+23)=10g117¢>x2—10x+23=7
&Sx2-10x+16=0& (x—2)(x—8) =04 x =2o0r8.
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\/4+«/ﬁ—\/4—«/ﬁ=%(\/8+2x/1_5——\/8—2«/ﬁ)

— — f —
1

Therefore logz(\/4 + V15— V4 - V15) = log, /6 = 5(1 + log, 3).

7. 2lg(x —2y) =lgx +1gy & lg(x —2y)* = lg(xy) & (x —2y)* = xy, 50

x%2—5xy +4y? =0,

) ()

X
.. —=1 or 4.
y
However, x —2y < 0if x : y = 1, therefore x : y = 4 only, the answer is
(A).
8. Letlogy2 x =u,log,2b =v,thenu+v =1andx = b?*, b = x??, so that
x = b2u — (x2v)2u — x4uv
1

Coduv =1, or uv = —.
4

By the inverse Veite’s Theorem, (u,v) are the real roots of the equation
w2 —w+ % = 0, therefore ¥ = v = 1/2, hence x = b, the answer is (D).

9. Since

log, b + logy a

= log, a + log, b and log, b -log, a = 1,

1 1 2
— = (1 — 2 = —1 2
(logab b logy a) (logy, ab —log, ab)” = (log, a —log, b)

= (log a)* + (log, b)> — 2 = (log, a + log, b)* — 4
= 1229 -4 = 1225.

Besides,a > b > 1 = log,; b < log,,a = > 0, so

loggp b - log,,a

1 1

- = /1225 = 35.
log,p b log,pa
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10. The given equation gives (3* —9)3 + (9 —81)3 + [—(9* +3* —90)]3 = 0,
)

3(3% — 9)(9% — 81)(9* + 3* — 90) = 0.

When 3* —9 = 0, then x = 2; when 9* — 81 = 0, then x = 2 also; when
9% 4+ 3* — 90 = 0, then

B*=93*+100=0
which also implies that x = 2 also. Thus, the sum of real roots is 2.

11. Taking the operation logs to both sides of the equation, then

(logs x)(logs 15) + (logs 45x)(logs x) =0
= logs x(logs 15 + logs 45 + logs x) = 0
= logs x (logs 675+ logs x) = 0 = logs x = 0 or logs 675+1logs x = 0

=x=1o0r x= L
- 675

Testing Questions (4-B)

1. By setting 2* = a and 3* = b, the equation becomes

a®+ b3 7 a’—ab+b> 7

a2b +ab?2 6 < ab 6
& 6a® —13ab + 6b% = 0 < (2a — 3b)(3a — 2b) = 0.

Therefore 2*+! = 3**! or 2*~1 = 3*~1 which implies that x; = —1 and
X2 = 1.

It is easy to check that both x = —1 and x = 1 satisfy the given equation.

fo) = carmc (L) v (L) - |
= <l e (@] () -
ERIGRESICIR]

Since b > l,cc—z > 1,% > 1,d > l,a—s- > 1, all the factors in the last

c
expression are positive and strictly increasing, so f is strictly increasing.

(SRS
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3. Firstof all,

Z[log% k3 +1) —log% k3 —-1)]

k=2
n n n
k3+1 k3+1 k+1DE2—k+1)
=Zlog R = log ]_[ 3 = log I_[ 5
& -1 e TR T e e
n n
k+1 k2 —k+1
= log ( l—[ > )
3 k-1 ik
From
lllk+1_34§ n—1 n n+l _ nn+1)
k=2k—-1 1 23 n-3 n-2 n-1 2
and
S k*-k+1 3 7 13 n*-n+1 3

e k41 T 1317 n2+n+l mP4n+l

since (k —1)2 + (k — 1) + 1 = k2 — k + 1, it is obtained that

" n(n+1) 3
k[v‘:z[log%(k3 +1) —log%(k3 —1)] = logg [ W TaE 1]

=1lo 3 n?+n < lo 3—1
T\ 2 nt1 g3~

4. For x < 0, the function f(x) = 2* + 3* + 6* — x? is increasing, so the
equation f(x) = 0 has the unique solution x = —1.

Assume that there is a solution s > 0. Then 52 = 2° + 35 + 6° > 3, s0
s > +/3, and hence |s| > 1.

Buts > |s| > 1 yields
228 =+ > 14 5] >,
which in turn implies that
6° > 4° = (2°)* > 5%

S0 2% + 3% 4+ 6° > 52, a contradiction. Thus, x = —1 is the only solution.
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5. (4.4)yields
y=— (15.29)

(f) = (—) . (15.30)
y Xy
Then substituting (15.29) into (15.30) gives x3* = x” or x3*™” = 1. When

x = %1, (15.29) gives y = 1. By checking, (—1, 1) and (1, 1) are roots of
the original system.

and (4.3) yields

1 1
When x # —land x # 1,theny = 3x,s0 x3 = 3 orx = 75 by (15.29),
and hence y = NE)

1
Thus, the solutions of the given system are (—1, 1), (1, 1) and (—3—/_5, «3/§)
6. It’sclearthat0 < |log, k| < 8for1 <k < 256. Foreachi € {0,1,2,...,7}
log, k] =i © 20 <k <2t & k=212 +1,...,2'" -1,
so there are 2° of k such that |log, k| = i. Therefore
[log, 1] + |log, 2] + |log, 3] + -+ - + |log, 256

=0-14+1-2142.2243.234+4.2*4+5.25+6-26+7-27+38
= 1546.

7. a>0,a2-1>0,a*—1% 1forany x € (0,1] yieldsa > 1,a # 2 and
x # log, 2 respectively. Then the given inequality holds for any x € (0, 1]
means that

log, 2> 1,

so a < 2. On the other hand,

log,(@* + 1) + Eg—,,i__ﬁ <x—1+1log,(@*-1)

& log,(@® + 1)(@* — 1) <log,a* '(a®>-1)

& @ -1)@* +1) <a*t!l —g*¥1

Sa¥ gt 41 1<0& @+ 1)@ -1 <0.
Since a*t! +1>0fora>1,0<x <landforany0 < x <1

adl-1<0ea>1,

Thus, 1 <a < 2.
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Solutions to Testing Questions 5

Testing Question (5-A)

1. Fora > 1, the function y = a* is an increasing function. For 0° < 6 < 45°,
cotf > 1> tanf > 0. Thus 13 < 4.

For a < 1, the function y = a”* is a decreasing function. Thus #; > t,.
Again, by cotf > 1 > tanf > 0, we have #; < 1 < t3. Hence t4 > 13 >
> 1.
V2 .
2. Leta; = ) —sinx, o = cos x.
b4

(i) When0 <x < >

,then0 < o §§,O_<_ozzsland

al—a2=%—(sinx+cosx)z%—ﬁ>0,

so cos(sinx) = sinq; > sin@y = sin(cos x).

.. Y .
(i) When — < x < &, then —1 < cosx < 0, so sin(cos x) < 0, whereas
0 <sinx < 1 = cos(sinx) > 0,

. . 4 b4 )
so cos(sin x) > sin(cos x) for — < x < 7. Whenx = > then cos(sin 7) =
1

cos1 > 0 = sin(cos 5). When x = 7, then cos(sinn) = cos0 = 1 >

—sin 1 = sin(cos 7).

Thus, the conclusion is proven.
3. From assumption it is obtained that 9 = atan7 — bsin7 + 2, so
atan7 —bsin7 = 7.
Then
f(=7) = atan(-7)=b sin(—7)+2 = —(atan7—b sin 7)+2 = —7+2 = 5.

. ) 14
4. Since0 <sinx <cosx <1for0<x < 1

sin x cos X

sinx > sin x5 %,

Ccos X > sinx

s sinx - cos X
therefore cos x5 * < cos xSM*¥™"" "hence a < c.
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sinx sin x

Similarly, cos x > sinx™"* gives

sin xS X

: sin X
SInXTT < cosx ,

cos xsin X

sin x < sinx

therefore b <d < a. Thus,b <d <a <c.

5. f(x + 2m) = cos(sin(x + 27)) = cos(sinx) = f(x) shows that 27 is a
period of f.
Suppose that T € (0, 27) is another period of f. Then

cos(sin(x + T)) = f(x + T) = f(x) = cos(sinx), Vx € R.

Letting x = 0 gives cos(sin T') = cos(sin0) = 1, so sin7 = 2km. Since
0<T <2m,s0k =0and T = m. Then

cos(sin(x + 7)) = cos(—(sin x)) = cos(sin x).
Thus, the minimum period of f is =.

6. Suppose that b = ar,c = ar?, where r > 0 is the common ratio of the G.P..

Then
sin A cotC + cos A sin Acos C + cos AsinC

sinBcotC +cosB _ sinBcosC + cos BsinC
_sin(A+C) sinB _ b _
“ sin(B+C) sind a =r

Since a, b, ¢ form a G.P, so their maximum value is a or c. By the triangle
inequality,a + b > c and b + ¢ > a. Then

a+ar>ar>=r*—r—-1<0, and ar+ar’>a=>r2+r—-1>0.

1 5
The solution set the first inequalityis 0 < r < + f and the solution set

V5-1 «2/5—1 V5+1

. Thus, <r<

of the second inequality is r >

2 2 7
and the range of the given expression is
V5-1 541
2 7 2 '
7. By simplification,
f(x) = sin*x —sinxcosx + cos*x

1 1
= (sin®x + cos? x)? — > sin? 2x — 2 sin 2x

1 1
= 1- 5sin2x— Esin22x.
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Lett = sin2x,then —1 <¢ < 1, and

£ = g(r)—l—%r—lz—g—%( )
0, an

Therefore minyer{ f(x)} = min_;<,<;}g(t)} =
9 9
max—1<;<1}g(t)} = =. Thus, the range of f is [0 s

d maxyer{ f(x)} =

2
8. Lett = sinf + cos 0, then cos (0 - %) = %_t,sinZH = t? — 1. Since

0<t<+2andsin20 > 0,501 <t < +/2. The given inequality then
becomes

6
(2a+3)t+;—2(t2——1)<3a+6

or, equivalently, 21> — 2ar — 3t — $ + 3a + 4 > 0. Thus,

2 2
2t(t+;—a)——3(t+;—a)>0,
2
(2t—3)(t+;—a)>0, t €[1,+2),

2
'.t+;<a forany ¢ € [1, v/2].

2
Since f(t) = t+ n on [1, +/2] is decreasing, so it suffices toleta > f() =
3.

Thus, the range of a is (3, +00).

9. SupposethatT > Qisaperiod, then f(0) = 0 = f(nT)forn =0,1,2,3,....

However, forany n > =,

| f(rT)| = | =nT +sin(nT)| > | —nT|—|sin(nT)| >3 —-1=2,
a contradiction.
10 Since 2008° = 5 x 360° 4 180° + 28°, so

a = sin(—sin 28°) = —sin(sin 28°) < 0;
b = sin(—cos 28°) = — sin(cos 28°) < 0;
¢ = cos(—sin 28°) = cos(sin 28°) > 0;
d = cos(— cos 28°) = cos(cos 28°) > 0.

Since sin28° < co0s 28°,s0 b < a < d < c, the answer is (B).
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Testing Questions (5-B)

1. Let T; be a period which is not a multiple of To, then Ty = mTp + T’, where
meZ,0<T <To. Then

fx+TY=fx+mTo+T)= f(x+T1) = fx),

i.e., T’ is also a period of f, which contradicts that T is the minimal posi-
tive period of f. Thus, the conclusion is proven.

k
2. The answers are @ = % + _?n for all integers k.

Because S = T, the sums of the elements in S and T are equal to each
other; that is,

sina + sin2¢ + sin 3« = cos & + cos 2« + cos 3a.

Applying the sum-to-product formulas to the first and the third summands
on each side of the last equation gives

2sin2¢ cosa + sin2a = 2 cos 2« cos o + cos 2a,

or
sin2a(2cosa + 1) = cos2a(2cosa + 1).

If 2cosa + 1 = 0, then cosa = ——%, and so ¢ = :t%” + 2k for all
integers k. It is then not difficult to check that S # T since sin3a = 0 but
0 ¢ {cos c, cos 2, cos 3o }.

Thus, 2cosa + 1 # 0 = sin2a = cos2¢ = tan2a0 =1 =>a = %
for all integers k. It is not difficult to check that in this case we have S
Since 3 + @ = % + 2km, so cos3a = sina, cos@ = sin3a.

v
=T:

3. For the sake of contradiction, suppose that T > 0 is a period of f. Then

F(T) = f(0)=1= f(¥2kn) = f(N2kn +T), k € Z.

Therefore there exist an integer m # 0 such that T4 = 2mm or T =
¥2mz. Similarly, for k = 2m, there exists n € Z such that

(«/4 4mnm + T)* = 2nm.
Thus,

(Yamn + 2mm)* = 2nw = 2mu(¥2 + 1)* = 2nn
S>mQR+4Y8+6V2+4V2+1)=n=2v8+3V2+232€Q.
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Write a = /2, then A = 243 + 342 + 2a € Q. However, from a* = 2

A€ Q= a%(@a* +9a%> + 4+ 124> +12a + 8a2) € Q
= 12a% 4 12a% + 24a € Q = 6(2a>® + 342 + 2a) — 6(a®> —2a) € Q
=a’—-2a€cqQ.

Let B = a? —2a € Q. Then
B’cQ=4a>-4a°cQ = 24> -24>cQ = —54%>—2a € Q.

Combining it with B = a? — 2a € Q, it follows that a2 = /2 € Q, a
contradiction.

4. Firstofall, 2008 = 210 4+ 29 4 28 427 1 26 4 24 4 23 o

n
D i =10+9+8+7+6+4+3=47.

i=1

Since 3.14 < 7 < 15, 157 > 3.14 x 15 > 47, and (143)7r = £z <
46.72 < 47,

5
147 + gn <47 < 15m,

n
therefore sin Za,- = sin47 > 0. Since y = cos x is decreasing but tan x
i=1
is increasing on [147 + %n, 157], so

5 3
cos 47 < cos (14n + En) = _é,
3
0 > tan47 > tan (147r + gn) = _JT-'

n n n .
Thus, sin E o; > tan E o; > Cos E ;.
i=1 i=1 i=1

5. [Itisclear that the function f(x) = 0 identically on R satisfies the requirement
in question.

Now consider that f is not the zero polynomial. If f satisfies the given
requirement, then

fGinm(x 4+ 2)) = f(sin(rx + 27n)) = f(sinwx) = f(x)cos wx,
S(x+2)cosm(x +2) = f(x +2)cos(nx +2n) = f(x + 2)cosmx,
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1
therefore f(x +2)coswx = f(x)coswx. When x # k + 2 where k € Z,
then f(x + 2) = f(x). Thus, it suffices to determine f on [-1, 1].
1
Let x = > then given equality gives f(1) = f(%) cos 5 = 0.
Let x = 1, then the given equality gives f(0) = f(1)cosw = 0.
On [—1, 1], | f| is continuous, so its maximum value M is reachable, i.e.,

1
there exists xo € [—1, 1] such that M = | f(xo)|. Let yo = — sin™! xo,
b4

1 1
ie., —3 <yo =< 2 and sin wyg = Xo, then

M = | f(xo)| = | f(sinmyo)| = [ f(yo)l - |cos myo| < |f (Vo)l,
hence | f(yo)| = M and | cos wyo| = 1, i.e., yo is an integer. From |yo| <
—;— it follows that yo = 0. Thus, M = | f(0)| = 0,i.e. f(0) = 0 identically
on [—1,1].

Thus, f(x) = 0 identically on R is the unique solution.

Solutions to Testing Questions (6)

Testing Questions (6-A)

1. Let AB = AC =1, ZC = 2a, as shown in the given graph below, then

ZABD = a, ZBDA = 3a, LA = 180°—4a. A
Applying the sine rule to AABC, then %D\
BC 1
- = — = BC = 2cos2a. B C
sin4a  sin2«a
1 BD AD

Applying the sine rule to AABD gives — = - = ——, s0

4 . sin 3« sin4a sina

D=""2"% 4D = 2% Then
sin 3o sin 3«

sin4«a sino

BC = BD + AD = 2cos2x = — ;
sin 3o sin 3¢

= 2sin30 cos 2« = sin4a + sina = sinSa + sine = sin4«a + sino
= sin 5« = sinda = Sa = 180° — 4o = a = 20°.
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Thus, Z4 = 180° — 80° = 100°.
2. Apply the cosine rule to ABDC and AABC respectively, it follows that

BD? = BC? + CD?>—2BC -CD cosC, (15.31)
AB? = BC? + AC? —2BC - AC cos C. (15.32)

Let CD = x. From (15.31),
CD? — (l4cosC)-CD + 33 = 0,
and similarly from (15.32),
AC? — (14cosC) - AC +33 = 0.

Therefore AC, CD are the roots of the equation x2 — (14 cos C )x+33 =0,

hence AC -CD =33ie.CD = 1:% Thus, AD =10 — % = % and

AD : DC =67 : 33.

3. Extend the ray CB to B’ and the ray BC to C’, such that BA = BB’ and
CA = CC’, as shown in the following graph,

B ¢ B P [ c

then triangles ABB’ and ACC’ are both isosceles, ZB' = 1 /B, /C" =
3Z4C.

Let B”, C” be the midpoints of AB’, AC’ respectively. In AAB"C”,

B C
AB" = ¢ cos > AC"” = bcos > B"C" = p,

and
/B 7 /B4 /
AB"AC”=4A+—2—+TC=N~+C.

Then applying the cosine rule to AAB”C" gives
B"C"* = AC"* + AB"* —2AB" - AC" - cos LB" AC"
ie,
B+C
2 ’

C B B C
p? = b?cos? > + ¢? cos? 7 + 2bc cos 3 cos 7 cos

as desired.
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4. Since2 = [ABC] = %bc sind = ‘/Tic, it follows that ¢ = 2+/2. On the
other hand, the cosine rule gives

2
a2=b2+c2—2bccosA=4+8—8«/§-§:4,

therefore a = 2. By using the sine rule,

a+b+c _a _z_ﬁ
sinA +sinB +sinC  sind 2

=2/2.

5. It suffices to consider the following two cases:

(i) When M is between A and C, then
/AMB = /ZADB =2/C = LMBC = ZC.

Let rq, r2 be the radii of the circumcircles of
AMNC and A ABD respectively, then

2r1sin ZC = MN = 2rsin ZMBC,

oy =ra.

(ii) When M is on the extension of CA, then

/CMB =n—/ZADB =n —2/C,
J.LMBC = £C,

hence, 2r;sinC = MN = 2rpsin ZMBC
gives also the desired conclusion

r, =rp.

6. Let CA = b, AB = c. By applying the cosine rule to ABCK, then
4+1-3 1
C=55T1 7§

B
By applying the cosine rule to AABC, |

_44+b*=c?
B 4p

Therefore 8 4+ 2b% — 2¢? = b. The angle

bisector theorem gives b — 1 = 5,i.e,c = c ! K b-1 A
20 - 1)

1
= C
3 cos
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5
By solving the system of two equations, it’s easy to find thatb = =, ¢ = 3.
By Heron’s Formula,

15 7 5 3 154/7
[ABC] = ‘/_ ...... = _‘/_
4 4 4 4 16

7. LetR = r be the circumradius. From the extended sine rule,

a 2ab 1
inA = 2asin B —_— = — b=-.
sin a sin =>2R 2R=> 3
Therefore .
b 1
sinB = — = 2 =£
2R 3.8 2
Since ZA, Z/C, /B < % /B = % and
2 2 7w T
LA=LA+C)-LC="Z-/c>Z -2 =2
A+0) 3 372756

s0 ZA € (%, %)- Thus, the perimeter / of the AABC is given by

1 3
Il = a+b+c=2RsinA+2RsinC +b = §+§(sinA+sinC)

10pt] =

2
Since the range of 4 + % is (%, —;), so that

‘/T§<sin(A+%)51,

1+«/§§}

the range of / is (
2 2
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8. By the extended sine rule,

R = a abc  abc
~ 2sind  2bcsinA  4[ABC)

establishing (a). By the same token, we have

1
2R?sinAsinBsinC = 3 (2R sin A)(2R sin B)(sin C)

%ab sinC = [ABC],

which is (b).
Note that

2[ABC] =bcsinA = (a+b +o)r.
By the extended sine rule also,

4R%sinAsinBsinC = bcsinA=r(a+b+c)
= 2rR(sinA + sin B +sinC),

from which (c) follows.

Testing Questions (6-B)

1. From Sine rule and Cosine rule, the first equality can be written in the form
sin 8
sino
(i) B=2aorB =180°—2orf =20 — 180°.

Similarly, the rest two equalities are equivalent to

(i) y=2Bory=180°—2Bory =28 —180%

(ili) o =2yora = 180°—2yora =2y — 180°.

Since @ + B + y = 180°, if B = 180° — 2a, then & = y. In this case,
only @ = 180° — 2y is possible, soa = f = y = 60°. We get the same
conclusion if y = 180° — 28 or o = 180° — 2y.

= 2| cos |, i.e. sin B = |sin2e/|. It is equivalent to

When above three equalities do not hold, we may assume that « is the small-
est one in the three angles, then 8 = 2o — 180° is impossible, so f = 2¢.

Ify = 2B, thena : B:y = 1:2:4,this s the second possible solution.
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If y =28-180° then y = 4o — 180°, from @ + B + y = 180° we obtain

360° ° 360° 80°
= 7 ﬂ=2x3670, y =4x 60 —180°=1

a contradiction. Therefore it is impossible.

a <a,
Thus, @« = B = y = 60°, or the ratios of these three angles are 1 : 2 : 4.
2. By the cosine rule,

72 4+82-92 2

B= ——M  —  —_
cos 2-7-8 7’
B 1+ cosB 3 9
oS —=|—— ) =,/=.
2 2 14

Let the perpendiculars from D to the lines BC, CA and BA intersect them
at E, F and G respectively, then

CF+AF =9,AF —CF =8—-7=1= AF =5,CF =4,

therefore BG = BE = 12 and

2
B 122.
BD2=( G ) = 14=224.

B
cos 5 9

3. Let R be the circumradius of the quadrilateral. The sine rule gives

AC = 2Rsin(og + 1) = 2R sin(a, + a3),

BD = 2Rsin(a; + o2) = 2R sin(o3 + o),

AB = 2Rsinas, BC = 2Rsinas,,

CD = 2Rsina;, DA = 2Rsinay.
Substututing them into the inequality to be proven, it becomes

AC?.BD? > 44AB-BC-CD - DA. (%)
Applying the Ptolemy’s Theorem to ABCD gives
AC -BD = AB-CD + BC - AD,
so that the AM-GM inequality yields
AC?.BD? = (AB-CD + BC - AD)* > 44B - BC -CD - DA,

as desired.
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4. Let BC = a,CA = b, AB = c. We may assume that « > f3, as shown in
the given graph.
Suppose that the rays DE and BA intersect
at F, and the included angle is ¢. Then the
angle bisector theorem gives

BD—Candg—a=>BD—— ac
DC b EA ¢ T b+c’
pc="" cp-% 4p_-_%

b+c a+c a+c

Applying the Menelaus’ Theorem to AABC and the transversal FD yields

AF BD CE _
FB DC EA
AF b be ac
SOAF-i—c a a—>b a—>b

Applying the sine rule to AAEF and AFDB gives
sinf@ —¢) _ sinZAEF _ AF _ bc/(a—-b) _a+c

sing  sinZAFE AE bc/la+c) a—-b’
sin(B +¢) sinZFDB _ FB _ ac/la—=b) b+c
sing  sinZBFD BD ac/(b+c) a-b’
therefore sin@ — ¢) _ sinf + ¢) =4 te_ bte = 1, so that
sing a-b a-b>
—-B-2
sing = sin(e —¢)—sin(f + @) — 2sin & P =20 -cosa—;ﬂ
-p-2 —-B-2
< 2sina P (p-cosa P w:sin(a—ﬂ—2(p).
2 2
-B
Thus, p <a —f —2¢, ie., ¢<T
_ b2 +c?—a?
5. By the cosine rule, cos A = he Hence, by the half-angle formu-
las we have
., A l—cosd 1 b2+c2—a? a?—(b*+c?-2bo)
sinf* — = —— =—-— =
2 2 2 4bc 4bc
a>—(b-c) (@—b+c)a+b—o)
4bc B 4bc

(2s —2b)(25 —2¢) _ (s =b)(s —()
4hc - be
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where 25 = a + b + c is the perimeter of triangle A BC. It follows that

siné— [(s —b)(s —c)
2 bc ’

B

> and sin % Hence

and the analogous formulas for sin
sin A Gin B sin C _(s—a)s—b)(s—c) [ABCJ?
2 2 2 abc " sabc

by Heron’s formula. It follows that
. inB . C [ABC] [ABC] _ 1
My =TT Tabe TR

from which (a) follows.

Now we prove (b). By the extended sine rule, we have a cos A = 2R sin 4 -
cos A = Rsin2A. Likewise, bcos B = Rsin2B and c cos C = Rsin2C.
By (a) and (b) in Q8 of Testing Question (A), we have
abc
4R sin A sin B si =

sin A sin B sin C 2R
It suffices to show that sin2A4 + sin2B + sin2C = 4sin Asin Bsin (',
which is given by

sin2A4 + sin2B + sin2C

= 2sin(4 + B)cos(4 — B) + 2sinC cos C

= 2sin(A4 + B)cos(4A — B) —2sin(A4 + B)cos(4 + B)
= 2sin(A4 + B)[cos(A — B) —cos(A + B)]

=4sin(A + B)sin Bsin A = 4sinC sin Bsin 4.

Solutions to Test Questions 7

Testing Questions (7-A)

1. 2565sin 10° sin 30° sin 50° sin 70° = 256 cos 20° cos 40° cos 60° cos 80°
_ 1285in20° cos 20° cos 40° cos 80°

sin 20°
_ 64sin 40° cos 40° cos 80° __325in80° cos 80°
- sin 20° - sin 20°
16 sin 160°
= 20T _ 6.

sin 20°
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2. All the irreducible proper fractions with the denominator 24 are
1 5 7 11 13 17 19 23
24° 24’ 24° 24’ 247 24’ 24’ 24

e LyB_ 5 19 7 17 1 13
e AT 24~ 24724 24 24 24 g MCME

cosa + cos(r — ) = 0, it follows that

n
Zcos(a,—zr)=0+0+0+0=0.

i=1

3. Foranyk =1,2,---,
2 2k —
sin —;—ﬂ cos(a + kB) = % [sin (a + k2+ lﬁ) — sin (a + k2 1/3)]

implies that

Z sin %ﬁ - cos(o + kB)
k=1

=-;-X::[sin(a+ 2k;1ﬁ)—5in(a+g%ﬂ)]

= —;—[sin(a+ 2n2+1,3)—sin((x+%ﬂ):|

1
= sin%g—cos (a -+ %ﬂ) .

4. When o + f = 45°, then

tana + tan

= 1 —tano —tan B = tan« tan 8,
1 —tana tan B p p

] = tan45° =

therefore

_ (I—tana)(1—tanf) 2tanctanf
(cotar = I)feot f — 1) = tan o tan " tanatanf 2

Thus,

(cot 25° — 1)(cot 24° — 1) -- - (cot 20° — 1)
= [(cot25° — 1)(cot 20° — 1)] - - - [(cot 23° — 1)(cot 22° — 1)]
=23=8.
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tan 60° — tan 45° 31
5 tan15° = —2 ands® _ 3 =2 — /3, and cot 15° =
1 +tan60°tan45° | + /3
1

A 2+ /3,50 tan” 15° 4 cot” 15° = (2 — /3)" + (2 + V/3)".

Using the binomial expansion, it follows that

2= 3)" =2" — (’11)2”“«/5 + (Z)?"Z(ﬁ)z — (V3

Q@+ V3" =2" 4 (’11)2"-1«6 n (’;)2"—2(«/5)2 + et (VI

Therefore in the sum (2 — +/3)" + (2 + v/3)" only the terms with even
powers of /3 appear, and each of them appeared in pair, so the sum is an
even positive integer.

tanka + tana
1 —tanatan ko

tan(k + 1)a  tan ka) 1

6. The formulatan(k + 1)a = gives

tanko tan(k + 1o = (

tanq tan o
therefore
n—1 n—1
tan(k + 1 tan k
Ztankatan(k—i—l)a = Z[an( + Do tan a]—(n—l)
tano tan o
k=1 k=1
tan na
= —n.
tan o

7. Write the given equality in the form
(cosa + sin B + ~/2) cos x + (cos B —sina) sinx = 0,
which holds for any real x, so

cosa +sinf + /2 =0, or sinf = —cosa — /2,
cos B —sina = 0, cos B = sinc.

By taking squares to both sides of each equality and add up them, then

(—cosa — v/2)? +sina =1
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1
which gives the solution cosa = —E. Further, 0 < o < 7 implies that
3n
oa=—,
4
so cos B = sin ! Thus, B In incer < f <2
— o= —. us, = — S1 .
V2 4
8. By using the formula in Q3 of Testing Question (A) (fora = g = 2,n =
180),

sin? 1° + sin? 2° + sin? 3° 4 - - + sin® 360°

= 2(sin® 1° + sin? 2° + sin® 3° + - - - + sin? 180°)
= 180 — (cos 2° + cos4° + cos 6° + - - - + cos 360°)
= 180 — sin 180° cos 181°/ sin 1° = 180.

9. Note that
sin1° = sin[(x 4 1)° — x°] = sin(x + 1)° cos x° — cos(x + 1)° sinx°.
Thus
sin 1° _ cosx’sin(x + 1)° —sinx® cos(x + 1)°
sinx®sin(x + 1)° sinx° sin(x + 1)°
= cotx® —cot(x + 1)°.

Multiplying both sides of the given equation by sin 1°, we have

sin 1°

= (cot45° — cot46°) + (cot47° —cot48°) + ---
~+(cot 133° — cot 134°)

= cot45° — (cot46° + cot 134°) + (cot47° + cot 133°) —---
+(cot 89° + cot 91°) — cot 90°

sinn°®

= 1.
Therefore, sinn°® = sin 1°, and the least possible integer value for n is 1.
2 1
10. (sina + sinB)? = 3 (cosa + cos B)? = 3 By adding up them, it is
obtained that
2+ 2(sin - sin 8 + cosa - cos B) = 1,

2a—ﬂ_1
2 4

1
so 1+ cos(x — B) = > hence cos
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Testing Questions (7-B)

1. From the formulas for changing sum or difference to product,

b4 2 4n
COS — — COS — — COS — + CcO0S —
15 15 15 15

_ k14 + T 2r + 4
= { cos T cos 15 cos 5 cos 5

—2cos4ncosn ZCosncsn—Zcosjr CO! 4 co id
= 153 59157 5\ 15 715

4 Jrs, T .7 2071, T 1
= — S — _— —_ = — — _—= ——
co 5 in 10s1n6 [¢ sssm 0 x

since cos 18° = sin72° = 2sin36°cos36° = 4sin 18° cos 18° cos 36°
implies that

1 = 45sin18°cos36°, .". 2sin18° cos36° = %

2. Note that

2(cos 36° — cos 72°)(cos 36° + cos 72°)
2(cos 36° + cos 72°)
2cos? 36° — 2 cos? 72°
2(cos 36° + cos 72°)

cos36° —cos 72° =

By the double-angle formulas, the above equality becomes

c0s72° + 1 —cos 144° — 1
2(cos 36° + cos 72°)
cos 72° + cos 36° 1

2(cos 36° + cos 72°) 2

c0s36° —cos 72° =

3. By using the double angle formulas and the half angle formulas

)

cos 100° _ cos 100°
1 — 45sin25° cos 25°cos 50° 1 — 25sin 50 cos 50°
_ cos? 50° — sin® 50° 08 50° + sin 50°
"~ (cos 50° —sin50°)2  cos 50° — sin 50°
_ 14+1tn50°  tan45° 4 tan50°
"~ 1—tan50° 1 — tan45° tan 50°

=tan95°,.". x = 95.
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4. The left-hand side of the desired equation is equal to

89 i Lo®

= tk° — cot(k + 1)°
Z sink®sin(k + 1)° sin 1° Z[CO cot(k + 1)°]
k=1 k=1

_ 1° = cos 1°

- sin1° - Sil’lz 10’

. . nm
5.  We construct an equation with roots tan 5 n=0,1,2,3, 4as follows.

Since the equation tan 56 = 0for 6 € [0, 7) has roots % n=0,1,2,3,4,

then each of the five roots satisfies the equation tan 3¢ = — tan 20, there-
fore, by the multiple angle formulae, it satisfies the equation

3tan @ — tan> 0 _ —2tan 6
1—3tan26  1—tan26’
—x3 -2
Letting x = tan 6, we have il = x or, equivalently,

1—3x2 1-—x%
x(x* —10x2 +5) =0.
If consider non-zero roots, then it becomes

x*—10x2+5=0. (15.33)

Thus, tan @ for 8 = %, n = 1,2, 3, 4are the four roots of (15.33). By the
Viete’s theorem,

T 21 3 4m
tan — -tan — - tan — - tan — = 5, 15.34
an5 an 5 an 5 an 5 ( )
tann tanz—ﬂ—}-tanzt— tan3n+tan£ tan4n+tan2—n tan-3—£
5 5 5 5 5 5 5 5
+t 2 t +tan37[ t b 10
— -tan — — — = —10.
anss 5 5 s
2 3 2 4
Sincetan%>0,tan?”>0andtan?n=—tan~§—r—,tan?n=—tan%,
(15.34) drives
T 5 27

2
— - tan 5 =5, ..tan % - tan ?” = «/5 (i) is proven.
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From (15.34),
tanz-tanz—”—tanz-tanz—”-—tanzz—tamz—z—]1
5 5 5 5 5 5
—tanz—ﬂ-tan—-+—tan2—ﬂ~tanZ = —10,
5 5 5 5

2
. tan® % + tan? ?n = 10, (ii) is proven.

Solutions to Testing Questions 8

Testing Question (8-A)

For any given real number a, the graph of f is a polygonal line. Therefore
the minimum value > is taken when the graph is at some turning point, i.e.,
x+1=0o0rax+1=0.

When a = 0, then f(x) = [x + 1|+ 1 > 1and f(-1) = 1, i.e. the
minimum value of f is 1. Therefore a # 0.

(i) When x = —1,then f(-1) = |1 —a|. f(-1) = % =a= —% or
5
a=§.
| | —%x, x <-1,
a=—§=>f(x)=|x+1|+‘—5x+1l= 2+%x, -1<x <2,
3x, 2<x

3
therefore f(x) > 3 for x € R.

5 1y, 3 3 1
Fora = E’f (‘5) =7<7% only a == satisfies the requirement.
1 1 3
(ii) Whenax + 1 =0ie. x = ——, then —-a—+1 =§=>a=—2or
a
2
a=-.
5
_3x’ xs_ly
1
a=-2= f(x)=|x+1|+|-2x+1 =4 2% —l<x=5,
1
3x, = < x.

N
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therefore f(x) > % for x € R.

2 3 9 3
Fora = 3 f (—5) =70 < > so only a = —2 satisfies the requirement.

1
Thus, a = —3 ora = —2.

2. Letu =x2+4x,thenu = (x +2)2—4 > —4 and

9 41
y =(u+5)(u+1)+3u+5=u2+9u+10=(u+§)2—7.
Since u > —4, so the minimum value of y is taken when u = —4 (i.e.
x = —2), therefore  ymin = (—4)® + 9(—4) + 10 = —10.
x2+n
3. y=x2—_+_—x—_—+_-T=>(y—1)x2+yx+(y-—n)=O

When y = 1, then x = n — 1, s0 1 is in the range of y.
When y # 1, then above quadratic equation in x has real roots for any
y # 1 inits range. So its discriminant is non-negative. Therefore
A=y2—4(y-1D(y—-n)>0=3y?2—4n+1)y +4n <0
4(n +1 4n
:>an+bn=—‘(T‘_), anbn=?,

16 1)2 — 48
therefore (@, — bn)? = (an + bn)? — 4anh, = (n+1) no_

9
16(n% — 1 4
(n—n_‘}-),soan_bn=§,/n2_n+1‘

9

4. As shown in the graph of y below, it is easy to. find the coordinates of the
points in it are

E(—v/2,0, F(+/2,0), D(0,1).

Y
Since )
yzl—%iflxlfﬁ 4
and D, M
2 EO| F X
y:%—l when |x| > /2,

|AM |min = AD = a — 1 when |x| < 4/2, and

2 1
|AM|2=x2+(§—1—a) =Z(x2—2a)2+2a+l
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when |x| > /2, which takes its minimum value 2a + 1 when x = /24 >
V2,50 |AM |min = +/2a + 1 at x = /2a.

Now |AD|?—Qa+1) = (a—1)>—~Qa+1) = a(a—4),s0 AD < 2a + 1
when 1 <a < 4.

When a > 4, then /2a + 1 < a — 1. Thus,

|[AM |min =a—1ifl <a <4, and |AM | = +2a+ 1ifa > 4.

a? b? 2 2 21 1
5. —+ =a“"+b+a*|——-1)+b°{———1). By the mean

X 1—x b 1—-
inequality,

2 2

1—
a . 2a2+b2+2\/a2b2 X @+
X 1—x 1—x

a*(1-x)  b%x
T 1l—x

The value (a + b)? is obtainable when , namely x =

a4 5 Thus, the minimum value of f is (a + b)2.
a

6. Since 2 — x > 0, by the mean inequality,

1+ (2—x)? 1 1
foy =t o ez e =2

the equality holds when
Thus, f(xX)min = 2.

=2—x,ie., x = 1, s02 isreachable by f.

7. (i) By completing the squares, the given equality yields

1\? 3\* 27
~ 1)? -) ==
(x+2) +(y+)+(z+2) 7

Similar to Example 5, the following inequality holds for any a, b, ¢ € R:
3@ +b>+c?) = @+b+c)

and the equality holds if and only if a = b = c. Therefore

l:(x+%)+(y+1)+(z+%)]2
§3|:(x+%)2+(y+1)2+(z+§)2:|=i—1.
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9 3
Thus, x+y+z < 5—3 = 5,theequalityholdsifandonly ifx=1y=
1
—,z=0.
2
() (x+y+2?>x2+y?+2%3(x+y+z)>x+2y+ 3z implies
that
13
T=x2+y2+22+z+2y+3z§(x+y+z)2+3(x+y+2),
therefore
v22-3
X+y+z=> —
V22-3
The equality holds if and only if x =0,y =0,z = —

8. Let the lengths of edges PA, PB, PC bea, b, c respectively.

1
Then volume of the tetrahedronis V = gabc. C

By assumption,

S = a+b+c+va? +b2+Vb? + 242 + a2,
(15.35) B
By Mean Inequality,

a+b+c>3abe)t (15.36)

and

Va2 + b2 + Vb2 + 2 + V2 + a?
> V2ab + v2bc + v2ca > 3v2(abc)3, (1537

where the equalities hold when and only when a = b = c. Substituting
(15.36) and (15.37) into (15.35), it is obtained that

S > 3(1 + v2)(abe)?,

therefore

v = Labe < §?
=-abc < ————,
6 T 162(1 + +/2)3

where the equalities hold when and only when a = b = c. Thus,
S3
T 162(1 + V/2)3

Vmux
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9. 249 4 4b — 217—b + 22b — 216—b + 216—b + 22b >3 ,3/216—b216—b22b
16
=3.2% =3072¥3 (whenb = ?).

10. As shown in the diagram (1) below, let ABCD be a convex quadrilateral
with AB = a, CD = b and BD = ¢, wherea + b + ¢ = 164/2 cm, and
the area of ABCD is 64 cm?. From

1 1 1 1
64 = 54c sinéABD+§bc sin ZCDB < 5(a+b)c < §(a+b+c)2 = 64,
the two equal signs hold, therefore a + b = ¢ = 8+/2 and

AB 1 BD and CD 1 BD,

as shown in the diagram (2). Hence,

AC = /(a + b)? + ¢2 = /2(8v2)2 = 16.

D D C a. _Cfl
b
c ,

C C

A a
a
B 4 B
1) ¥))]

Testing Questions (8-B)

1. The given conditions gives

fO =—[1+a|+2>0 and f(1)=—|a|+2>0,

from which —2 < a < 1 is obtained. Now fora = —2,
fx) = x*-2x—|x+1|—|x-2|+4
x2 43 x < -1,
= x2—2x+1 -1<x<2,

x2—4x+5 x> 2.
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Thus, f(x) > 0forall x € R, $0 apmin = —2.
a+b
3a
@Ba)p — (@ +b)?| _ a>+b>—ab
(3a) 3a .

2. Sincea > 0, f(x) takes its minimum value when x = xo =

,and

| f(xo)| =

(I) WhenO <xo <1,thena+b >0and2a—b > 0.
(i) Ifb <0,then

lfDl=a—-b=f(1)>-b=]f(0)]; and
| f(x)| < |f()| & a® + b> —ab < 3a(a —b) & (a +b)* < 3a®
& 0 < a + b < +/3a (which is true obviously).

Therefore Omaxl | f(x)| = f(1), the conclusion is true in the case.
<x<

(i) WhenO0<b < -;—,thena >2b > 0, 50

IfDl=a-b= f(1) =b = f(0) =]|f(0)
and similar to above, | f(x0)| < f(1), so the conclusion is true also.

(iii) Whenb > % > 0,then 0 < a < 2b, 50

lf (D] =la—bl <b = f(0),
| f(x0)| < f(0) & a? +b% —ab < 3ab & (2a — b)? < 3a?
&2a—b<3as @2-+3a<b,

1
and the last inequality is true since (2 — V3a < —2—a < b. Thus, the conclt
sion is true also.

(I) When x¢ < O,thena + b < 0,500 > b = f(0). Thus,
Jax [fO)] = max{|fO)[fD]} = max{—b,a — b}
= a-b= f(1) =max{f(0), f(1)}.
(Il When xo > 1, then2a — b < 0,s0 b > 0. Thus,

Jmax [f)l = max{|f©O)[f (D]} = max{b, |a —bl}
= max{h,b—a} =b = f(0) = max{f(0), f()}.

In summary, we have proven that max | f(x)] < max{f(0), f(1)}.
<x<
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2010 2008 2010 2009
3. Since E 2009 = E ﬁoT) let y; = x;(1— 2009) then for
N Xi
i=1
any 1 <1i <2010,

2009 — 2009 2009 1— 2009 2009
i —2009( X 0)( )
_ 1 (2009x7°% 4 2009(1 — x2°%)\ *'°
= 2009 2010
2010 2010
= L @ (2 09)2009 1 i
2009 \ 2010 2010
therefore
(2010)% 2010
< 2009(2010)~ 3588 . 2%%/2010.
Y (010750 = = = = 05 = 2005
Thus,
ﬁff NN 2010 e
1 — x2009 <y - = 2009 :

i=1 l i=
1
20002010

The equality holds when 2009x7%° = 1 — x20%° namely x; =
fori =1,2,...,2010.

2010, 2008 } 2010

. 2009
Thus, min { > T (= 5005 V2010,
1

i=1

4. If we interpret x; and x, are the coordinates of a point; that is, assume that
= (x1, x2), then P lies on a circle centered at the origin with radius c.
We can describe the circle parametrically; that is, write x; = ¢ cos 8, x, =

¢ sin 6, and similarly, y; = ¢ cos ¢, y» = ¢ sing. Then

S =2—c(cos 0 +sinf + cos ¢ + sinp) + c?(cos O cos ¢ + sin O sin ¢)
=2—V2c[sin(6 + §) + sin(¢ + Z)] + c2 cos(d — @)
<2422 4% = (V2 +¢)?,

where the equality holds when 6 = ¢ = 57/4, thatis, x; = x; = y; =

__V?,
Y2 = 5 ¢
5. Let f(¢) =t + t,t > 0 and g(x) = max{f(ax), f(bx)},x > 0. The
problem is converted to finding the minimum value of g on (0, +00).
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Solutions to Testing Questions

1
When a = b, then g(x) = ax + — > 2, and the equality holds when
ax
ax = 1.
When 0 < a < b, then

1 1 1
z;‘;;—(”‘“”(l“abxz)’

fbx)— f(ax) =bx —ax +

therefore

£ (b) ifx > L,
glx) = . .
f(ax) if x < WA

1
Since f(t) = t + ;,t > 0 is decreasing on (0, 1] and increasing on
[1, +00),

if x > J%,thenbx > \/§> 1,s0 f(bx) = f (\/g),i.e.
b b a
c= f<\/;) = \/;+ \/;,

1
and the equality holds when x = ——.

Vab

1 a a
If0<x <——,thenax < ,/— < 1,s0 f(ax) > ( —),i.e.
= V3 <lsof@n = (|3
a b b a
o= 3)‘f(\’5)‘\/;+\/5’
and the equality holds when x = —.

ab
Thus, cpax = \/g-k \/—;—?.

[a—y
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Solutions to Testing Questions 9

Testing Questions  (9-A)

1. From

sin(x + o) + sin(x — ) — 4sinx = 2sinx(cosa — 2),
cos(x + &) + cos(x —a) —4cosx = 2cosx(cosa — 2),

and cosa — 2 # 0, it follows that f(x) = tanx. tanx is increasing in
(0, %), so the range of f is (0, 1).

2. The half angle formula and the R-formula give

1 1 1 1
fx) = 5(1 + cos20x) + 3 sin20x = 3 + E(cos 20x + sin260x)
1 V2, /14
= §+Tsln(20x+z)
/4 2w,
Since f has the minimum penod , SO %= 2 i.e. 8 = 2. Thus,

9f(x)—1+x/§sm(4x+ )=>fmax—1+\/—

3. Letsinx =t,then—1 <t <1landy = g(t) = (—at? + a — 3)t. Then

—at*+@-3)¢>-3& —at(t?-1)-3¢t-1)>0
& (t—D[—at@+1)—-3]>0.

Sincet —1 <0,s0—at(t +1)—3 <0, or
at(t+1) > -3, forall—1<t<1. (*)

(*) holds obviously when ¢t = 0 or —1.
-3
T2+t

3
a> >—5when0<t<l

1 3
For——l<t<0,then—Z§t2+t<0=>a§12.Thus,—§Sas12.

4. Basedona? + b2 = c2leta = ccosf,b = csinf, where 0 < 6 < %
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Then

_ cPcos®O+c3sin’ 6+ ¢ cos?h +sin®6 + 1
yo= c(ccos® +csinf +c¢)2  (cosB +sin + 1)2
(cos @ + sin @) (cos? 6 — cos 0 sin O + sin® §) + 1
(cos 6 +sinf + 1)2
(cos 8 + sinB)(1 — cos BsinB) + 1
(cos @ + sinf + 1)2

Let x = cosf + sinf = ﬁsin(9+%),thenl < x < +/2,50

x-[1-3G62-D]+1  243x—x>

(x + 1)2 T 2(x+1)2
x+1D2+x—x?)  2+4x—x?
2(x + 1)2 T 2(14x)

_ (2—x)(1+x)=2—x=1__1_.x
2(1+ x) 2 2

Since y, as a function of x, is decreasing on (1, /2], so the range of y is
Y21
2°2)

5. Z cos®(a; — ) = % Z [1 4+ cosQa; — 20;)]

1<i<j=<n 1<i<j=zn
n2—n 1 ) .
= + 3 Z (cos 2w cos 2etj + sin2q; sin 2c;)
1<i<j=<n
n2—n 1 " 2 z 2
= 2 + 7 (Z cos2a,~) + (Z 51n2a,~) —n
i=1 i=1
n2—2n
> .
- 4

. n n
i . .
When o; = . for all i, then E cos2q; = E sin2a; = 0, so the value

i=l1 i=1
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2_2
" 1 " is reachable. Thus,
) n?—2n
min Z cos?(e; —aj) ¢ = T
1<i<j<n

6. Sincecos A >0 = (b —c)?cos A > 0, it follows that
b* + ¢? —2bccos A — (b% + ¢?)(1 — cos A) > 0.

Then the cosine rule gives a? — (b% + ¢2)(1 — cos A) > 0, therefore
2 A
4 l1—cosA=2sin®>>=, or —— x/_sm—

W 2 /b2+c2_

Similarly, we have

b B c C

— > 2sin~ and —— > V/2sin —.

JeZ ¥ a? 2 Va? +b? 2
Thus,

b A B C
ane z2«/§sin—sin—sin—.
V(@2 +b2)(b2? + c2)(c? + a?) 22 2

Since

1
2R?sin Asin BsinC = 5(@Rsin A)2Rsin B)sinC = [4BC]

2[ABC]
d b =2[ABC 2rR = ,
andr(@+b+c)=24BClor2rR = = e *°
ro_ 2sinAsin BsinC __ 2sinAsin BsinC
R~ sinA+sinB +sinC —4003%003—25—005%

Asi A . B .
_ 2 sin — sin —
= sm251 251n2,

SO

abc A B C r
> 2sin — sin — sin — = IR’
V2@ + 022 + c2)(c? +a?) 2 2 2 2R
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7. Letxztang,y =tan§,thenx,y € (0,1) and

2
1—x? N 1-y2  (x+ (1 —xy)

t tp =
cota + cot B P 2y 2y
hence

A = 2xy(1— Jxy)?  2xy(1 = /X3)

x+yA—xy)  x+»A+ JXY)
_ 2005 _ /A1 /)
= 2oy | L+
Let? = /Xy, thent € (0,1) and

t(1—1) —(1+0)?+3(1+1)-2 2 )
- - =3—(14+t+—
1+1 1+1¢ H T

takes its minimum value at

2 14+t V2
Since 1 +t + —— =2 — + -
1+t (ﬁ 1+t)

1
——+—-—11e t—ﬁ—l,soAmax=3—2«/§.

V2
si’da cosPa  sin*a +costa 1—2(sinccosa)?
cosa  sina sina cos & sindcosa

‘ 1 1
Lett =sinxcoso = EsinZa,whereO <t < E,then

2t2 1
—;—2t, 0<t

1
@ = <3
1
then f is a decreasing function, so fmin = f (5) = 1, the answer is (C).
9. As shown in the right graph below, let ZCAB = a, ZABC = B, LACB =

V.
Then ZBOA; = «, so OA; = cosa. Simi-

larly, OBy = cos B, OCy = cosy. A
By the HM-AM inequality,
1 + 1 4 1
04, OBy  0C
1 1 1 0
= + +
cose cosf  cosy
B Ay C

9
cosa + cos B + cosy

%
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Thus, the conclusion is proven by using the basic inequality (cf. Q3(a) in
Appendix C)

3
cosa +cosfB +cosy < X

Letsinx —siny = t.

Since (cos x + cos y)? + (sinx —sin y)2 = 1 + ¢2,
. . 1,
cosxcosy —sinxsiny = E(t -1,
1 5
cos(x +y) = E(t -1).
1 5 2
Then—lfcos(x+y)51=>——15§(t -1)<1=30<t"<3,50

3 <t <A/3,

the answer is (D).

Testing Questions (9-B)

The answer is n = 4.

For any triangles 7' which has interior angles o, 8, v, write f,(T) = sinna+
sinnf + sinny.

Lemma. Ifx 4y + z = kn, where k € Z, then
|sinx| < |siny| + |sinz|,

and the strict inequality holds when there is no /,m € Z such that y = In
and z = mm.

Proof of Lemma. 1t is easy to see that

|sinx| = |sin(y + z)| =|sinycosz + cos ysinz|

IA

| siny]| cos z| + | cos y||sinz| <|siny| + |sinz|.
Further, if there is no I,m € Z such that y = Iw and z = mm, then
|cosy| < 1 and|cosz| < 1, so the strict inequality holds.

In the three terms of f,(T') there must be at least two with same sign, the
lemma implies that the sign of f;,(T") is the same as that of the two terms.
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f1(T) > 0 is obvious, and f>(T) is also positive: In fact, any triangle
must have two acute interior angles, say, 0 < o, 8 < > then sin 2« >
0,sin28 > 0.

For n = 3, consider an isosceles acute triangle. Let the two base angles be
a = B = x. When x increases from %, then 3x increases from BT” to 3—7—1—,

2
therefore sin 3x and f3(T) can take both positive and negative values.

Letn =4,anda > 8 > y. Sincea < z,soﬂ > 2 Thus, 7 < 48 <
4q < 27, so that sin4a < 0, sin4B < 0 which implies that f4(T) < 0.

For the case n > 4, consider an isosceles triangle with the base angle a =
) T, .
B = x. When x increases from 7 to > since the change of nx is greater

than 7, so there are x1, x, such that sinnx; < 0,sinnx, > 0, therefore
fn(T) may be negative and also may positive.

Thus, n = 4 is the unique solution.

2. |sinz| <1 foranyt € R implies that sin*z < sin?, and the equality holds
1
if and only if sin? ¢ = 0 or sin®¢ = 1. Therefore, by ab < E(a2 + b?) for

any real numbers a, b,

sin® x cos y + sin” y cos z + sin? z cos x
1 1 1
< E(sin4 x +cos?y) + E(sin4 y + cos? z) + E(sin4 z + cos? x)

1 1 1
= E(sin4 x + cos? x) + E(sin4 y +cos? y) + E(sin4 z + cos? z)

IA

1 1 1 3
E(sin2 x 4+ cos? x) + E(sin2 y + cos? y) + —2—(sin2 z+cos?z) = >

Below we prove that the equality does not hold. Suppose that the equalities
holds for some real x, y, z. Then

sin* x = cos? y, sin*y = cos?z, sin* z = cos? x,

and

2

sin” x, sinzy, sin®z =0 or 1.

From

sifx =0=>cos2x=1=>sin*z=1=sin?z=1=cos?z=0
=sinty =0=siny =0=>cos?y =1=sin*x=1=sin*x =1,
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a contradiction.

Similarly, sin? x = 1 yields a contradiction also. Thus, the equality is
impossible, the conclusion is proven.

3. Letxy =tan?6 fork = 1,2,...,n, where 6 € [0, %),and take 0,41 =

61, then
1 X1
+ = y/cos* 6 + sin* @
\/(xk + D2 (s + 12 Veost e
1 cos? Oy + sin? G411

> — 2 0 in2 0 2 = ,
> \/2(cos k + sin” Og41) 7z

Thus,

n

i 1 N XPi . Z cos® O + sin® O 1 n
o Ve +1)? 0 (e + 12 7 =~ V2 V2

4. The AM-GM inequality gives

cos?a sin?a 2

2

>
sinfasin®bcos2h  cos2a ~ sinbcosb

forany 0 < a,b < % therefore

5
cos?a  sin®asin®bcos?b
545 cos?a N sin®a + 5
sinasin? bcos2h  cos2a sin? b cos? b
10 1 2
=5(14+-—
+ sind cos b + sin? b cos? b ( + sinbcosb)

LHS. = ( ) - (cos? a + sina)

>5

2 \2
=5(1+ - ) > 45 > 45sin(a + ¢) = 27cosa + 36sina,
sin2b

where cos ¢ = f,singo = E
5 5
5. Note that
sin"a +sin” b _ sin” 2a + sin” 2b
(sina + sinb)* ~ (sin2a + sin2b)”
4 (sin” a +sin” b)(sin 2a +sin2b)" > (sina +sinb)" (sin” 2a + sin” 2b)
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& (sinasin2a + sina sin 2b)" + (sinb sin2a + sinb sin2b)"
> (sina sin2a + sinb sin2a)" + (sin2bsina + sin 2b sinb)”.

Letting sina sin2a = u,sinasin2b = v,sinbsin2a = x,sinbsin2b =
y. It suffices to show that

U+v)"+(x+"=@+x)"+ @+ )"

Without loss of generality, we may assume thata > b. Then1 > u > v >
x >y > 0. Thus

@+ +x+y) = @+x)"+ 0 +y)
S U+ —U+x) = v+y)" =&+
& =0+ )" + @+ )"+ x) o @+ x)
> =)+ + @+ +y) o+ )"
Since

W+ 0w +x)""* > W+ )R+ y) K foro<k <n-1,

the conclusion is proven at once by adding them up.

Solutions to Testing Questions 10

Testing Question (10-A)

1. Let M and N be the midpoints of AB and CD respectively. Then O, M, N
are collinear, and the line ON is the perpendicular bisector of AB and CD.

Let ZCON = x, then ZAON = 3x and

23_AM_rsin3x__3 Asin? x A
9  CN ~ rsinx
=>sin2x—1 3—23 —1 ¢
T4 9) 9 0 M_\|N
. 1
#Slnx—g,

r= — 217. B
sin x
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2. There are two possible cases: (i) As shown the following left figure, when
the given point 4 is outside the given circle O, AB = 4 cm, AC = 9 cm,
s0o BC = 5cm, i.e. the radius r is 2.5 cm.

L

C 0 B é C/O_A\B

(i) When the given point 4 is inside the given circle O, as shown in the
right figure above, then AB = 4 cm, AC = 9cm, so BC = 13 cm, i.e.,
r =6.5cm.

Therefore r is 2.5 cm or 6.5 cm, the answer is (B).

3. Since POAB is a parallelogram, AB || PO, and AB = PO, which implies
that

SOBA is also a parallelogram, so

BO | 0S. Q/\R

B
Since PS is a diameter of the circle, so
PQ 1 QS,ie, BO L PQ. P 0 S
By the midpoint Theorem, BO passes
through the midpoint of PQ, so it is the
perpendicular bisector of PQ.
Thus, BQ = BP.

4. As shown in the figure below, ZBAP = /BCP and ZABC = /APC
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implies AABD ~ ACPD (A.AA),

. PD_cP
" BD AB’
Since

AB = AC = /ZBPA = ZCPA,

By the angle bisector theorem, B \)/ C

BD _BP _21_3 P
CD CP 28 4

D
thereforePD=BD-§£=CP-E)—=CP-£—=28-§=12.
AB AB BC 7

5. As shown in the given figure below, the given condition implies

APB= /APB = % ADB,

P
where D and P are on different sides of //Q
AB, therefore A B

i

APB=}.360° = 120°,
LAOB =APB=120°.

Let OC L AB at C, then AC = CB, so

AB = 2AC = 25in60° = +/3.

6. We are given that AB < AD. Since CY bisects /ZBCD,BY =YD,soY

lies between D and A on the circle, as in the
right diagram, and DY > YA, DY > AB.
Similar reasoning confirms that X lies be-
tween B and C and BX > XC, BX > CD.
So if ABXCDY has 4 equal sides, then it
must be that YA = AB = XC = CD.

—~ —~

This implies that YA B=XCD and hence that
YB = XD. Since /BAX = LXAD,

B

Y

so BX = XD. Since ZDCY = ZYCB, so DY = YB. Therefore
BXDY is asquare and its diagonal, BD, must be a diameter of the circle.
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7. Let R be the radius of the circumcircle, r be the radius of the inscribed circle

and s be the perimeter of the convex n-

sided polygon. —
Since the convex n-sided polygon is in- r/ \

scribed in its circumcircle, so

s < 2mR. )

therefore \
B = %Sr < mRr. \4

Thus,

2B < 2#Rr
= m-2Rr <a(R?2+7r?
= aR?>+nr2=A+C.

8. As shown in the diagram below, Let D, E be the midpoints of AB and AC
respectively, then FD | AB at D and GE L AC at E. Therefore

P BD  BD AB
" sinZBFD ~ sinZABC ~ 2sinZABC'

AC
2sin ZACB"~

AB - AC
4sin ZABC -sin ZACB
4R2sin ZACB - sin ZABC > h g
_ = R~
4sin ZABC -sin ZACB

Similarly, CG = Thus,

BF -CG =

9. (i) ZABC = 120° and ZABD = 30° gives ZDBC = 90°, therefore
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DC passes through the center O. Connect
OA. Then Z/DCA = LABD = 30° and
0OA = OC implies that

A_—=8
c I \
AD=A0=D0=§. /, \
D (o

Let ZBDC = 6, then ZADB = 60° — 6.
Applying the sine rule to AABD gives
¢ sin(60° — 0)

= £ 2 csin(60° - 6).
2 sinaoe om0

Inthe ABCD, b = csinf yields that

a+b = csin(60°—6) + csin@ = 2¢sin30° cos(30° — 6)
= ccos(30°—6) <c.

() |vecFa—+c+bl=+c—a—b<s2ctat+b-2\/(c+a)c+b)=
3

c—a-bw2a+2b+c=2/(c+a)c+b) & a?+b>+ab= Zcz.

Applying the cosine rule to AABC gives AC? = a? + b* + ab, and

2
applying the Pythagoras’ Theorem to AADC gives AC? = ¢? — (%) =
3 3

Zcz, hence a? + b* + ab = Zcz.

10. Considering PD as the altitude of the Rt A PBC on the hypotenuse BC,
then the projection theorem gives

PC?=CD-CB.

Similarly, QC? = CE - CA. Therefore it
suffices to show

CD-CB =CE-CA.

Since RtABCE ~ RtAACD (A, A),
therefore
CD CA
CE CB
gives CD - CB = CE - CA at once. Thus, the conclusion is proven.
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Testing Questions (10-B)

1. Since

ZADP = LACB = ZAPB and C
ZDAP = /PAB, PAS
. AADP ~ AAPB. $
Since [APB] : [ADP] = AD : AB =4: 1,
SO A

D_f 2.

p

2. () Since EH + HF =k +2and EH — HF =2,
EH = 1k +2, HF = 3k. Then

EH-HF =4k =k =12, EH = 8, HF =

(i) Connect BD. Then ZADB = «, so

(0]

AB 3 . -
AB _ a3 AN %N F
BD "¢ T g

Write AB = 3m, BD = 4m, where
m > 0, then ZABD = 90° = AD = 5m. MD = ND implies that
AD 1 EF at H,so RtAAHE ~ RtAABD, therefore

AB _ BD 3m 4m

— =—— & —=-—=AD =38,
AH EH %AD 8

8
som = 2, AH = 6,AE = /82462 = 10,AF = V6> + 62 = 6v2
2
and AB = ?4 In AABC and AAEF,

ZACB = LADB = LAEF, /BAC = /FAE = AABC ~ AAEF,
24 28«/_

562 5
3. (i) For any right triangle of sides a, b, ¢ with ¢ > a, b, the length of diame-

b
ter of its inscribed circle is d = a + b —c. Since ¢ = Va2 + b2 > a:/; .

a+b 2-— «/_
V2o

AB
therefore BC = EF - iF = =(8+6)-

sod <a+b-— (a +b).
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B
0 02
n 72
A n O n C

Let d1, da, d3, d4 bee the diameters of the © 01, © 03, © O3, © O4 respec-
tively, then

2- f(AO+BO) dy < 2_‘/5

2= f(CO+DO) dsg < 2- f

d (BO + CO),

d3

IA

(DO + A0),
by adding them up the conclusion is obtained at once:

dy + dy +ds + dy < 2 — V2)(AC + BD).

(i) Let the radii of the ©® 07 and © O, be ry and r, respectively. Then

0102 = V(11 + 12)? + (r1 — r2)? = /202 +r2) < V2(r1 + 12),
and similarly,
0203 < N2(ry +13), 0304 << V2(r3 +r4), 0401 < V2(r4 + 11).

By adding up these four inequalities and using the result of (i), it is obtained
that

0102+ 0,03+ 0304+ 0401 < 2(d1 + do + d3 + d4)
< 2(/2-1)(AC + BD).

4. As shown in the figure below, let Z be the point of intersection of BC and
I';. Connect M Z.
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Since ZMZB = 90° and MC = MB implies that Z is the midpoint of
BC and LYMZ = ZBMZ, so M is also the midpoint of the arc Y ZB.

Since BY 1 MC and XY =YZ=ZB, so /YBX = /YBC which im-
plies that RtAYBX =~ RtAYBC, hence CY = YD.

5. Let M be the midpoint of AC, and F’ the second point of intersection of the
line BM and the circle £2. Let B’ be the point of intersection of the line
FM and £2.
ZABE = ZCBE implies that E is the
midpoint of the arc AC, so E, M both are
on the perpendicular bisector / of the seg-
ment AC. Therefore ZEMD = 90° and
M is on the circle w. Hence

1 —~
2 B'CE= /B'FE = /MFE

1 ~ —~
= /LMDE = Z/CDE = E(AB + CE)
1~ ~ 1 =

Therefore B and B’ are symmetric with respect to /. It implies that F and

F' are symmetric with respect to /, F?E:F’E, ZFBE = /F'BE, so BF
and BM are symmetric with respect to BE.

Solutions to Testing Questions 11

Testing Questions (11-A)

1. Without loss of generality, we assume that AB = 1. Connect BD. From E
introduce EF 1 BD at F. A?’:I;l\? implies

that A D
4ADP = LPDB = RISEAD = RIAEFD, | [El '6/
. EF = EA. Consider the RtA BEF, F

ZEBF = 45° = BE = 2EF = 2AE. B c
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1

LetAE=x,thenBE=1—x=«/§x,sox=
V2+1

= +/2—1, then

BE = 2 — /2. By the Pythagoras’ theorem,

DE = AE2 + AD? = \/4—2V2,

then the intersecting chords theorem yields

PE=AE'BE=(‘/§"1)(2—«/§)= 32— 4
. Vic2aa Va2

Thus,

PE_ 3/i-4 [T = 3/2-4_Vi-1
DE 4—242 4-22 2

2. Since the diameter AD is perpendicular to the chord BC so it bisects BC,
ie, BE = EC = +/5incm.

BD | CF = 4DBE = ZFCE = RtADBE = RtAFCE,

so that DE = FE. Thus, OF = FE = DE, and, letting ED = x,
AE = 5x. By the intersecting chords theorem,

AE-ED=BE-EC = 5x*?=5=x=1.

Thus, CD = ~/BE2 + ED? = /5 +1 = /6.

3. Let R > r and they are the radii of the circles © P and ©Q respectively.
Let C is the tangent point of the circles. One external common tangent
is tangent to the two circles at A and B respectively, and the segment on
the internal common tangent which is between the two external common
tangents is DE.

Suppose that QS || BA, intersecting AP at

S, then SQ BA is a rectangle. A4

Since CD = AD = BD and CD = DE by D
symmetry, SO \’ B

DE

2DC = AB = \/PQ2 — PS?
VR +1)?—(R-r) L

~4Rr = 2+/Rr.
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Let ABCD be the quadrilateral, as shown in the given diagram. It has an
inscribed circle implies that AB + CD = AD + BC. Since AK; =
AN>, BK; = BL;, CL, = CM;, DM, = DN, therefore

K1Ky + MMy = L1Ly + N1 Ns.

Let rq,rg,rc,rp be the radii of the
four circles respectively, then (cf. the
result of Q3. above)

Jrars + Jrcrp = \Jrprc + rarp,

$0 (/T4 — /Tc)(\JTB — \/TD) = 0. Thus, rq4 = rc orrg = rp.

Let r and ry be the radii of @ and w; respectively. Without loss of generality,
we may assume that the tangent point of the two circles is on the arc AB

and closer to A4.
Let O and O, be the centers of w and w; re-

spectively. Write £0,0A = «, then

£010B =120° -, L0,0C = 120° + a.

The cosine rule gives

AA} = AO?—r?=r>4(r+r)*—2r(r +ri)cosa — ri
= 2r(r+r)(1 —cosa) = 4r(r +ry)sin® %.

LAA, = 2sin% < Ar(r+ry).
Similarly,

BB, = 2sin (60° - %) Vr(r+r),
CC = 2sin(60° + 2) /r(r + 1),

;. AAy + BB, = 2\/r(rTr1)[sin% + sin (6o° - %)]

= 2\r(r + r)sin (60° + %) = CCy.

As shown in the graph below, let O be the center of the big circle and A4, B be
centers of two adjacent small circles which are tangent externally and both
are tangent to the © O internally. InAOAB, AB = 2, AO = BO = 10,

1
therefore,letting = 0, thensinf = I and tan 8 =

8-
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n small circles can be put in if and only if

(0]
2n6 < 2w or n< %
Since sinf < 0 < tanf,if 2ntan6 < 27 then
b4
— =497 ~31.1 = n > 31,
tan 6
so 31 small circles can be put in. &:@
Since 2nsinf > 27 = 210 > 27, and —— = 107 ~ 31.4s0n < 32.

sin
Thus, 31 < n < 32,i.e., n = 31, the answer is (B).

7. Suppose that CE is tangentto @M at N. Connect CM, EM and MN.
ZMDC = LMNC = 90° and MD =

M N implies that A ’M D
AMNC =~ AMDC. NN
Similarly, AMNE = AMAE. Therefore N

/CMN = LCMD, ZEMN = ZEMA, N

so that ZEMC =90°,CN = CD = 1. By B S c
the projection theorem,

,BE=§,
4

N

1
MN2=EN-CN:EN=Z=>AE=EN=
1 3
hence [BEC] = §~BE-BC =3

8. The digram below shows the upper half of the rhombus. The given conditions
implies that AABC is isosceles with AB = BC. Let X, Y, Z be the tan-
gent points of the inscribed circle to AB, BC and EF respectively. Write
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LXOE = LEOZ = q,
LZOF = LFOY =B,
LAOX = LCOY =y.

Then o« + 8 + y = 90°, LZAEO =
90°—a = B+y = LCOF, therefore

AAOE ~ ACFO,

A o C

which gives AE - CF = AO - OC = AO?. Similarly, on the lower half of
the rhombus we have AH - CG = AO?, therefore

AE _CG
AH ~ CF
which implies that AAEH ~ ACGF. Then AB || CD implies EH ||

FG.
9. Let AC, EG intersect at a point O. Take the point K on E B such that

LEOK = ZGOC. Then

LOEK = Z0OGC = AOEK ~ AOGC
OK oOcC

" ZLAOE = LCOG = ZKOE,

L 04 _OK _0C A0 _AE

""AE " KE CG ~ 0C _CG

A0’ AH
Let AC and HF intersect at O’, then similarly oCc = CF Since AE =

CF

AO A0’
,ie. O = O'. Thus, AC, EG, HF

AH and CG = EG,80 — = ——
o *oc T oc

are concurrent at O.

Similarly, BD, EG, HF are concurrent at one common point, and it is the

point of intersection of EG and HF, namely the point O. The conclusion

is proven.
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Testing Questions (11-B)

1. As shown in the right diagram below, connect AO, AD, DO and DQ. Then
AP = AQ since AP and AQ are two tangents from P to ©O. Since OP,
0OQ are both radii of the © O,

ZLAPO = LAQO = 90°.
By symmetry, ZPOQ = 2ZA0Q and

OA L PQ at M. Applying the projection
theorem of right triangles gives

OD? = 0Q% = OM - OA,

D A
ie., 0— = 0— Besides, ZAOD = ZDOM is shared, so ADOM ~
oM  OD
AAOD, hence ZODM = ZOAD. By passing through D introduce the
common tangent line DE, then ZCDE = LCAD. Since OD 1 DE, so

/MDC = 90°— ZODM — Z/CDE = 90° — ZOAD — ZDAC
= 90°— LOAQ = LAOQ.

Thus, ZPOQ =2/Z/MDC.

2. Let MP 1 AC at P and MQ 1 AB at Q. Suppose that the © touches

BC atD.Then ID 1 BCatD,IF L AB,IE 1 AC.
Since AF = AE, so ZAFM = ZAEM,

therefore

MQ MF
MP ~ ME’
..[MAB] MQ-AB MF AB

" [MAC]  MP-AC ~ ME AC’

RtAQFM ~ RtAPEM,

therefore [MAB] = [M AC] if and only if

ME AB

MF = AC’ )

Below we show that () holds if and only if MI L BC.

Suppose that M1 L BC. Then M, I, D are collinear. Since the quadrilat-
erals BDIF and CDIE are both cyclic,

LIMIF = /B, ZMIE = £C.
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Since /E = IF, by the sine rule,

MF _  FI  IE _ ME
sinZMIF ~— sinZIMF ~ sinZIME  sinZMIE’

ME _sinC _ AB

o) UF = SnB AC since the sine rule again.
C 1 h B MEltM’bth int of int ti f th

—_— = o e

onversely, when 1C UF e e the pmz . in erfec ion o
line DI and EF. Then ab f indicates that — = —— theref
;:ele anME en above proo ]ulI/lElca e}sw Ea C UF erefore
W MF,and which implies F = EF soM'E = ME, namely
M’ coincides with M, so MI 1 BC.
[ABM]  x

. Let AM = = —x,BM = d, = . Let
3 et AM x,CM 15— x then [CBM] 5 e

BM = d and py, p, be the perimeters of AABM and ACBM respec-
tively, then

x p 12+d+x B
15—-x  pp 284+d-—x
= 25x 4+ 2dx = 15d + 180, therefore

25x — 180 . 12 13
= — Sinced > 0, so
15 —2x I, o2
36 15
—<x<—.
5 2 A x M 15—=x C

122(15 — 132
On the other hand, by Stewart’s Theorem, d2 = ( 1);) ha al

x(15 = x), s0 15d? + 15x(15 — x) = 144(15 — x) + 169x which gives

3(25x — 180)2
432 = 3d? + 40x — 3x2, therefore 432 — —((%—272)— 40x — 3x2,

or 12x* — 340x3 4 2028x2 — 7920x = 0. By factorization,

4x(x — 15)(3x% — 40x + 132) = 0,
4x(x —15)(x — 6)(3x — 22) =0,

, 22
XX ==

3
22 22 23 AM 22

Thus, AM = — CM =15—-—"— =" d— = —, = 45.
us, 3 3 3an CM 23 sop+gq
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4. Let K be the second point of intersection of the line ADE with I';. Then
well known by us that AKFD ~ ABAD.

Since ZABD = ZDEB = LAEB,
. ABAD ~ AEAB,

then AKFD ~ AEAB. Thus,

FD AD AB

DK~ DB BE’
Let O be the center of [3. OB 1 AB implies
that AO is the diameter of 7, so AK L AK,

and OK is the height line of the isosceles triangle E s
ODE,so DK = KE. Thus, 2

EB istangentto Iy at B & LEBK = /BAK = Z/BAD

AB DB FD DB
& A ABDA & BE ~ KE < DK ~ KE & FD = DB

Solutions to Testing Questions 12

Testing Questions (12-A)

1. Since the given conditions give ZAMC = ZBAC = /BPC, therefore
the quadrilateral BM CP is cyclic, hence

LMPA = LMPC —ZLAPC
= LMBC — LCAP
= /LABC + LACB —90°.

Similarly, /ZNPA = ZACB + ZABC — 90°.
Thus, PA bisects the ZMPN.

2. As shown in the diagram, let P be the point of intersection of the line TH
and the side BC. It suffices to show that P is the midpoint of BC.



Lecture Notes On Mathematical Olympiad 197

Since ZAHC = LATC = 90°, AHTC is
cyclic, therefore

1
ZPHC = LTAC = -(180° - LAOC)
= 90°— ZABC = /PCH,

so APHB is isosceles with PC = PH.
Since BH C is aright triangle, it gives

PC = PH = PB,ie., P isthe midpoint of BC.

3. Let O be the center of the circle I". Since M bisects BEC , if the line AK
intersects I” again at N, then M N is the diameter of I". Therefore

MA 1 NA,MA' L N4’

hence K is the orthocenter of AMRN, and A4, A’, R, K are all on thee
circle taking RK as the diameter.
Note that, by the alternate segment theorem,

LATA' = 180° — LTAA — LZTA'A = 180° — LAMA' — ZANA’
=2/LARA’

and TA = TA’, so T is the center of the circle passing through A’, R, A, K.
Thus, T is on RK, namely T, R, K are collinear.

4. First of all we show that A, B, C, D are concyclic. There are two possible
cases, as shown in the left diagram below.
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Otherwise, suppose that the circumcircle of AABD intersects AC at Cy
with C # C;. Then ZBAC; = £ZBAC = ZDAC = £DAC, implies
that BC;=DC1=> BC; = DC;. So BC = DC implies that CCy is the
perpendicular bisector of BD. Then A is on the line CC; gives AB = AD,
a contradiction. Thus, A4, B, C, D are concyclic.

As shown in the right diagram above, since the quadrilaterals ABCD and
ANCM are both cyclic, ZBCD = 180° — ZDAB = ZNCM, therefore

/NCB = /BCM — LNCM = LBCM — ZBCD = LDCM.

Since AC is the angle bisector of ZBAD, so BC = CD,NC = CM,
hence ACBN =~ ACDM . Thus, DM = BN = a.

5. Let the circumcircle of APEC and ©O intersect at the second point B’.
Connect OB’, DB', EB’, PB’,CB’.
Since P, E, B’, C are concyclic and PC
is tangent to © O,

LOEB' = /B'CP = /CDB' = ZODF/,

so O,D,E,B’ are concyclic. Then
OD = OB’ implies that

/DEO = /DB'O = LODB' = ZB'EO.

Therefore if consider OP as a symmetric axis of ©O, then B and B’ are
symmetric in OP, so that ZEBP = ZEB'P = ZECP. Hence

LACD = LABD = LEBP = ZECP.

Since PC L CD,so AC L CE.

6. Connect OC, BC, then ZBOC = ZBHC = 90°, so OHCB is cyclic.
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Therefore
LOHB = ZOCB = 45°,
Since ZBCM = 90°, CH 1 BM and

C
M is the midpoint of AC, by the projection | :

theorem of right triangles,

AM? = CM? = MH - MB,

MH 4 therefore AAMH ~ ABMA. Then

| M
am s 2 T S o
namely, wra = MB

LMAH = ZMBA, LAHM = ZBAM = 45°,

sothat ZAHM = ZBHO, therefore AAMH ~ ABOH, hence

AH MH
— = ——, l.e. . = MH - .
BH OH ie. AH - OH H-BH
Thus, CH?> = MH - BH implies that CH? = AH - OH, as desired.

7. Suppose that I is the point of intersection of DE and the angle bisector of
£C. Connect AI,CI,CE. Since AE is
tangent to the circumcircle of AABC at A,

ZLACB = 180° — ZDAE.
Then AD = AE implies that

180° - ZDAE = /ADE + LAED
= 2/AED = LACI,

so ZACI = LAEI, AECI is cyclic. Then

ZIAC = LIEC = LAEC — /AED
180° — ZCAE 180° — ZDAE /DAE — /CAE
- 2 - 2 - 2
- %ABAC,

so Al is the angle bisector of /ZBAC, and I is the incenter of AABC
which shows that DE passes through the incenter of AABC.

s
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Testing Questions (12-B)

1. For apoint P on the minor arc A’B’, ZAPB' + /BPA’ < 180°, so the points

K, L are both on the major arc A’C’B’. In this case then
/AKB = 180° — LA’KB’ and
/ZALB = 180°— LA'LB’, so
/AKB = /ALB,ie., AKLB is
cyclic. Let I be the incenter, then

ZAKB = 180°— LA'C'B’
= 180°—1z4-1/B
= LAIB,

thus, A, K, I, L, B are concyclic.
Let w; and w, be the circumcircles of AB'IC’ and AKIL B respectively.
Then B'C’, KL and AI are the common chords of w and w1, @ and w3,
and w; and w, respectively. They must intersect at one common point X.
Further, X = AI N B’C’ implies that X is the midpoint of B’C’, so B’
and C’ have equal distance from KL. Similarly, KL passes the midpoint
Y of A'C’, so A’ and C’ have also equal distance from the line KL, the
conclusion now is proven.

2. AD? = AC? — CD? let the problem become to show gg é%ﬁczz
Let T be the point of intersection of AC and
BD. Then
E ol ~
/TAD = LABT = AACD ~ ABDA
AD _ BA D3¢
~ D~ 4D NN
= AD? = AB-CD. LT
/ZBAD = /BED = 90° implies that \\\ § /
ABED is cyclic, .. ZEAD = LEBD. A /B
Similarly, CEDT is cyclic, so ZCDE = N e

ZCTE which implies that ZADE =
/BTE,so AAED ~ ABET.

AE AD AD
Therefore — = — AA TA —
erefore BE BT . But DC ~ AB implies that — BT A B

therefore
AE AC AC-CD AC- CD

BE AB _ AB-CD  AD?
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3. Asshown in the given figure, AC; is the common chord of ® O and © 05, so
00, 1L AC,.
If AO; L OO0,,then O, is on ACy, therefore
OA = 0Cy = £LOC10, = LOAO;.

On the other hand, 04 = OC and 014 =
O;C implies that ZOCO; = LOAO,,

LS. Z£0C10y = LOCOy.

therefore O, O,, Cy, C are concyclic. Note

that
1 T
AC]ABZ = 5(7[ - LAOlBl) = -2— - AACBl
= % — /BCA— /B,CB = /ZABC — %
then

£ByCiA = 4B,CiB + £LBC1A = /C1ABy + /BCA = g — ZLCAB.

so LAB,Cy = n—ZLC1AB,—£4B,C1A = n+ ZLCAB—ZABC. Besides,
£4B1CB + ZBCA = £B,CO; + £0;1CA4, so

/CAB + /BCA = (% - LCAB) + ZCLAC.

Therefore ZABC—/CAB = n—[(% - ACAB) + ACIAC]—ACAB -

% — /CLAC < % i.e., ZAB,C, is obtuse. Thus, Z002C; = ZAB,Cy.
Besides,

£00,C; = ZLCi0.C+ £LCO0 =2LC1AC + £CC10
1
= 2£01AC + 5(n - £COCy) = % 4 £CiAC
- % + ZCAB — /C1AB, = n + /CAB — ZABC.
Therefore Z00,C, = L0 0,Cy, ie., O, O, 01, C; are concyclic.
Thus, the five points O, O, Oy, Cy, C are concylic.

4. When AB = AC, then P and Q are both on the angle bisector of ZBAC,
so ZPAO = LQAO =0.
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When AB # AC, as shown in the right
graph, let O’ be the circumcenter of AABC,
the perpendicular bisector of BC intersects
OO0’ at P’ and M, where P’ and A are
at the same side of BC, then O’, O, Q are
collinear.

/BAO = ZCAO = A, O, M are collinear.
Let R be the second point of intersection of
P'Q and ©O, then ZMP'R = LO'P'Q =
£0'QR = ZORQ implies that MP’ || OR.
Then MP’ L BC implies that OR L BC,
so P = R. Thus, P’, P, Q are collinear, and
ZOP'M = ZPQO = ZQPO. Since ZQAO = LOQAM = LQP'M,
so ZQAO = LQPO, henced, P, O, Q are concyclic. Thus,

ZPAO = LPQO = LQPO = £QAO.

5. Assume that the disposition of points is as in the diagram.

Since ZEBF = 180° — ZCBF = 180° — ZEAF by hypothesis, the
quadrilateral AEBF is cyclic. Hence AJ - JB = FJ - JE. In view of this
equality, / belongs to the circumcircle of ABK ifand only if /J-JK = FJ-
JE. Expressing IJ = [F + FJ,JE = FE—FJ,and JK = %FE—FJ,
we find that I belongs to the circumcircle of ABK if and only if

_ IF-FE
" 2IF + FE’

FJ

Since AEBF is cyclic and AB,CD are parallel, ZFEC = /FAB =
180° — ZCDF . Then CDFE is also cyclic, yielding ID - IC = IF - IE.
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It follows that K belongs to the circumcircle of CDJ if and only if 1J -
IK = IF - IE. Expressing IJ = IF + FJ,IK = IF + %FE, and
IE = IF + FE, we find that K is on the circumcircle of CDJ if and only
if

IF - FE

Fl = —————.
d 2IF + FE

The conclusion follows.

Solutions to Testing Questions 13

Testing Questions (13-A)

1. (i) As shown in the diagram below, let the midpoint of AB be P. The
OP and ©O are tangent internally at £ implies that P, O, E are collinear.
Connect FO, AE, AF,then OF L CD at F and FO || AP. Since OE =
OF and PE = PA, so

LEOF = LEPA = LOEF = 90°—

F ZEPA
2EO0 = 90°— > = ZPEA,

therefore A, F, E are collinear.

(ii) By considering the power of A with respect to ©® O, we have AM? =
AF - AE. Connect EB. AE 1 EB implies that EFDB is cyclic, so
AF - AE = AD - AB. Connect BC. By applying the projection theorem
to the RtAABC, then

AC? = AD - AB = AF - AE = AM? = AC = AM.

(iii) Extend M A to R suchthat MA = AR. Connect CR, then ZRCM =
90°, so the projection theorem gives

MC? =MD - MR =2MD - MA.
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2. M is the midpoint of hypotenuse of RtAANP, so it is the circumcenter of

AANP. By the midpoint theorem, MN || BP.
Let E be the second point of intersection

of MN and ©O. By the power of a point
theorem,

PM? = MA? = ME - MC
_ PM _MC
ME PM
= APME ~ ACMP
= AMPE ~ AMCP.

Since OAPB iscyclic, CN - NE = AN -NB = ON - NP, which implies
that CPEQO is cyclic,

. LEPN = ZNCO.

Applying the projection theorem to RtA OAP and considering power of P
to ®O0, it follows that

PD.PC = PA2 = PN - PO = CDNO iscyclic = ZQNP = LPCO
= /QNP = LPCM + ZMCO = LMPE + LEPN = ZMPN,

hence MP || NP, ie, MNQP is a parallelogram. Then PQ = PM
implies that M NQP is a rhombus.

3. Let O be the common circumcenter of the triangles DEF and ABC. Let
D', E’, F' be the points of intersection of the smaller circle with BC, CA,

A B respectively.
Make OH | BC at H. Let

BD CE _AF

-7 = = =k, A
DC EA FB ‘
then BH = HC and DH = HD’ implies
that | /
NN
e

Similarly,

1 k
BF = ——BA, AF = ——BA.
F k+1B k+1

The power of a point theorem gives BD'- BD = BF - BF’, hence we have
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k BC? = k AB?, namely BC = AB. Similarly we have
k+D2° T ky12°7 y ot = a8 y
BC = CA. Thus, AABC is equilateral.

4. Let the center and radius of I" be O and r respectively. Let K be the point of
intersection of the circumcircle of AAPS and AB, connect SK. Then

ZLAKS = LSPQ = ZSRB,

so BK SR is cyclic, i.e., the circumcircles of
triangles APS and BSR intersect at S and
K.

By considering the powers of A and B with
respect to the the circles, it follows that

AO? —r? = AS - AR = AK - AB
= AK? + AK - KB

and

BO?—-r*=BS-BP = BK-BA = BK? + BK - KA.
Thus,AO? — AK? = BO? — BK?, which implies that OK L AB at K,
and AK - BK = OK? —r?. Let U, S be two fixed point on the line OK

with the distance +/ OK? — r2 from K. Then AUBS is cyclic for each pair
{A, B} satisfying above conditions, the solution is the set {U, S}.

5. Let Z; be the second point of intersection of I} with AB, Z, be that of I
with AC, and ZCAB = «a, ZABC = 8, £ZBCA =y in degrees. Then
I is the center of I'; implies

X]ZI=PY1, BZl=BP

Suppose that the inscribed circle of A ABP
touches AB, PB at M and N respectively,
then M, N are the midpoint of X;Z, PY;
respectively. Therefore

AX, =AM + 1X,Z,

1 1
= E(AP + AB — PB) + §X121

1 1
= 5(AP + AB — PB) + - PY,

1 1
= E(AP + AB — PB) + E(AP + PB — AB) = AP.
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Similarly AX, = AP. Therefore AAX; X> isisosceles with AX; = AX>.
Further, ABX;Y; and ACX,Y> are also isosceles, so

—_ o _ o _ g _ (e] . Z — o _ —ﬁ_
LY, XX = 180 (90 2) (90 2) = 90° -2
and £Y,Y1 X1 = 90° + —g— Hence X;Y;Y,X> is cyclic.

Suppose that the lines X1Y; and X,Y> intersect at R. Then the power of R
with respect to the circumcircle of X1Y1Y2X> is

RX1 . RY1 - RX2 . RYz,

so R is on the radical axis of I'; and I'>. Since the axis is just the line PQ,
so the lines X Y1, X2Y> and PQ are concurrent at R.

6. Let By = D and the incircle touch the sides BC and AB at Ap and C,
respectively.

A

BAa C M

Write M be the tangent point of the second circle to the extension of BC.
Let B;C = x, AB; = y, then

A1M=C1A=ABl=y and A1C=B1C =X
=CM =y —x.

Thus,CM2=CBl~CA=>(y—x)2=x(x+y)=>ii=3.

Testing Questions (13-B)

1. Connect AO and extend it to intersect ©O at A’.
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Below we show that M, N, A’ are collinear, i.e., the line M N must passes
through the fixed point 4’.

Let w be the circle with the diameter PD. Then DE is the radical axis of
OO0 and w. Since ZPNA' = 90°, the line A’N is radical axis of © O and
the circle with diameter PA’ (denoted by ’).

Suppose that DA’ intersects BC at F. Since ZADA’ = 90°, so F is on w
and ZPFA' = 90°, then PNFA' is cyclic, i.e., F is on @’ also. Thus, the
line BC is radical axis of @ and ’.

Since the two radical axes DE and BC intersect at M, by the radical center
theorem, M is the radical center, namely M is on the line NA’, so M, N, A’
are collinear.

2. (i) CL 1L ABand AM 1 AE implies that ZLEA = ZBAM, so

E— AL _ AC cos A
" sinZBAM ~ sin/ZBAM'
ABcos A
Similarly, AF = ——— .
tiary sin ZCAM
Since

AF _ ABsin/BAM _ BM _
AE ~ ACsin ZCAM ~ MC

so AF = AE.

(ii)) Since EMF is isosceles, it circumcenter O is on AM. Let O; be the
circumcenter of I'j, and Iy touches I" and EF at T and D respectively.
Then T, Oy, O are collinear. O;D L EF implies that 01D || AM, and
O\T = 0:D,0T = OM implies that ATO1D ~ ATOM,soT,D,M
are collinear.
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Since ZMTE = /MFE = Z/MED, so AMET ~ AMDE, therefore
MD - MT = ME?. Thus, the power of M to I'y is ME?2. Similarly, the
power of M to I is ME 2 also, hence M is on the radical axis of I'; and
I, therefore P, Q, M are collinear if I'; and I, intersect at P, Q.

3. Suppose that the inscribed circle w of ABCD touches the sides AB, BC,
A

CD,DA at K, L, M, N respectively, as
shown in the right diagram. From O
make OS L PQ at S.

By Newton’s Theorem (cf. Q9 in Test-
ing Question 11A), the point of intersec-
tion of KM and LN isalso E.

On the other hand, OKPM and OLQN are both cyclic,and their circum-
circles w1 and w, intersect at O and S (cf. Q4 in Testing Question 13A),
so the lines OS, KM, NL are the radical axes of w; and w,, w; and w, w;
and o respectively. Hence F is their radical center. Thus,

OF -k OE - 0S = OE(OE + ES) = OE*+ OE-ES
OE%2 + LE -EN = OE?> +r?— OE? =r2,

4. By S1, S, we denote the circumcircles of AACA; and ABCBj respectively.
When the second point of intersection of the
two circles, D, is on the side AB, the power
of B to S; and the power of A to S, give

AB-BD = BC - BA;

and
AB-AD = AC - AB;.

Adding them up yields

AB? = AB(BD + AD) = BC - BA; + AC - AB;
BC(BC — CAy) + AC(AC —CBy)
BC? + AC? — (BC - CA; + AC - CB1).

Applying the cosine rule to AABC yields
AB? = BC? + AC?>—2BC - AC cos60° = BC? + AC? — BC - AC,

. CBy CA;
that BC - CA AC -CB; = BC - AC,ie, — + — = 1.
so tha 1+ CB; C-AC,ie CB+CA
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CB; CA, .
Conversely, when B + A= 1, suppose that A B intersects S, S5 at

Dy, D respectively, as shown in the diagram below, then the power theo-
rem gives

AB-BDy = BC -BA; and AB-AD, = AC - AB;. Adding up them gives

AB(BD, + AD,) = BC - BA, + AC - AB;
= BC(BC —CA;) + AC(AC — CB))
= BC? + AC? — (BC - CA; + AC - CB)).

Then BC - CA; + AC - CB; = BC - AC yields
BC? 4+ AC? — (BC - CA; + AC - CBy)

= BC? 4+ AC?2—- BC - AC
= BC? + AC?—-2BC - AC cosC = AB2.

Thus, AB(BD1 + AD,) = AB?,s0 AB = BD; + AD, which implies
that Dcoincides with D5, so the second point of intersection of S; and S,
is on the side AB.

Solutions To Testing Questions 14

Testing Questions (14-A)

1. Suppose that AC N BD = P,AF N BE = M,CE N DF = N. Suppose
alsothat BD NCE = H.
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Since the three points N, P, M are on the lines
EH, HB, BE respectively, it suffices to show

that
HP BM EN
. =1. 15.38
PB ME NH ( )
Since
BM  [BAF BA- BF
_ | I _ . (15.39)
ME —[EAF] EA-EF
HP _ [HAC] _ [HAC] [EAC]
PB ~  [BAC] [EAC] [BAC]
CH EA-EC CH-EA
T~ CE BA-BC BA-BC’ (15.40)
therefore
HP BM _ CH-BF
PB ME BC-EF’
i.e., it suffices to shoow that
EN -BF -CH 1 (15.41)
EF-BC-NH ’
EN DN
hat —— = —— and ZBFD = /BCD,
NotetaEF DCan D = /ZBCD, so
NH _ [NBD] _ [FBD]-[FBN] _ FB-FD—FB-FN
CH ~ [CBD] [CBD] - CB-CD

FB-ND FB EN
CB-CD CB EF’
so (15.41) is true, thus, (15.38) is true and the conclusion is proven.

2. Let the six tangent points on circles be By, B2, B3, Bs, Bs, Be respectively,
as shown in the diagram below.

Suppose that the lines By B2, B3 By,
Bs Bg intersect pairwise at P, O, R.
Connect By Bg, B4Bs, B, B3.

By the trigonometric form of Cave’s
theorem, it follows that

SinZBlPAG SiIlZPB6A6
sin ZA5 P36 sin éAsBc,Bl
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sin £B6Bl A6
sin ZA(;B] P
follows that

= 1. Since A¢ B¢ = A¢B1,s0 LA¢B¢B) = ZAgB; B, it

sin/BiPAs /PB¢As
sin ZA¢PBes sinZA¢B P

Similarly,
sin ABsRA4 ZRB4A4 _ sin ZB3QA2 ZQBzAz -1
sin ZA4RBs sin ZA4BsR ~ sin LA, QB, sin LA; B3Q o

multiplying these three equalities, and considering

£LPB¢A¢ = LA5BsBs = LAsBsBg = ZRBs5A4,
ZLRB4Ay = LA3B3B3s = LA3B3Bs = LQB3A>,
£LQByA; = LA1B2By = LA1B1B; = ZPB; As,

it follows that

sin/ByPA¢ sin/ZBsRA4 sin ZB3QA; _
sin ZA¢PBs sin ZA4RB4 sinZA;QB,

By the sufficiency of the Ceva’s theorem in trigonometric form, the lines
PAes, QA2, RA4 are concurrent, namely, the lines e, f, g are concurrent.

3. Let P, Q, R be the midpoints of DF, EF, ED respectively, then PQ | DE
and the line PQ passes through N; RQ || DF, and the line RQ passes M;
PR || EF, and the line PR passes through L.

Since AE = AF, so AQ is the angle bisecter of ZCAB. Similarly,
BP,CR are the angle bisectors of ZABC, ZBCA respectively, and the
lines AQ, BP, CR are concurrent at the incenter / of AABC.

Applying the Desargues’ Theorem to AABC and AQPR, it follows that
the point L (as the point of intersection of PR and BC), the point M (as
the point of intersection of RQ and CA), the point N (as the point of inter-
section of QP and A B) are collinear.
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4. As shown in the digram below, from center O introduce OD 1 AB at D and
OE 1 BC atE.Let AB=a,BC =b,0D =d,0OF =e,thena > b
and

a b , 2 2
BD = —,BE = —,a” +4d”° = 25°.
2 2
Similarly, b2 + 4e? = 252. Since a,b,c,e €
N. If the positive integer solutions (x, 2y) for the
equation
x2 4+ (2y)? = 252

satisfy (x,2y) = 1, then there are positive inte-

gers u, v with u > v such that A W o
B

x=u2—v2,y=uv,u2+v2=25,

sou = 4,v = 3,ie. x = 7,y = 12. If x = 5x1,y = 5y, then
x? + (2y1)? = 25,50 x1 = 3,2y; = 4,i.e. x = 15,y = 10. Since a > b,
so AB =15,BC =17,0D =10, 0FE = 12.

Since OD 1 AB and OE 1 BC implies that ODBE is cyclic, By the
Ptolemy’s theorem,

2 7 15
DE-OB=0D-BE+0E-DB=>DE=2—5(10'E+12~—2—)=10.

Since AC is a midline of ABAC, so AC = 2DE = 20. Thus, AB =
15,BC =17, AC = 20.

BA" CB' AC’ PQ
5. Let Y = A = C'B =k, BC = t. It suffices to show that t > 2.
AP A
PQ || B'C’ implies that — = Q, = t. Without loss of generality we

may assume that AP > AC, AQ < AB. Then

A A tAC’ t !
_% S QA = e = aE— = mE s (154
0 —AQ - ac—!t !
P "_ A 1+ k%
CP _AP—AC _tAB'—AC _ _ AC _ 1__J;r_. (15.43)

PA -~ AP  tAB’ AP

Applying the Menelaus’ Theorem to AABC and the transversal PA’Q
A BA” CP
gives that 613 "TC PA = 1. Substituting (15.42) and (15.43) into
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1.
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it yields
t t—(Q+k) 1+k
1+k_t' . P =1=>kt—k(l+k)=T—t
* 1 1
=>t(1+k)=E(l+k)+k(1+k):>t=;+k:>t32.

Let R be the radius of the circle. By the extended sine rule,

AC = 2Rsin(4 + @1) = 2R sin(xz + «3), A
BD = 2Rsin(o; + a2) = 2Rsin(x3 + a4),
AB = 2Rsina3, BC = 2Rsinas,
CD = 2Rsina;, DA = 2Rsinwgy. B D
so the given inequality is equivalent to \
AC?.BD? > 4AB-BC-CD-DA. (%) c

The Ptolrmy’s Theorem gives
AC -BD =AB-CD + BC - AD,

so the mean inequality gives

AC -BD >2+/AB-BC -CD - DA,

namely AC?- BD? > 4AB - BC - CD - DA, (%) is proven.

Testing Questions (14-B)

We prove the conclusion by contradiction. Suppose that 4, B, D, C are not
concyclic, and the circumcircle of AABC in-

tersects the line AD at E. Suppose that the
line BE intersects the line AN at Q, and the
line CE intersects the line AM at P. Con-
nect PQ, as shown in the right diagram.
Below we show that with respect to circle
®O0 of radius r,

PK? = the power of P — the power of K
= (PO2—r2) —(r2— KO?).
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2.

Solutions to Testing Questions

Suppose that the ray PK intersect the circumcircle of APAE at F. Then
PK-KF = AK -KE, (15.44)
and ZPFE = /PAE = ZBCE, so E,C, F, K are concyclic, hence
PK - PF = PE - PC. (15.45)
By (15.45) — (15.44), it follows that
PK? = PE - PC — AK - KE = the power of P — the power of K.
Similarly, QK2 = (Q0?* —r?) — (r* — KO?). Thus, PO? — PK? =

Q02 — QK?, namely OK L PQ. Since OK L MN,so PQ | MN,

hence
AQ _ AP

ON ~ PM’
Applying the Menelaus’ theorem to ANDA and the transversal BEQ, then

(15.46)

NB DE AQ
N PE ~ 1. (15.47)

Applying the Menelaus’ theorem to AM DA and the transversal CEP,then

MC DE AP _1 (15.48)
CD EA PM ' '
NB MC
The combination of (15.46), (15.47), (15.48) then yields 3D~ CD° SO

D
ND = Al/)[C and ADMN ~ ADCB, then ZDMN = ZDCB, i.e,

BD
BC || MN,so OK L BC, namely K is the midpoint of BC, a contradic-
tion! Thus, 4, B, D, C are concyclic.

As shown in the diagram below, let the circumcircles of ABCE and ACDF

intersect at C and M. Suppose that P, Q, R be the feet of the perpendicu-
lars from M onto the lines BE, EC and

BC respectively, then the Simson’s theo-
rem shows that P, Q, R are collinear.
Similarly, suppose Q, R, S be the feet of
the perpendiculars from M to the lines
DC, CF, DF respectively, then O, R, S
are collinear. Therefore P, O, R, S are
collinear.

In the A ADE, the collinear three points
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P, Q, S areonitssides AE, DE, AD respectively, so M must be on the cir-
cumcircle of A4ADE by the sufficiency of Simson’s theorem. By the same
reasoning it is obtained that M is on the circumcircle of AABF. Thus, the
four circumcircles of triangles BCE, CDF, ADE, ABF are concurrent at
M.

Note: M is called the Miquel point, and the line passing through points
P, O, R, S is called the Simson’s line of the quadrilateral ABCD.

3. Let/ZBAQ = a,LPAN = B, ZPAQ = y. By applying the Ceva’s theorem
in trigonometric form to AABC and P, it fol-
lows that

sin ZBAP -sin ZACP -sin ZCBP _

sin ZPAC -sinZPCB -sin/ZPBA
(15.49)

Similarly, to AMNQ and P, it follows that

sin /MNP -sin LZNQP -sin LZQMP

= 1.
sinZPNQ -sin ZPQM -sin ZPMN
(15.50)

Since BMPQ and CNPQ are both cyclic, so
ZBMQ = /BPQ = LQCN, ZLQNC = ZQPC = ZMBQ.
Hence AMQC and ABQN are both cyclic also. Since MN || BC, so

/BAP = o +y, LPAC = B,/PMQ = /PBQ = ZQAN =B+,
/ACP = /NCP = /NQP, ZCBP = ZMNP, ZPCB = /PMN,
/PBA= /POM,/PNQ = /PCQ = ZMAQ =a.

. . sin(o + y) sinx

(15.51) =+ (15.52) yields sin B . snB+7)

& sin(o + ) sina = sin(B + y) sin B

& cosy —cos(a + y) = cosy —cos(2B + y)

4 cosRa + y) = cos(2B + y) & —2sin(e + B + y) sin(a — ) = 0.

SinceO<a+y+ B =4BAC < 180° soa = B.

4. The point P is the Miquel’s point (cf.Q2 above), so AEPD is cyclic, and
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Solutions to Testing Questions

ABPF is cyclic also.
LEAP = LZEDP = LZCFP. (15.51)
PEBC is cyclic implies that

/LPEA = /ZPCF,

so AAEP ~ AFCP and similarly
AEPC ~ AAPF . Therefore

PF _ AF (15.52)
CP EC’ '
AD BD CD
Sufficiency: When BD || EF,then — = —— = ——, sof 15.50),
ufficiency en I en AF — EF — EC so from (15.50)

PE_ AF _ AD
CP EC CD’
Besides, ZADC = /FPC,so AACD ~ AFCP ~ AAEP, hence

LEAP = LCAD, namely ZBAP = ZCAD.

Necessity: When BAP = ZCAD, namely LEAP = ZCAD, then
(15.49) implies ZCFP = ZCAD. Since ZADC = ZLFPC, so

ACPF ~ ACDA,

theref PF  AD Then (15.50 I AF  AD EC AF
erefore CP - CD’ en ) implies —— EC CD’SO CD — AD

On the other hand, applying the Menelaus’ theorem to AAED and the
transversal BCF gives

AB EC DF _
BE CD FA
AB AF DF AB

AD
i =1,ie, — = —, BD || EF.
0O E AD FA - e g = pp P BPI
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Solutions To Testing Questions 15

Testing Questions (15-A)

1. When the line OH passes through a vertex of AABC, the line also passes
through the midpoint of opposite side of the vertex, so the conclusion is

obvious.
When the line OH intersects two sides of A

AABC, say intersects AB and AC, as
shown in the right diagram, let G be the
center of gravity of AABC.

As well known by us, G is on the segment
OH, and the line AG passes through the
midpoint M of BC. Connect OM, HM.
Suppose that CC’ L OH at C', MM’ L
OH at M’ and BB’ 1. OH at B’. Then

BB+ CC' =2MM' = [BOH] + [COH] = 2[MOH] = [AOH].

The proofs for other possible locations of the line OH are similar.

2. Connect EF, EC,CD. Then ZPEF = /PFE = /EBF.
Since AF 1 BF,

/BAF = 90° - /EBF = 90° — /PEF 4
= 1/EPF. E
Suppose that the circle of center P and radius P
PE intersects the line BA at A’, then B
1
LEA'F = ~/EPF = /BAF, F
2 D

so A coincides with A’, hence PA = PE, and

ZPAE + LABC = ZPEA+ ZPEC =90° = BC 1 AP,

therefore C is the orthocenter of AABD,so CD | AB. Then CE 1 AB
implies that D, C, E are collinear.

3. Asshown in the diagram below, ZAH, B = Z/BHpA = 90° implies that
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4.

5.

Solutions to Testing Questions

H,, Hy, are on the circle taking F as center.
Since R is the midpoint of chord H, Hp, so
RF is the perpendicular bisector of H, Hp.
Similarly, QFE, PD are the perpendicular
bisectors of H. H,, Hy H. respectively.
Thus, PD, QF, RF are concurrent at the
circumcenter of AH, Hy H..

Note: The conclusion is still true when the pedal triangle is not inside the
triangle.

Let O be the midpoint of EF. Then QI 1 EF. Let H' be the orthocenter

of
ADEF. I is the circumcenter of ADEF then

yields
1
10 = -DH'.
Q 2
Since DP = 1 DM, By division it follows that
I1Q  DH'
DP DM’
Since BH 1 CI,so

ZHBC =90° - ZICB = 90° — %LACB

1 1
= EAABC + ELBAC = /LIFD + ZIFE = ZEFD.
Similarly, ZHCB = ZFED. Hence AHBC ~ ADFE. Since [ is the
orthocenter of AHBC, so

DH’_HI:>IQ_HI
DM ~— HD DP ~ HD’

Since IQ || DP and H, I, D are collinear, so AHIQ ~ HDP, therefore
LIHQ = ZDHP,ie., H, Q, P are collinear, the conclusion is proven.

Suppose that the line [y, I, /3 are such that I L ABatM,Il, 1 BC at N
and I3 L CA at P. Below we prove that /1, [, I3 are concurrent at a point
X.

Suppose that /1, [, intersect at a point X and XP’ L AC at P’. It suffices
to show that P’ coincides with P. Let CP’ = x. Let p = %(a +b +0),
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then

AM =p—-b,BN=p—c,CP=p—a,CN=p—b,AP' =b —x,
BM = p —a. Then AM? + BN? + CP> = CN? + BM? + AP"?
= (@-b2+{@P-c)P?+x>=(p—b2+(p—a)+ (b -x)?
=x=p—a=CP,

therefore P = P’. Thus, /3 passes through X, and AMXP is cyclic.
Since AMNP is cyclic, so N = X, therefore AN is the diameter of the
circumcircle of AMNP.

(i) Let Ip, Ic be the centers of the escribed circles opposite to B and C
respectively, then the application of the Pappus’ theorem (cf. p.105) to the
two lines /¢ AIgp and BNC, it is obtained that M, P, I are collinear.

(ii) Suppose that the incircle ©/ touches AB, AC at R, Q respectively,
then the perpendicular bisectors of AB coincides with that of the line seg-
ment RM, and they all pass through the midpoint of / N. Similarly, the per-
pendicular bisector of AC passes through the midpoint of I N also, hence
O is the midpoint of /N. Thus, I, O, N are collinear.

6. (1) Connect AH and make OD L BC at D. Since O is the circumcenter
and ZBAC = 60°,

ZBOC =2/BAC = 120°,

1
OD = OC cos60° = 5
B D C P
The property of Euler line gives AH = 20D = 1. From the extended sine
rule

BC = 2Rsin ZBAC = /3,

so that the area of ABHC is %AH .BC = ?
(i) Since H is the orthocenter of AABC,
ZBHC = 180° — (LHBC + £ZHCB) = 180° — ZBAC = 120°.

Therefore BCHO is cyclic, PO - PH = PB - PC. Since O is the circum-
center of AABC, by considering the power of P to © 0O,

PB-PC = PO?-R? = PO-PH = PO? - R?
= PO?—-PO-PH=R>=1= PO-OH =1.



220 Solutions to Testing Questions

7. Let D, E, F be the midpoints of the sides BC, CA, AB. Since B1Ci, C14;,
A1 B; are the perpendicular bisectors of

the segments AG, BG, CG respectively, P ~
then A;, By, C; are the circumcenters of !
AGBC, AGCA, AGAB respectively.
Therefore A1 D, B1E,CF are the per-
pendicular bisectors of BC, CA, AB re-
spectively, hence the lines 41D, B E,
C, F intersect at O.

It suffices to show that A,D, B1E,C F
are the three medians of AA,B;C;.
Suppose that M is the midpoint of AG
and the extension of A;D intersects
B1Cy at N. We prove that N is the mid-
point of B1C; below.

LAMB, = LAEB; = 90° implies that
AMEB; is cyclic, therefore ZMAE = ZMB,E. Similarly, CDOE is
cyclic implies ZECD = LZEON . Therefore AADC ~ AB;NO, so

NB, AD

NO CD’
LAMCy = LAFCy = 90° implies that AM FC, iscyclic, sothat ZMAF =
LMCF; ZODB = ZOFB = 90° implies that DOFB is cyclic, so that
/ZFBD = Z/FON. Therefore AADB ~ AC1NO, so

NCy AD

= —. 15.54
NO BD ( )
Since CD = BD, the combination of (15.53) and (15.54) yields NB; =
NCy, so N is the midpoint of B;C;. Similarl, the lines By E and C; F are

the other two medians of A A1B;C;. Thus, O is the centroid of AA; B1Cy.

(15.53)

Testing Questions (15-B)

1. Let K,L,M, B’,C’ be the midpoints of BP,CQ, PQ,CA, and AB, re-
spectively (see the given diagram below). Since CA || LM, we have
LLMP = ZQPA. Since k touches the line segment PQ at M, we find
LLMP = ZLKM. Thus ZQPA = ZLKM. Similarly it follows from
AB | MK that ZPQA = ZKMQ = LKLM. Therefore, triangles APQ
and M KL are similar, hence

AP MK

0B 0B
A0~ ML~ PC

PC ~ PC’

N

(15.55)

N



Lecture Notes On Mathematical Olympiad 221

Now (15.55) is equivalent to AP - PC = AQ - QB which means that the
power of points P and Q with respect to the circumcircle of AABC are
equal, hence OP = 0Q.

Comment. The last argument can also be established by the following
calculation:

OP2— 002 = OB™ + B'P2— 0C” — C'Q?

= (0A? — AB"?) + B'P? — (0A2 — AC"?) — C' Q?

— (Ach _ C/QZ) _ (AB/2 _ B/PZ)

= (AC' — C'Q)(AC' + C'Q) — (AB' — B'P)(AB’ + B'P)
= AQ-0B - AP - PC.

With (15.55), we conclude OP? — 0Q? = 0, as desired.

2. Connect XY, DX. BPDX and CYQD are both cyclic implies that

LAXM = /BXP = /ZBDP
= /ZQDC = LAYN.
CLAMX = ZANY = 90°,
J.AAMX ~ AANY,
AM AN

hence ZMAX = ZNAY and X — AT’ 5
$0 LZMAN = £XAY and AAMN is similar
to AAXY.
Thus, AAMN ~ AABC & AAXY ~ AABC & XY | BC &
£LDXY = ZXDB.

LAXD = ZLAYD = 90° implies that AXDY is cyclic, so ZDXY =
£LDAY . On the other hand, ZXDB = 90° — ZABC, therefore

4ZDXY = LXDB < /DAC = 90° — /B

which is equivalent to that AD passes through the circumcircle of AABC.
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3. Let M be the second point of intersection of the circumcircles of AACE and
ABCD. 1t suffices to show that the circumcircle of AOCI also passes
through M, since the three circumcenters are all on the perpendicular bi-
sector of CM in that case.

Let ZCAB = a,ZCBA = B. WLOG, we assume that 8 > «. Then
/ZOBE = a, ZDAE = B.

In the quadrilateral OBIA, ZOAI = £ZOBI = 90°, so it is cyclic, hence
/ZOIA = LOBA = @ + B, and

LCIO = LCIA — LOIA =2/CBA— (¢ + B) =B —«.
Since the quadrilateral AECM and DBM C both are cyclic, so that

/BME = /BMC + /CME = (180° — ZCDB) + LCAE
ZODA + ZDAO = 180° — ZEOB,

therefore the quadrilateral EOBM is cyclic also. Hence
LCMO = LCME — LOME = LCAE —a =B —a = ZLCIO,
therefore O, C, M, I are concyclic, the conclusion is proven.

4. (i) Let the orthocenter of AABT be H and BH intersects AC at K, then
HK 1 TC at K. Since point H is circum-

center of ACDT,so KH is the perpendic-
ular bisector of TC, therefore ATBC is
isosceles with BT = BC and ZBCT =
LBTC.

Similarly, ZATD = LADT, therefore

ZLADB = LADT = LATD = ZBTC
= ZBCT = ZBCA,

thus, ABCD is cyclic.

(ii) Suppose that HA intersects BD at L, then HL L TD at L, as shown
in above diagram. Since HK 1 TC at K, so LTKH is cyclic, therefore

/ZAHB = ZLHK = 180°— LLTK = /BTC = ZBCT = £ZBCA.

Thus, ABCH is cyclic, namely the circumcenter of ACDT is on the cir-
cumcircle of ABCD.

5. First of all we prove that AO10,03 ~ AABC.
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As shown in the left diagram below, draw the circumcircles © Oy, ® O3 of
triangles AEF, CDE respectively. Besides E, let M be the second point of
intersection of ® 01 and ©® O3. Connect MD, ME, MF. Then

LB+ /ZFMD = LB+ (LFME + ZEMD) = Z/B+ LA+ £C = 180°

implies that BFM D is cyclic, i.e., the circumcircle © O, passes through M
also.

But MF is the radical axis of ©0; and © O, and ME is the radical axis
of ©0; and © 03, 50 010, L. MF and 0,05 L ME, therefore Z0; =
LFME = /A. Similarly, Z0, = £B. Thus, AO; 0,05 ~ LABC.

Below we return to the original problem: to prove that the orthocenter of
A 010,03 is on the line /.

As shown in the right diagram above, from O, introduce the perpendicular
to 0103, intersecting [ at H’. Connect FO;, FO,, O1H’. Since O is
the circumcenter of AAEF, it’s easy to see that ZH'FO, = LO,FE =
90° — £ A; on the other hand, ZH' 0,07 = 90°— £050,0, = 90° — ZA.

Thus, ZH'FO1 = £LH' 0,01, so H O,F Oy is cyclic, and hence
| £LH'010, = LH'FO,.
But O, is the circumcenter of ABFD, so
LH'FO, = LO,FD = 90° — /B.
Thus, ZH'FO, = 90° — LB = 90° — £0; 0,03, namely
LH' 010, + £010,03 = 90°,

ie, O1H' L 0,03, so H’' is the orthocenter of AOQ; 0,03, thus, the
conclusion is proven.






Appendix A

Trigonometric Identities

Identities and Their Connections

1. Fundamental identities:
sinf A +cos2A=1, 1+tan?A4 = sec? 4, 1+4cot? A =csc?A,
sin(wr — A) =sin 4, cos(t — A) = —cos A, ‘tan(wr — A) = —tan 4,

sin(% — A) =cos A, cos (% —A) =sin A, tan (% - A) = cot A.

sin(—A) = —sin A4, cos(—A) = cos A4, tan(—A) = —tan A.

2. Addition Formulas: (Formulas for Sum of Angles and Difference of Angles)
(1) sin(A + B) = sin Acos B + cos Asin B.
Proof

Let OA = OB = R = 1, thenssin(e + 8) = BC = CF + BF and

BE =sin g, OE = cos B, ED = OFE sina = sina cos f.
Since ZFBE = «,
sin(w + B) = CF + BF = ED + BE cosa = sina cos B + cosa sin S.
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(ii) sin(A — B) = sin A cos B — cos A sin B.
Proof sin(A4 — B) = sin[A + (—B)] = sin A cos(—B) + cos A sin(—B)
= sin A cos B — cos A sin B.
(iii) cos(4 + B) = cos Acos B — sin A sin B.
Proof cos(4A + B) = si.n[%n— (A + B)] = sin[(3 - A) + (-—B)]
= sin(5 — A) cos(—B) + cos(F — A4) sin(—B)
= cos Acos B —sin 4 sin B. '
(iv) cos(A — B) = cos A cos B + sin A sin B.
Proof cos(A — B) = cos[A + (—B)] = cos A cos(—B) — sin A sin(—B)
= cos Acos B + sin A sin B.
tan 4 + tan B
1—tanAtan B
Proof tan(4 + B) = sin A cos B + cos Asin B
rool tanlA- "~ cos Acos B —sin Asin B
__(sin Acos B + cos A sin B)/ cos A cos B

" (cos Acos B —sin A sin B)/ cos A cos B
tan A + tan B

" l—-tanAtan B’

tanA4 + tan(—B)  tanA —tan B
1—tanAtan(—B) 1+tanAtan B’

(v)tan(4 + B) =

(vi)tan(4A — B) =

3. Formulas for Double Angle, Half Angle and Multiple Angle:

2 tan A
i in24 = 2sin A A=
(1) sin sin A cos T A

t
Proof Letting B = A in (2.(i)) yields sin24 = 2sin Acos A at once.
Further

2tan A
2sinAcos A =2 ccos? A = 2tan A 2tan A an

s A 1/cosZA=sec2A T 1+ tanZA

sin A
co

(i) cos24 = cos?A —sin?A = 2cos24A—1 = 1—2sin’4A =
1—tan® 4

1+tan2 4

Proof Letting B = A in (2.(iii)) gives cos 24 = cos®> A — sin® A at once.
Further

cos? A —sin®> A = cos? A — (1 —cos? A) = 2cos? A — 1 and

cos?2 A —sin®> A = (1 —sin® A) —sin? A = 1 — 2sin? 4, and

1—tan?A4 1—tan?4
2 A —sin® A = cos® A(1 —tan® A) = = ‘
cos sin cos” A(1 — tan” A) sec A 1 + tan? 4

1 1
(iii) sin?A4 = 5(1 —cos24), cos? A = 5(1 + cos 24).
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Proof cos24 =1—2sin? A = 2sin® A = 1 —cos 24
= sin> A = 1(1 — cos 24);
cos24A =2cos?2A—1=2cos?A =1+ cos24
= cos? A = 1(1 + cos24).

2tan A
i tan24 = ———
@) an 1—tanZ 4 > tan A
Proof Letting B = A in (2.(v)) yieldstan24 = _cmang at once.
1—tan? 4

(v)  sin34=3sinA4 —4sin® 4 cos 34 = 4cos® A —3cos A.
Proof sin3A4 = sin(24 + A) = sin2Acos A + cos2A4 sin A

= 2sinAcos? A + (1 — 2sin® A)sin 4

= 2sin A(1 —sin? A) + sin A — 2sin> 4

= 3sin A — 4sin? 4; '

cos3A = cos(2A + A) = cos2Acos A —sin2A4 sin A
= (2cos®> A — 1) cos A — 2sin* Acos A
=2cos® A—cos A—2(1 —cos? A)cos A = 4cos® A — 3cos A.

3tan A —tan3 A

i tan3A4 = )
v -3t A 24+ tand
tan an
Proof tan34 =tan2A+ A) = ——
roo an an24 + 4) 1—tan2Atan A
| i +tnd  3tanAd-—tan’A
T j_2@?4 ] —3tan2A
1—tan2 A

4. Formulas for Product to Sum or Difference:
@) 2sin Acos B = sin(4 + B) + sin(A — B)
Proof The conclusion is obtained at once by (2.(i)) + (2.(i1)).
(ii) 2cos Asin B = sin(4 + B) —sin(4 — B)
Proof The conclusion is obtained at once by (2.(i)) — (2.(ii)).
(iii) 2cos Acos B = cos(A + B) + cos(A — B)
Proof The conclusion is obtained at once by (2.(ii7)) + (2.(iv)).
@iv) 2sin A sin B = cos(A — B) — cos(A4 + B).
Proof The conclusion is obtained at once by (2.(iv)) — (2.(ii{)).
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5. Formulas for Sum or Difference to Products:

A+ B A—-B

@) sin A + sin B = 2sin > cos >
A+ B A—B
(i) sinA4 —sin B = 2 cos ; sin 7

A+ B A—-B
(iii) cos A + cos B = 2cos > cos 7

A+B . A-B
@iv) cos A — cos B = —2sin ; sin 7
Remark The formulas in 4 and those in 5 represent same relations actu-

ally, but they are applied in opposite direction. For example, if let

A+ B A—-B
= y Y= ——"—
2 2

in (5.(1)),then A = X + Y, B = X — Y, so (5.(1)) is equivalent to

X

sin(X +Y) +sin(X —Y) =2sinXcosY

which is the same as the formula (4.(i)). The rest is similar.

6. R-Formula:
acosf + bsinf = Rsin(0 + «),
acosf + bsinf = Rcos(@ + B)
where
R = Va? + b?
. a b
sy = ———, CoS ¢ = ————,
a? + b2 va? + b2
sinff = b cosf = 2
VT N
Proof
a b
acosB +bsinf = +/a?+ b2 (—cosO + ———sin())
va? + b? va? + b?

= R(sinacosf + cosasinf) = Rsin(f + «).

a b
acosf +bsinf = \/a2+b2(— —sin@)
Vaz 1 b2 Vaz 1 b2
= R(cos BcosO —sinBsinf) = Rcos(@ + B).

cos 6 +
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Mean Inequality
For any n numbers a; , az, ---, an, > 0, define the following averages:
Arithmetic Mean © A, = Gitat o+ a”,
n
Geometric Mean . Gp = Yajap - -ay,
Harmonic Mean . H, = I I " T
al as an
2 2 .. 2
Root-Mean of Squares R, = \/ gttt a,
n

Theorem 1. (Mean Inequality) The sizes of above means have always the follow-
ing order:
HnSGnSAnSRn’

and any one of the equalities holds if and only ifa; = ap = --- = a,.

Proof. A, > G,: There are alot of methods for proving it, where many need
to use the mathematical induction. For convenience of the readers who have not
learned the mathematical induction yet, we introduce the following proof.

ay+ax+---+ay
n

Define f(n) = n( — (’/alaz---a,,) forn =2,3,4,...

Since A, > G, it suffices to show that the sequence { f(n)},>> is increasing, i.e.,
fO=fBO=f@=-=f)=fr+D=---.
Letajas---a, = y"®*Y a,,.; = x"*1 then x,y > 0. From

(x -k —y¥)=>0, fork=1,2,3,...

229
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it follows that forn > 2

x4yt — (n 4 Dxy” = x(x" — y") —ny"(x — y)

=@ =PEE"T +x" 2y 4+ YT —ny”)

=@ -PE" -y + " =y Dy 4+ (x =)yt

=@ —=PE" =y + @ —E" =y " Dy 4+ (x = )2y 20,
The equality holds if and only if x = y, i.e. an+1 = Ya1az---an. Now

air+az+---+anpt1

- " alaz"'an+1)

fo+ )= fn) = (n+1>(

n+1
Y (a1 +a2-’+1-...+an B ”’—alaz-”an)

an+1 — (n + 1) "tYajaz -~ ant1 +naraz---an
X+l _ (n + l)ynx + nyn+1 >0,

Thus, f(n + 1) > f(n) forn > 2, and f(n + 1) — f(n) = O if and only if
an41 = Yajaz---ay.

Itis obvious that for any positiveintegern,a; = az = -+ = ap = An = G,.
Conversely, if A, = Gy, then f(n) =0,s0 f2) = f3) =< f(n) =0,
which gives that

g1 = Yayaz---ay, fork =2,3,...,n

Since f(2) = O impliesa; = az,s0a; =a; =---=a, forn =2,3,... .
H, < G,: Forany givena;,as,...,a, > 0withn > 2, applying G, < A,
1 1 1

to the n positive numbers —, —, -+, — gives
a1 (12 an
a1 1 171 1 1
R — S —_ | — + J— + —1,
ai an n|la az an

1 1
G_ < —. Therefore H, < G,.
Thg condmon for holding the equality then is obvious from above proof of

Gp < An.

artaxt--+an _ [ad+a3+---+a]

An < Ry:

n n
sn@+ai+--+at)—(@+a+--+a)?>0
& (a1 —a2)® + -+ (a1 —an)* + (a2 —a3)* + - + (a2 —an)* +
+(an-2 — an-1)* + (@n—2 — an)* + (an-1—an)* 2 0,

and the last inequality is obvious. The condition for holding the equality is clear
also. O



Appendix C

Some Basic Inequalities Involving a Triangle

Let ABC be a triangle. Then

(a) smA 1nBsmC L
._s PR— — —-—
2 2 2_8
A B C 3
2 4 20 .2_>_.
(b) sin 2+s1n 2+s1 >z
c cozA cos? E cos £<2
(© 2+ 2+ =7
A B C 343
- —_ —_—< -
(d coszcoszcos2 =5
A B C
(e) cscz+csc5+csc726.

Proof Considering 0 < lizil < 90° and the extended sine rule,

a sin A 2 sin 4 cos % sin %

= = = > sin —.

b+c sin B + sin C 2smMcos32C cos%

Similarly, it is true that

b >SinB c C
c+a— 2’ a+b

therefore

sin — sin E sin — abc
2 2 2~ (a+b)(b+c)(c +a)
The AM-GM inequality yields
(@ +b)(® + c)(c + a) > (2vab)(2vbc)(2+/ca) = 8abc.

Combining the last two equalities gives part (a).
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232
C

A
By using the identity cos A + cos B + cosC = 1 + 4sin 7 sin ) sin )

and (a),
., A ., B ., C 3—cosA—cosB—cosC
sin® — + sin® — + sin” — =
2 2 2
=1 2s'AsiBsi >1 1.3
= in n > n >z 1w
so (b) is proven.
The Part (c) is obtained at once from (b) and
B C A B C
—+0052?=3—(sin25+sin25+sin2 -2—)

A
2 2
cos” — S
> + co! >

Finally, by (c) and by the AM-GM inequality, we have

9 A B C A
Z > cos? — 4 cos? — +cos?> = >3 ‘3/ cos2 = cos2 — cos?2 — ,
4 2 2 2 2 2 2

implying (d).
Again as beginning of the proof,
CSCA>b+c_b+c cscB>C+a cscC>a+b
27 a a ' 2~"b b 2 "¢ ¢

so the Part (e) is proven.
2.  For any acute triangle ABC, tan A tan B tan C > 34/3.
Proof Since tan A + tan B + tan C = tan A4 tan B tan C, by the AM-GM

inequality,
tan Atan BtanC =tanA +tan B + tanC > 3 3/tan A tan B tan C

which yields (tan A tan B tan C)§ > 3,sotanAtan BtanC > 3% = 34/3.
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3.  For any triangle ABC,

3
(@ cosA+cosB +cosC < 5;

(b) cosAcosBcosC < %;

(¢) sinAsinBsinC < ?;

(d) sinA+sinB+sinC§%§;
(e) cos? A+ cos? B +cos?C > %;
(f) sin®? A 4 sin® B +sin?> C < 2;

(g) cos2A4 4 cos2B + cos2C > —%;
(h) sin2A4 +sin2B +sin2C < ¥

Solution For part (a), from the double angle formulae and 1(b),
A B C 3 3
A B C =3-2(sin®> = +sin® — +sin® = ) <3-2 =2,
cos A+cos B+cos (sm 2 + sin 2 =+ sin 2 )= 273

as desired.

For part (b), if triangle ABC is non-acute, the left-hand side of the inequal-
ity is non-positive, and so the inequality is clearly true.

If ABC is acute, then cos A, cos B, cos C are all positive. Below we show
that (b) < (e). For this, first note that

c082A + cos2B + cos2C = 2cos(A + B)cos(A — B) + (2cos?2C — 1)
=—1-2cosC cos(A — B) +2cos? C

= —1—-2cos C(cos(4 — B) + cos(4 + B))

= —1—4cos Acos BcosC.

Therefore 2(cos? A + cos? B 4+ cos2 C) = 2 —4cos Acos BcosC, i.e.,
cos? A+ cos? B+cos?C =1—2cos Acos B cosC.

Thus, (b) < (e) is obtained at once. Then from the AM-GM inequality
and (a),

3 3
cos A cos B cos C < (cosA—i—co;B +cosC) < (%) 1
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Thus, (b), and (e) also, is proven.

The two inequalities in parts (e) and (f) are equivalent because cos?x +
.2
sin“ x = 1.

Then (f) and the AM-GM inequality gives

9
1 > sin® A + sin® B + sin?C >3 i/sin2 Asin? Bsin? C,
from which (c) follows.

Since (@—b)? + (b—c)? +(c—a)? > 0 = 3(a®+b%+c?) > (a+b+c)?,
from (f),

27
T > 3(sin2 A + sin? B + sin® C) > (sind +sinB + sinC)2

gives (d).

Part (g) follows from (e) since cos 2x = 2 cos? x — 1. Finally, (h) follows
from (c) and the identity

sin2A4 + sin2B + sin2C = 2sin(4 + B) cos(4 — B) + 2sinC cos C
= 25sin C(cos(A — B) — cos(A + B)) = 4sin Asin BsinC.

For any triangle ABC and real numbers x, y, z,

x% + y? 4+ z%2 > 2xycosa + 2yz cos B 4 2xz cos C.

Proof Let f(x) = x2— (2y cos A + 2z cos C)x + y* +z*> —2yz cos B,
where y, z are considered as two parameters, then the curve of f(x) is open
upwards. It suffices to show that its discriminant A is always non-positive.
Since

A = 4(ycosA + zcosC)? —4(y? +z> — 2yz cos B)

—4[y?sin® A + z2sin* C — 2yz(cos Acos C —cos(4 + C))]
—(y?sin® A + z%5in*C + 2yzsinAsinC)

= —(ysind +zsinC)? <0,

so f(x) > 0 always.
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Proofs of Some Important Theorems in Geometry

Theorem 1. (Power of a Point Theorem) Let © O be a circle of radius R. For an
interior point P of the circle, if AB is a chord passing through P, then the value
of product PA - PB is independent of the choice of the chord. In particular, the
constant value is given by taking AB L OP, soitis

R? — 0oP2.

Proof. Let CD be another chord passing through P. Connect AC, BD. For
APAC and APDB,

/PAC = /PDB, /PCA = /PBD, ¢ 5
.. APAC ~ APDB,
. PA _PC
""PD _ PB
Ao Bo
ie. PA-PB = PC - PD. In particular, when A
AoBy L OP at P, then PAy = PBgy and A D

PAg - PBy = (PAp)®> = R*> — OP?, where R is the radius of the circle. -

Theorem II. Let © O be a circle of radius R. For a point P which is outside
the circle or on the circumference, if PAB is the transversal line starting from
P and intersecting the circle at A and B, then the value of product PA - PB is
independent of the choice of the PAB. In particular, the constant value is given
by (PT)?, where the line segment PT is tangent to the circle at T, so it is

OP? — R?,
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Consequence: When line segments AB and CD or their extensions intersect
at P, then A, B, C, D are concyclic if and only if AP - PB = CP - PD.

Proof. Connect TA, TB. For APAT and AP TB,

/PAT = ZPCB, and the ZP is shared,
J.APAT ~ APTB,
. PA PT
.o ﬁ = ﬁ

ie. PA-PB = PT2
When P ison @O, thenT = P = B,so PA- PB =0 = (PT)*holds. O

If PDC is another transversal line cutting the circle © O at D, C respectively,
then, by the result of Theorem II, PA - PB = (P T)? = PC - PD.

Conversely, When the four points A, B, C, D satisty PA-PB = PC-PD
(where PC > PD), then D must on the circumcircle of ACAB w. Otherwise, let
D’ be the point of intersection of @ and the line PC, then PA- PB = PC-PD’'
implies that PC - PD = PC - PD',s0 D = D', a contradiction.

Thus, the consequence is proven.

Existence of Radical Axis:

6)) When two circles w; and w, with radii R and r respectively are non-
concentric and not intersected, as shown in the following figure:

A

01 I 0,

Let the system of coordinates of the points Oy, Oz be (0, 0) and (d, 0), respec-
tively. When A with coordinates (x, y) has two equal powers to the circles w; and
w>, then

x24y2—R2=(x —d)? +y> - 12,
x2+y2—R2=x%2-2dx+d*+y*—-r?
_d*+R*— r?

x 2d
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(d — R)? —r?

Sinced > R+r,x—R = > 0, therefore R < x. From

0 <x?2—R?=(x—d)?—r2 wehave x < d — r, therefore
R<x<d-r.

We have found that the locus of the variable point A is a straight line perpendic-
ular to the line 01 0,. If M is the point of intersection of the axis with the line
d? + R2 — y2

010;, then xpy = ¥

Remark When d > 0,d + r < R, then we have similar result as above.

(ii) When the circles w; and w; are tangent externally, thend = R + r, so
xpM = R, ie. the radical axis is the internal common tangent line of the
circles.

(iii) When w; and w, intersect at two points A and B, then A and B are both
on the radical axis, so the line A B is the radical axis.

Theorem III. (Menelaus’ Theorem) If a straight line cuts the sides AB, BC
and CA (or their extensions) of a AABC at points X, Y and Z respectively, then

AX BY CZ
XB YC ZA - (D)

Proof.  For the case shown in the left diagram below, introduce a straight line /
such that/ L XYZ at O. Let the projections of A, B and C on [ be A’, B/, C’
respectively. Then

AX A0 BY B0 cz C'o
XB ~ OB’ YC ~ oc” ZA 04"

therefore the conclusion is obtain by multiplying the three equalities.

zZ

B C Y

For the case represented by the right diagram above, the proof is similar. |
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Theorem IV. (Inverse Menelaus’ Theorem) Forany given AABC, ifX, Y, Z
are points on lines AB, BC, CA respectively (where exact one point is on the
extension of a side, or three points are all on the extensions of sides) such that
(D.1) holds, then X, Y, Z must be collinear.

Proof. When two points, without loss of generality we may assume that they
are X and Y, are on the line segments AB and BC respectively and Z is on the
extension of AC, suppose that the line Y Z intersects the line segment AB at X'.
By the Menelaus’ Theorem,

AX' BY CZ _1
X'B YC ZA ’
®.1 AX  AX' Th
sO gives —— XB = x'p Ihen

AX AX' AB  AB

AX _ AB _AB | p _ 5 X coinci ith X/
B B = XBE =~ X'B = X’'B = X coincides with X

since X, X’ are both on the line segment AB.
For the case that X, Y, Z are all on the extensions of AB, BC, CA respectively,
the proof is similar. a

Theorem V. (Ceva’s Theorem) For any given triangle ABC, let X, Y, Z be
points with (i) all on the line segments BC, CA, AB; or (ii) exact one on one
side and other two on the extensions of the two sides respectively. Then the lines
AX, BY, CZ are parallel or concurrent if and only if

BX CY AZ
— = ' ===1 (D.2)

Proof. Necessity: 1f AX || BY || CZ, as shown in left diagram below, then

YC BC ZA_CX=>BX CY AZ BX BC CX _
YA BX ZB CB XC YA ZB _ XC BX CB

Z A P




Lecture Notes on Mathematical Olympiad 239

If AX, BY, CZ intersect at a common point P, as shown in the central or
right diagrams above, since BPY (or BYP) is a transversal to AAXC, by the
Menelaus’ theorem,

XB CY AP _
BC YA PX
Since CPZ (or CZP) is a transversal to AABX,
BC XP AZ
CX PA ZB

Then multiplying the two equalities gives (D.2) at once.

Sufficiency: Now suppose that (D.2) holds.

When the three points X, Y, Z are all on the line segments BC, CA, AB re-
spectively, we can assume that the lines BY and CZ intersects at a point P, so
that the line AP intersects BC at some point X’. Then the proof of necessity
gives

BX' CY AZ
—_ .= .= 1. D.3
X'C YA ZB (D3)
BX' BX
Combination of (D.2) and (D.3) yields Y = X’ so X'C = XC which

implies X = X’ since X’, X are both on BC.

When X, Y, Z are not all on the sides of AABC, we may assume that ¥ and Z
are on the extensions of BA and C'Y respectively, and X ison BC.If BY || CZ,
by introducing X’ on BC such that AX’ || BY, thenit’s easy to find that X’ = X
similarly. If BY and CZ intersect at a point P, then same reasoning as above
shows X’ = X also. Thus, sufficiency is proven. O

Trigonometric Form of Ceva’s Theorem The Condition (D.2) can be re-

stated as
sin /BAX -sin ZCBY -sinZACZ _

sin /CAX -sin ZABY -sin/BCZ
Lemma  For each of the following two cases, the following equality holds:

1.

BX AB sin/BAX
XC ~ AC sinZCAX'
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Proof of Lemma. Applying the sine rule to AABX and AACX gives
BX sin/ZBAX XC _ sinZCAX

AB  sinZBXA' AC  sinZCXA’

Since sin ZBXA = sin ZC XA, the conclusion is obtained at once by division of
these equalities.
From the lemma similarly we have

CY BC sin/CBY AZ _ AC sinZACZ
YA  AB sinZABY' ZB BC sin/ZBCZ’

then multiplying the three equalities yields the conclusion at once.

Theorem VI. (Simson’s Theorem) Fora AABC and a point D which is out-
side the triangle, introduce three perpendicular lines from D to the sides BC, CA,
intersecting them at Ay, By, Ci respectively. Then Ay, By and Cy are collinear
ifand only if A, B, C, D are concyclic.

Note: When A1, By, C; are collinear, the line passing through them is called
the Simson line.

Proof.  Sufficiency: When ABCD is cyclic, connect DA, DB, DC. Since
C1AB:D and B1A;CD both are cyclic,

LCDA] = ZCB]A] and échA = ZC]B]A.
On the other hand, since ABCD are cyclic,
/DAC, = ZDCA, = LC1 DA = LCDA,

= /C1B1A = ZCB1 A,
= (C,, B1, A; are collinear.

The sufficiency is proven.

Necessity: Suppose that Ay, By, Cy are collinear. Then ZC1 B1A = ZCB A;.
Since C; AB; D and By A;CD both are cyclic,

LC1DA = LCDA; = /ZDAC, = £LDCA;,

therefore ABCD is a cyclic quadrilateral. The necessity is proven. ]

Theorem VII. (Ptolemy’s Theorem) Let ABCD be a convex quadrilateral.
Then
AB-CD + AD -BC = AC - BD (D.4)

ifand only if A, B, C, D are concyclic.
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Extended Ptolemy’s theorem For any convex quadrilateral ABCD, the
inequality
AB-CD + AD-BC > AC - BD (D.5)

always holds, and the equality holds if and only if A, B, C, D are concyclic.

It suffices to show the extended version.

Proof.  Sufficiency: Let the quadrilateral ABCD be cyclic which is inscribed
in a circle with radius R. Below we prove that

AB-CD + BC-AD = AC - BD.

From D introduce perpendiculars to the sides
BC, CA, AB of AABC. Let A;, B;, C;
be the perpendicular feet respectively. Since
A, Ci, D, B; are concyclic and AD is the di-
ameter of its circumcircle, by the sine rule,

B1Cy = ADsin ZC ABy,
AD - BC
2R

BD -CA CD -AB
Similarly, C14; = SR and A, B; = SR By Simson’s theorem,

A1, By, C; are collinear, i.e., A1 B; + B;C; = A1Cq, so

p. A8 4p BC _pp C4
2R 2R 2R

thus, CD - AB + AD - BC = BD - CA.

B]C] = ADsin ZBAC =

Necessity: 'When CD - AB + AD - BC = BD - CA, then, by conversing
above reasoning, A; B; + B1C; = A,Cy, ie., A1, Bi,C; are collinear, so D
must be on the circumcircle of the AABC by the Simson’s theorem again.

When A, B, C and D are not concyclic, then Simson’s theorem shows that
A1, B and Cj cannot be collinear, therefore A; By + B1C; > A:Cy, ie,

cp.AB 4 BC_poca
2R 2R 2R
therefore CD - AB + AD - BC > BD - CA. O

Theorem VIIIL. The three medians of a triangle intersect at one common point,
denoted by G as usual, and each median is partitioned by G as two parts of ratio
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2 : 1. The common point G is called the center of gravity or centroid of the
triangle.

Proof. Let G be the point of intersection of the medians AD and BE. From D
introduce DH || BE, such that DH intersects AC

at H. Then

CH = HE = %AE,

. AG =2GD and GE = %DH = %BE,
.. BG = 2GE also.

Suppose that CF intersects AD at G', then similarly

B D C
2
AG' =2G'D = EAD = AG,

hence G = G’. Thus AD, BE, CF are concurrent at G. O

Consequence An interior point P of AABC is the center of gravity of
AABC if and only if

[PBC] = [PCA] = [PAB.

Proof By passing through P introduce the lines I || BC and lc4 || CA,
then the center of gravity G must be on each of /5. and /¢4, so the point of inter-
section of I, and /., must be G, namely P = G.

Theorem IX. For any triangle, the perpendicular bisectors of three sides intersect
at a common point O. The O is the center of circumcircle of the triangle, called
circumcenter of the triangle.

Proof. For any AABC, if the point of intersection of the perpendicular bisec-
tors of BC and CA is O, then OB = OC = OA implies O is on the perpendic-
ular bisector of the side AB also. 0O
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.
)

A/

Theorem X. The three altitudes of any AABC intersect at one common point H,
called orthocenter of the triangle.

Proof.  As shown in above graph, by passing through each of A4, B, C introduce
a line parallel to the opposite side, and let AA’B’C’ be the triangle formed by
these three lines, then the altitudes of AABC becomes three perpendicular bi-
sectors of sides of AA’B’C’, so they intersect at one common point H (i.e. the
circumcenter of AA’B’'C’). O

Theorem XI1. For any triangle, its angle bisectors of three interior angles in-
tersect at one common point, denoted by I as usual, called incenter (or inner
center) of the triangle. I is the center of inscribed circle of the triangle.

Proof.  The point of intersection of any two inner angle bisectors must be on the
angle bisector of the third inner angle. O

Theorem XII. For a triangle, the angle bisectors of one interior angle and two
exterior angles of the other two interior angles intersect at common point, called
excenter of the triangle. There are three such points for a triangle, and each is
thee center of an escribed circle of the triangle.

Proof. Similar to Theorem XI. O
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