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Introduction 

In 1736, Euler founded Graph Theory by solving the Konigsberg 

seven-bridge problem. It has been more than two hundred years till 

now. Graph Theory is the core content of Discrete Mathematics, and 

Discrete Mathematics is the theoretical basis of Computer Science and 

Network Information Science. This book vulgarly introduces in an 

elementary way some basic knowledge and the primary methods in 

Graph Theory. Through some interesting mathematic problems and 

games the authors expand the knowledge of Middle School Students 

and improve their skills in analyzing problems and solving problems. 
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Chapter 1 Definition of Graph ~ 
~ - .::.~--> 

Graph theory is a branch of mathematics on the study of graphs. 

The graph we consider here consists of a set of points together with 

lines joining certain pairs of these points. The graph represents a set 

that has binary relationship. 

In recent years, graph theory has experienced an explosive growth 

and has generated extensive applications in many fields . 

We often encounter the following phenomena or problems: 

In a group of people, some of them know each other, but others 

do not. 

There are some cities. Some pairs of them are connected by air­

lines and others are not. 

There is a set of points in the plane. The distance between some 

of them is one and others are not one. 

All the above phenomena or problems contain two aspects: one IS 

object, such as people, football teams, cities, points and so on; and 

the other is a certain relationship between these objects, such as 

"knowing each other", "having a contest", "the distance between" 

and so on. In order to represent these objects and the relationships, 

we could use a point as an object, which is called a vertex. If any two 

objects have a relationship, then there is a line joining them, which is 

called an edge. Then we have constructed a graph. 

We call the figure a graph a) • For instance, the three graphs G 1 , 

a) The general definition of graphs: a graph is a triplet (V, E, .p), where V and E are 

two disjoint sets , V is nonempty and.p is a mapping from V x V to E. The sets V, E , .p are 

vertex set, edge set and incidence function, respectively . 
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G2 , G3 in Fig. 1. 1 are isomorphic, which contain some vertices and 

edges joining them, representing some objects and the relationships 

between them. 

Fig. 1. 1 shows three graphs G 1 , G2 , G3 , where vertices are 

represented by small circles. 

~~l A 
v, v , v; v] 

G, G, G, 

Fig. 1. 1 

We can see that in the definition of graphs there are no 

requirement on the location of the vertices, the length and the 

curvature of the edges, and the fact whether the vertices and the edges 

are in the same plane or not. However, we do not allow an edge 

passing through the third vertex and also not let an edge intersect 

itself. In graph theory, if there is a bijection from the vertices of G to 

the vertices of G' such that the number of edges joining v i and v j 

equals the number of edges joining v/ and v/' then two graphs G and G' 

are isomorphic and considered as the same graph. 

A graphG' = (V', E') is called a subgraph of a graphG = (V, E) 

if V' c V, E' c E, that is, all the vertices of G' are the vertices of G 

and the edges of G' are the edges of G. 

For instance, the graphs G 1 , G2 in Fig. 1. 2 are the subgraphs 

of G. 

G G, G, 

Fig. 1. 2 
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If there is an edge joining v i and v j in graph G, then v i and v j 

are adjacent. Otherwise, they are nonadjacent. If the vertex v is an 

end of the edge e, then v is incident to e. In Fig. 1.3, Vl and V2 are 

adjacent, but V2 and V4 are not. The 

vertex V 3 is incident to the edge e 4 • 

We called the edge a loop if there is e , 

an edge joining the vertex and itself. 

For instance , the edge e6 in Fig. 1.3 is a 

loop. 

v, 

e, 

v, 

e, 

Fig. 1. 3 

Two or more edges with the same pair of ends are called parallel 

edges. For instance, the edges e 1 , e2 in Fig. 1. 3 are parallel edges. 

A graph is simple if it has no loops or parallel edges. The graphs 

G1 , G2 , G3 in Fig. 1. 1 are simple, whereas the graph in Fig . 1.3 is 

not. In a simple graph, the edge joining v i and v j is denoted by 

(v i' V j) . Certainly, ( v i' V j) and (v j' Vi) are considered as the 

same edge. 

A complete graph is a simple graph in which any two vertices are 

adjacent. We denote the complete graph with n vertices by K n. The 

graphs K 3 , K 4' K 5 in Fig. 1.4 are all complete graphs. The number of 

edges of the complete graph K" is G) = ~ n (n - 1). 

K, 

Fig. 1. 4 

A graph is finite if both the number of the vertices I V I ( I V I is 

also said to be the order of G) and the number of edges I E I are finite. 

A graph is infinite if IV I or I E I is infinite. 

In this chapter, unless specified, all graphs under discussion 

should be taken to be finite simple graphs. 
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These fundamental concepts mentioned above help us to consider 

and solve some questions . 

Example 1 There are 605 people in a party. Suppose that each of 

them shakes hands with at least one person. Prove that there must be 

someone who shakes hands with at least two persons. 

Proof We denote the 605 people by 605 vertices VI' V2' ... , 

V605 ' If any two of them shake hands, then there is an edge joining the 

corresponding vertices. 

In this example we are going to prove that there must be someone 

who shakes hands with at least two persons. Otherwise, each of them 

shakes hands with at most one person. Moreover, according to the 

hypothesis each of them shakes hands with at least one person . Thus 

we have each of them just shakes hands with one person. It implies 

that the graph G consists of several figures that every two vertices are 

joined by only one edge. 

Suppose that G have r edges . So G has 

2r (even) vertices. It contradicts the fact that 

the number of vertices of G is 605 (odd). 

We complete the proof. Fig. 1. 5 

Example 2 Is it possible to change the state in Fig. 1. 6 to the 

state in Fig. 1. 7 by moving the knights several times? (In the figures , 

W stands for white knight, and B stands for black knight . knight 

should be moved by following the international chess regulation) 

Solution As Fig. 1. 8 shows, the nine squares are numbered and 

each of them is represented by a vertex in the plane. If the knight can 

be moved from one square to anther square , then there is an edge 

joining the two corresponding vertices, as Fig . 1. 9 shows. 

~~ 
~~ 

Fig. 1. 6 Fig. 1. 7 

I 

2 

3 

4 7 

5 8 

6 9 

Fig. 1. 8 
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'0 0 0 I W 5. 2 I W 5. . 

8 9 B 9 W 9 
8 B 8 B 

3 4 3 4 3 4 

Fig. 1. 9 Fig. 1. 10 Fig. 1.11 

Thus the beginning state in Fig. 1. 6 and the state in Fig. 1. 7 are 

represented by the two graphs as in Fig. 1. 10, Fig . 1. 11, respectively. 

Obviously, the order of the knight on the circle cannot be 

changed from the state that two white knight are followed by two 

white knight into the state that white knight and black knight are 

interlaced. So it is impossible to change the states as required. 

Example 3 There are n people A I , A 2 , . • . , A n taking part in a 

mathematics contest, where some people know each other and any two 

people who do not know each other would have common 

acquaintance . Suppose that Al and A 2 know each other, but do not 

have common acquaintance. Prove that the acquaintances of Al are as 

many as those of A 2 • 

Proof Denote the n people AI, A 2 , . .. , An by n vertices VI' 

V2' ... , V n. If two people know each other, then there is an edge 

joining the two corresponding vertices. Then we get a simple graph G. 

The vertices of G satisfy that any two nonadjacent vertices have a 

common neighbor. We shall prove two adjacent vertices VI and V2 have 

the same number of neighbors. 

The set of neighbors of the vertex VI is denoted by N (VI) and the 

set of neighbors of the vertex V 2 is denoted by 

N ( V2 ). If there is a vertex V i in N ( VI) and 

V i#- V 2 ' then V i is not in N (V 2 ). Otherwise 

Al and A2 have the common acquaintance A i . 

Thus V2 and V i have a common neighbor V j and 

v j #- v 1. So N (V2) contains v j' as Fig. 1. 12 

shows. For V i ' V k in N (V I )' which are 

, ", , 

" N(7J ,) " " N( v ,) " \V'O: '- Vj ': ''''- -," .... ---" 

V I v~ 

Fig. 1.12 
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distinct from V2' both of them cannot be adjacent to a vertex v j in 

N (V2)' which is distinct from VI . Otherwise, two nonadjacent 

vertices V I ' V j have three common neighbors V2' V i' V k . Therefore 

v k in N (VI)' which is distinct from v k ' must have a neighbor v I in 

N (V2)' which is distinct from v j . So the number of vertices in N (VI) 

is not greater than that of N (V 2 ) . Similarly the number of vertices in 

N (V2) is not greater than that of N (VI). Thus the edges incident to VI 

are as many as those incident with V2. 

Example 4 Nine mathematicians meet at an international 

mathematics conference. For any three persons , at least two of them 

can have a talk in the same language . If each mathematician can speak 

at most three languages, prove that at least three mathematicians can 

have a talk in the same language. (USAMO 1978) 

Proof Denote the 9 mathematicians by 9 vertices VI' V2' .. . , 

V9. If two of them can have a talk in the ith language, then there is an 

edge joining the corresponding vertices and color them with the i th 

color. Then we get a simple graph with 9 vertices and edges colored. 

Every three vertices have at least one edge joining them and the edges 

incident to a vertex are colored in at most three different colors . Prove 

that there are three vertices in graph G, any two of which are adjacent 

to the three edges colored with the same color. (This triangle is called 

monochromatic triangle. ) 

If the edges (v i ' V j ) , (v i' V k ) have the i th color, then the 

vertices v j , V k are adjacent and edge (v j , V k) has the i th color. Thus 

for vertex VI , there are two cases : 

(1) The vertex V I is adjacent to V 2 ' ... , V 9. By the pigeonhole 

principle, at least two edges, without loss of generality, denoted by 

(VI' V2), (VI' V 3 )' have the same color. Thus triangle D V I V2V 3 is a 

monochromatic triangle . 

(2) The vertex VI is nonadjacent to at least one of V 2' ... , V 9. 

Without loss of generality, we suppose that VI is nonadjacent to V 2 . 

For every three vertices there is at least one edge joining them, so 

there are at least seven edges from vertices V 3 ' V4' . .. , V9 to the 
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'Vertex VI or V2. From that we know at least four 

vertices of V3' V4' . . . , V9 are adjacent with 

vertex VI or V2' Without loss of generality, we 

suppose that V3, V4' vs, V6 are adjacent to VI' as 

it is shown in Fig. 1. 13. Thus there must be two 

edges of (VI' V3)' (VI' V4)' (VI' vs), (VI' V6) 

which have the same color. Suppose (VI' V3), 

v,o 

7 

Fig. I. 13 

(VI' V4) have the same color, then DVIV3V4 is a monochromatic 

triangle . 

Remark If the number 9 in the question is replaced by 8, then 

the proposition is not true. Fig. 1. 14 gives a counterexample. Denote 

the 8 vertices by VI' V2' ... , V8 and 12 colors by 1, 2, ... , 12, and 

there is no monochromatic triangle in the graph. 

I~~I 
v, 2 v, 

Fig. 1. 14 

~. 

7~:~:~~J 
v, 8 v, 

The following example is the third question of national semor 

middle school mathematics contest in 2000. 

Example 5 There are n people, any two of whom have a talk by 

telephone at most once. Any n - 2 of them have a talk by telephone 3m 

times, where m is a natural number. Determine the value of n. (China 

Mathematical Competition) 

Solution Obviously n ;;? 5. Denote the n persons by the 

vertices AI, A 2 , ••• , An. If A i ' Aj have a talk by telephone, 

then there is an edge (A i, A j ). Thus there is an edge joining two 

of the n vertices. Without loss of generality, we suppose that it is 

(A I ,A 2 ). 

Suppose there is no edge joining A I and A 3 • Consider n - 2 

vertices AI, A 4 , A s , ... , An; A 2 , A 4 , As, . .. , An and A 3 , A 4 , 
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As, ... , A n. We know the number of edges joining any of A I ' A 2 , 

A3 to all of A 4 , As, ... , An is equal and we denote it by k . 

Add A2 to the set AI, A 4 , As, ... , An' then there are S = 3m + 
k + 1 edges joining the n - 1 vertices. Take away any vertex from n -1 

vertices, the number of edges joining the remaining n - 2 vertices is 

always 3m • So there are k + 1 edges joining every vertex and the 

remaining n - 2 vertices. Therefore, 

S = ; (n - 1)(k +1). 

Similarly, add A 3 to the set AI, A 4 , As, ... , An. We get n -1 

1 vertices and the number of edges is t = 3m + k = 2 (n - 1 ) k. 

For S = t + 1, we have 

that is n = 3. A contradiction. Thus there is an edge joining AI, A 3. 

Similarly, there is also an edge joining A2 and A 3. Moreover, 

there must be edges joining AI, A2 and allAi(i = 3,4, ... , n). 

For Ai, Aj (i "#- j), there is an edge joining A i and AI' So there is 

an edge joining Ai and A j • Thus it is a complete graph. Therefore, 

Hence we have n = 5. 

Example 6 There are n (n > 3) persons. Some of them know 

each other and others do not. At least one of them does not know the 

others. What is the largest value of the number of persons who know 

the others? 

Solution Construct the graph G: denote the n persons by n 

vertices and two vertices are adjacent if and only if the two 

corresponding persons know each other. 

For at least one of them does not know the others, in graph G 

there are at least two vertices which are not adjacent. Suppose that 
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there is no edge e = (v 1 , V 2) joining VI' V2. Thus G must be K n - e if 

it has the most edges. That is the graph taken away an edge e from the 

complete graph K n. The largest number of vertices which is adjacent 

with the remaining vertices is n - 2. So the largest number of people 

who know the others is n - 2. 

The following example is from the 29th International Mathematical 

Olympiad (1988). 

Example 7 Suppose that n is a positive integer and A I , A 2 , ••• , 

A 2n + 1 is a subset of a set B. 

Suppose that 

(1) each Ai has exactly 2n elements; 

(2) each A i n Aj (1 ~ i < j ~ 2n + 1) has exactly one element; 

(3) each element of B belongs to at least two Ai'S. 

For which values of n can one assign to every element of B one of 

the number 0 and 1 in such a way that Ai has 0 assigned to exactly n of 

its elements? 

Solution At first, the words "at least" in (3) can be replaced by 

"exactly". If there is an elemental E Al n A 2n n A 2n +1 , then each of 

the remaining 2n - 2 subsets A 2 , A 3 , ... , A 2n - 1 has at most one 

element of AI. Thus there is at least one element in Al but not inA2 U 

A3 U ... U A2n-1 U A 2n U A 2n +l • 

It contradicts (3). 

Construct the complete graph K 2n+1' where every vertex Vi 

represents a subset A i and every edge (Vi' v j) = eij (1 ~i, j ~ 2n + 1, 

i eft j) represents the common element of A i ' A j • So the question can 

be changed into: what property does n satisfy such that by as signing 

the edges of K 2n+1 to 0 or 1, exactly n edges of the 2n edges incident to 

any vertex v i are assigned to O? 

K 2n+1 has n (2n + 1) edges. If the required method of assigning can 

be met, then there are ~ n (2n + 1) edges which are assigned to o. So n 

must be even. 

Conversely, if n = 2m is even, we assign the edges (v i' V i-m) , 
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( v; , V ;-m+ 1 ), ••• , (v ; , V ;- 1) ' (V ; , V ;+1)' ... , (V ; , V ;+m )' i = 1, 

2, ... , 2n + 1, to 0, otherwise to 1 in K 2n+ 1. Then the method can 

meet the requirement. (Note that v ( 2n+ ])+ ; = v ; ). 

Therefore , the condition of the question is satisfied if and only if 

n IS even . 

The following problem is from the IMO preseleced questions 

in 1995. 

Example 8 There are 12k persons attending a conference . Each 

of them shakes hands with 3k + 6 persons, where any two of them 

shake hands with the same number of people. How many persons are 

there in the conference? 

Solution Suppose that for any two persons, they shake hands 

with n people . For one person a, the set of all the persons shaking 

hands with a is denoted by A and the set, the other persons by B. We 

know from the problem that I A I = 3k +6, I B I = 9k - 7. For b E A, 

n persons shaking hands with a, b are all in A . Therefore, b shakes 

hands with n persons in A and 3k + 5 - n persons in B. For c E B, n 

persons shaking hands with a, c are all in A. Thus the number of 

persons in A who have shaken hands with someone in B is 

So 16n 

Ok +6)Ok + 5 - n) = (9k - 7)n , 

Ok + 6) Ok + 5) 
n = 12k - 1 

(i2k - 1 + 25) (i2k - 1 + 21) 
(i2k - 1) 

Obviously, 0 , 12k - 1) = 1. So (i2k - 1) I 25 X 7. For 12k - 1 

divided by 4 leaves 3, 12k - 1 = 7, 5 X 7, 52 X 7. By calculating 12k -

1 = 5 X 7 has the only integer solution k = 3, n = 6. 

Next we construct a figure consists of 36 points . Each point is 

incident to 15 edges and for any two points there are 6 points adjacent 

to them. 

Naturally, we can use 6 complete graphs K 6 . Divide the 36 points 

into 6 teams and label the points in the same team. We get a 6 X 6 

square matrix 
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1 234 5 6 

612345 

561234 

456123 

345612 

2 3 456 1 

11 

For any point in the square matrix, it only connects with 15 points in 

the same row, in the same column, or having the same label. It is 

obvious that for any two persons there are 6 persons who have shaken 

hands with them. 

Exercise 1 

1 Consider the graph G = (V, E), where V = {Vl' V2' ••• , 

V 5 }, and E = {(v l' V 2)' (v 2' V 4)' (v 3' V 4), (v 4' V 5), (V 1 , V 3) }. 

Draw the graph G. 

2 Let G be a simple graph, where I V I = n, I E I = e. Prove that 

,;::: n(n - 1) 
e ~ 2 . 

3 Show the following two graphs are isomorphic. 

(1) (2) 

Fig. 1. 15 

4 There are n medicine boxes. Any two medicine boxes have the 

same kind of medicine inside and every kind of medicine is contained 

in just two medicine boxes. How many kinds of medicine are there? 

5 There are n professors A 1 , A 2 , ••• , An in a conference. 

Prove that these n professors can be divided into two teams such that 
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for every Ai' the number d i of the people whom he has acquaintance 

with in another team is not less than d/ in his team, i = 1, 2, ... , n. 

6 There are 18 teams in a match. In every round, if one team 

competes with another team then it does not compete with the same 

team in another round. Now there have been 8 rounds. Prove that 

there must be three teams that have never competed with each other in 

the former 8 rounds. 

7 n representatives attend a conference. For any four represent­

atives, there is one person who has shaked hands with the other three. 

Prove that for any four representatives, there must be one person who 

shakes hands with the rest of the n - 1 representatives. 

8 There are three middle schools, each of which has n students. 

Every student has acquaintance with n + 1 students in the other two 

schools. Prove that we can choose one student from each school such 

that the three students know each other. 

9 There are 2n red squares on the a big chess board. For any two 

red squares, we can go from one of them to the other by moving 

horizontally or vertically to the adjacent red square in one step. Prove 

that all the red squares can be divided into n rectangules. 

10 There are 2000 people in a tour group. For any four people, 

there is one person having acquaintance with the other three. What is 

the least number of people having acquaintance with all the other 

people in the tour group? 

11 In a carriage, for anym(m ~ 3) travelers, they have only one 

common friend. (If A is a friend of B, then B is a friend of A. 

Anyone is not a friend of himself. ) How many people are there in the 

carriage? 

12 There are five points A, B, C, D, E in the plane, where 

any three points are not on the same line. Suppose that we join some 

points with segments, called edges, to form a figure. If there are no 

above five points in the figure of which any three points are the 

vertices of a triangle in the figure, then there cannot be seven or more 

than seven edges. 



Chapter2 Degree of a Vertex 

The degree of a vertex v in a graph G, denoted by de (v), is the 

number of edges of G incident to v, where each loop is counted as two 

edges. Moreover, when there is no scope for ambiguity, we omit the 

letter G from graph-theoretic symbols and write, for example, d (v) 

instead of d e (v). We denote by 8 (G) and t::. (G) the minimum and 

maximum degrees of the vertices of G, or 8 and t::. for brevity. 

In Fig. 2. 1 , d ( V 1) = 1 , d ( V 2) = 3, d ( V 3) = d ( V 4) = 2, 8 = 1, 

t::. = 3. 

A vertex is odd if its degree is odd, otherwise, it is even . In 

Fig. 2.1, VI and V2 are odd vertices, and V 3 and V4 are even. 

V, 

V30-----~V, 

Fig. 2. 1 Fig. 2. 2 

A graph G = (V, E) is said to be k -regular, if d ( v) = k for all 

v E V. The complete graph on n vertices is (n - i)-regular. Fig. 2. 2 

shows a 3-regular graph. 

The connection between the sum of the degrees of the vertices of a 

graph and the number of its edges is given as follows. 

Theorem 1 For any graph G on n vertices, the sum of the degrees 

of all of the vertices is twice as large as the number of the edges. In 

symbols, if G with n edges has vertices Vl' V2' ... , v,,, then 
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Proof The sum of the degrees of all of the vertices d ( VI) + 
d ( V 2) + ... + d ( v ,.) represents the whole number of the edges one of 

whose ends is VI' V2' ... , or v n' Since each edge has two ends, every 

edge of G is counted twice in the sum d ( v j) + d ( V 2) + ... + d ( v" ). So 

the sum of the degrees of all of the vertices is twice as large as the 

number of the edges. 

For instance, in Fig. 2.1, e = 4, 

Theorem 1 is often called the Hand-Shaking Lemma. A famous 

conclusion is given by Euler about two hundred years ago, that is to 

say, if many people shake hands when they meet, then the number of 

times of shaking hands is even. Then we can have the conclusion that 

there is an even number people who shake hands an odd number of 

times. The corollary is the following Theorem 2. 

Theorem 2 In any graph G, the number of vertices with odd 

degree is even. 

Proof Suppose that G has vertices VI' V2' ... , V n' where 

VI' ... , V 1 are odd vertices and v 1+1 , 

Theorem 1, 

.,. , V n are even. According to 

d (v 1) + ... + d (v I) + d (v ,+1) + ... + d (v,,) = 2e, 

deVl) + ... +dev,) = 2e - deV 1+l) - ••• - d(v,,). 

Since de v 1+1) + ... + d e v,,) are all even, the right side of the 

equality is even. However de VI), ... , d (v I) are all odd, then t must 

be even so that d(vj) + ... +dev l ) is even. That is, the number of 

vertices with odd degrees is even. 

Example 1 Among n (n > 2) people, there are at least 2 persons, 

where the number of their friends are the same. 

Solution We denote the n people by the vertices VI , V2' ... , V n • 

If two persons are friends, we join the corresponding vertices. Then 

we get a graph. The assertion follows if we can find at least 2 vertices 
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with the same degree in G. 

A vertex is at most adjacent to other n - 1 vertices in a simple 

graph on n vertices, so d ( v) < n - 1 , for all v E V. Hence the degree 

of a vertex in G can take only the following values: 

0,1,2, ... ,n-1. 

However, not all of them are feasible. Note that a vertex with 

degree zero could not be adjacent to any other vertex and that the 

vertex with degree n - 1 must be adjacent to any other n - 1 vertices. 

So in G, only the following degrees are possible: 

0,1, 2, ... , n -2, 

or 

1,2,3, .. . ,n-1. 

According to the pigeonhole principle, there are at least 2 vertices 

with the same degree. 

Example 2 There are 24 pairs of contestants taking part in the 

International Table Tennis Mixed Doubles Contest. Some athletes 

shake hands before the game, and the two in one pair do not shake 

hands with each other. After the game, one male athlete asks 

everybody the number of hand-shaking, and all the answers are 

different. How many people does the male contestant's female partner 

shake hands with? 

Solution The 48 vertices v, v o, Vj, •.. , V46 represent the 48 

contestants where the male contestant is represented by v, with edges 

joining two people who had shaken hands before, then we can get a 

graph G. In graph G, d (v i) < 46, i = 0, 1, 2, ... , 46, and d (v i) *" 
d ( v j ), if i =1= j. So except v, the degree of the other vertices are 

0, 1, 2, ... , 45, 46. 

Without loss of generality, we suppose that d (v i) = i, for i = 0, 1, 

2, ... , 46. Vertex V46 is adjacent to every vertex except Va, so Vo and 

V46 are partners. Deleting V46' V o and the edges which are incident to 
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them, we can get graph G l . The degree of every vertex in graph G l 

except v is still different and has decreased by 1. Likewise, V45 and VI 

are partners. So are V44 and V2' .• • , V24 and V 22' That is to say, the 

partner of v is V23' so the male contestant's female partner shakes 

hands for 23 times. 

Remark Changing 24 to 34 in Example 2, "male and female 

partners" to "group leader and deputy group leader", this is one of 

pre-selected problems In the 26th International Mathematics 

Olympiad. Changing 24 to 16, "male and female partners" to "2 

football teams A and B", that is the third problem of the extra test of 

China Mathematical Competition in 1985 . 

Example 3 Every city in one country has 100 roads connecting to 

other cities, and any city can be reached from any other city. Now, 

one road is closed for repair. Prove that any city can still be reached 

from any other city. 

Proof Assume that the road closed is AB. We need to prove that 

B can still be reached from A. Otherwise, except A, the degrees of all 

the vertices in the connected subgraph containing vertex A are even. 

By Theorem 2, it is a contradiction. 

Remark The key point is to study the connected subgraph. The 

concept of connecting is very important, and we will encounter it 

later . 

Example 4 Some cities are located on both sides of a river, and 

there are no less than 3 cities. Some routes connect the cities, and a 

pair of cities locating on both sides is connected by one route. 

Furthermore, each city is connected only with k cities on the other 

side. People could go to one city from any other city. Prove that 

people could still go to any city from any other city if one route is 

canceled . 

Proof We may consider the two sides as the north side and the 

south side. The n cities on the north side are represented by Xl' 

X2' ... , X" and the whole set is denoted by X = {Xl' X2' ••• , Xn}. 

The m cities on the south side are represented by Yl , Y2' ... , Ym and 
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Y = {Yl' Y2' ... , Ym }. If there is a route between the city Xi on the 

north side and the city Yi on the south side, we connect them to form 

an edge (x i ' Y i)' and the set formed by all the edges is denoted by E. 

Then we can get a graph formed by the vertex sets X, Y and the edge 

sets E, which is called a bipartite graph, or an even graph, denoted 

by G = (X , Y; E). The last two conditions are that there are only k 

edges incident to any vertex, and the graph G is connected in the sense 

that there exist some paths between any two vertices. The conclusion 

is that deleting any edge e from E, the graph is still connected. 

Each vertex is incident to k edges, so 

IXlk=IEI=IYlk, 

where 1 X I , 1 E I , 1 Y 1 denote the numbers of the elements in sets X, 
E, Y respectively. So 1 X I = 1 Y I , andn =m. Since 1 X 1+1 Y 1 ~ 3, 

then 1 X 1 = 1 Y 1 ~ 2. 

Deleting one edge from G, we can get a graph G'. If G' is not 

connected, G' is composed of two connected components Gl and G2 • 

Let 

X = Xl U Xn Xl n X2 = 1>, 

Y = Y l U Y 2 , Y l n Y 2 = 1>, 

The deleted edge connects the vertices in Xl and Y 2 , then 

1 Xli k - 1 = 1 El l = 1 Y l 1 k, 

1 X2 1 k -1 = 1 E 2 1 = 1 Y 2 1 k - 1. 

Then (I Xli -I Y l I) k = 1, and hence k = 1. 

G is connected, so 1 X 1 = 1, which is contradictory to 1 X 1 ~ 2. 

So G' is connected, and the conclusion holds. 

Example 5 There are 99 members in a club, and every member 

claims that he would play bridge only with someone he knows. Each 

member knows at least other 67 members. Prove that there must be 4 

members who can play bridge together. (Polish Mathematics Contest in 
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1996) 

Proof 1 Construct a graph G: denote the 99 members by 99 

vertices and join every two vertices whose corresponding members 

know each other. The condition is that d (v) ~ 67, for all v E V. We 

should prove that there is a complete graph K 4 in G. For any vertex u 

in G, d (u) ~ 67, so there exists a vertex v such that there are at most 

(99 - 1 - 67 = )31 vertices which are neighbors of v, but not of u. 

Similarly , there are at most 31 vertices which are adjacent to u, not v . 

That is to say there are at least (99 - 31 - 31 - 2 = )35 vertices adjacent 

to both u and v. As shown in Fig . 2. 3, assume that vertex x IS 

neighboring with both u and v. Vertex 

x is at least adjacent to one vertex y 

which is a neighbor of both u and v, 

since d (x) ~ 67, and there are at most 

(31 + 31 + 2 = )64 vertices which are " , , 
not adjacent to u and v at the same \, ~31': " 

time. So u, v, x and yare neighbors, 

which proves the proposition . 

Fig. 2.3 

Proof 2 The members are represented with the vertices, with 

edges joining two strangers, then we can get a graph G'. Since each 

person knows at least 67 people, d (v) ~ 99 - 1 - 67 = 31, for all v. 

We need to prove that there exist 4 vertices which are not mutually 

adjacent in G'. For a vertex u, choose a vertex v which is not adjacent 

to u. In the remaining 97 vertices, the number of vertices that are 

neighbors of either u or v could not exceed 

d(u) + d(v) ~ 31 + 13 = 62. 

So there exists a vertex x which is not adjacent to both u and v, and 

the number of vertices adjacent to u, v or x cannot exceed 

d(u) + d(v) + d(x) ~ 31 X 3 = 93. 

Thus in the remaining 96 vertices, there must be a vertex y which is 

not adjacent to u, v and x, then the 4 people corresponding to u, v, 
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x and y know each other, and they can play bridge together. 

Remark 1 Changing to 66, we might not be able to find out 4 

people who know each other. The counter-example is shown in Fig. 2. 

4. Separate the vertex set V into three subset {V I ' V2' ... , V33}, {V34' 

V35' ... , V 66 } and { V67 ' V68' . . . , V99 } ' Any two vertices in the same 

set are not adjacent, and two vertices in 

different sets are always adjacent. 

Obviously, the degree of every vertex is 

66, and there are at least 2 vertices 

belonging to the same subset in any 4 

vertices. It means that they are not 

adjacent. That is to say, there does not 

exist 4 vertices which are adjacent 

mutually. 
Fig. 2. 4 

Remark 2 We can generalize it as follows: there are n en ~ 4) 

members in a club, and each person at least knows [2; ] + 1 people, 

then there must exist 4 persons who know each other. 

Remark 3 If G is a simple graph on n vertices, then we can get a 

graph by deleting all the edges belonging to G from the complete graph 

K n' which is called the complementary graph of G, denoted by G. The 

graph G in Proof 1 and the graph G' in Proof 2 are complementary. 

Remark 4 We can make use of the pigeonhole principle to get 

another good solution. Please try it yourself. 

Example 6 In a region, 20 members of a tennis club hold 14 

single matches, and everybody plays at least once. Prove that there 

must be 6 matches in which 12 participants are all different. (USAMO 

1989) 

Proof The 20 members are represented by 20 vertices VI' V2' .. . , 

V20' with edges joining 2 participants who have played a match. Then 

we get a graph G. There are 14 edges in G, and denote the degree of 

the vertex by d i , i = 1, 2, ... , 20, d i ~ 1. According to Theorem 1, 

d l +d2 + ... +d 20 = 2 X 14 = 28. 
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Delete d i - 1 edges incident to Vi. Since one edge might be deleted 

twice, the number of deleted edges does not exceed 

Cd t - 1) +Cd 2 - 1) + " '+ Cd 20 - 1) = 28 - 20 = 8. 

So the graph G after deleting the edges, has at least 14 - 8 = 6 

edges, and the degree of each vertex in G' is at most 1. Therefore the 

12 vertices that are incident to the 6 edges are different. That is to 

say, there must be 6 matches in which 12 participants are all different. 

Example 7 Let 5 = {Xt, X2' • •• , xn} be a point set on the 

plane, and the distance between any 2 vertices is at least 1. Prove that 

there are at most 3n pairs of vertices, and the distance between 2 

vertices in a pair is exactly 1. 

Proof The n points are represented with n vertices, with edges 

joining 2 points whose distance is 1, then we get a graph G . The 

number of edges in G is denoted bye . Obviously, the vertex adjacent 

to vertex x i in graph G is on the circle whose center is Xi' and whose 

radius is 1. Since the distance between two points in set 5 is no less 

than 1, there are at most 6 points of 5 on the circle. So d Cx i ) ~ 6. 

Using Theorem 1 to graph G, we have 

6n ~ 2e, 

1. e . e ~ 3n. That is to say, the number of edges in graph G cannot 

exceed 3n. So there are at most 3n pairs in the n vertices, whose 

distance of every pair is exactly 1. 

Example 8 There are n points on the plane. Prove that the 

number of pairs of points whose distance is 1 would not exceed ~ + 

J2 1-- n 2 2 . 

Proof Denote the n points by n vertices in graph G. Let V = 

{ V t' V 2' ••• , v ,, } is the vertex set in graph G. Join 2 vertices whose 

distance is 1. According to Theorem 1, 
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C i denotes a circle whose center is v i and radius is 1. The total 

number of intersection points between any two of n circles does not 

exceed2G) = nen - 1). On the other hand, if Vi is adjacent to both 

v j and v k ' then viE C k n C j. Therefore, v i regarded as an 

(deVi)) 
intersection point of circles C l' C2 , ••• , C n is counted 2 

times, so 

According to the Cauchy Inequality, we have 

(deVl)) (deV2)) (deVn)) 2 2 + + ... + ~ -e -e. 
2 2 2 n 

According to CD and (2), we have 

1. e. 

Then 

~e 2 - e :::;;; n (n - 1) , 
n 

n J2 ~ e <- +-n 2 
~ 4 2 . 

Exercise 2 

CD 

1 Let G = ev, E) be a graph, where I V I = n and I E I = e. 

2e Prove that 0 :::;;; - :::;;; 6. 
n 
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2 G is a graph with n vertices and n + 1 edges. Prove that there 

exists at least one vertex whose degree is no less than 3. 

3 Does there exists a polyhedron such that the number of its 

faces is odd and each face has an odd number of edges? 

4 There are 15 telephones in a town. Can we connect them so 

that each telephone is connected with the other 5 telephones? 

5 There are 123 people attending an academic symposium, and 

each person has discussed with at least 5 other participants. Prove that 

there is at least one person who has discussed with more than 5 

participan ts . 

6 In a conference, each councilor does not know at most 3 

person. Prove that all the councilors can be divided into 2 groups such 

that each councilor in a group does not know at most 1 person. 

7 2n people are getting together, and each one knows at least n 

people. Prove that there must exist 4 persons such that they know the 

persons sitting besides them when sitting around a round table (n :)0 2). 

8 There are 9 people Vl' V 2 ' ... , V9. V l has shaken hands with 

2 people. V2 and V3 have shaken hands with 4 people respectively. V4' 

VS, V6 and V7 have shaken hands with 5 people respectively. V 8 and V9 

have shaken hands with 6 people respectively. Prove that there must 

exist 3 people who have shaken hands with each other among 

themselves. 

9 There are 14 members in a tour group. When they are resting 

on a hill, they would like to play bridge, and each of them has all 

cooperated with 5 of them before. There is a rule that 4 people can 

play together only when any 2 of them have never cooperated with 

each other. If so, they cannot go on after 3 rounds. At this time, 

there comes another tourist, and he has never cooperated with the 

members in the tour group. Prove that there must be another round if 

the new comer joins the bridge. 

10 For a vertex set P consists of any n vertices on the plane, the 

vertex set is stable if the distance between any 2 of them is fixed. 

Prove that the vertex set P consists of n (n :)0 4) is stable if any 3 of 
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them are not on the same line, and there are ~ n (n - 3) + 4 pairs 

whose distance are determined. 

11 A cube with edge of length n is cut into n 3 unit cubes by 

planes parallel to its sides. How many pairs of unit cubes whose 

common vertices are no more than 2 are there? 

12 There are 21 routes connecting the capital and other cities. 

There is only one route connecting city A and one other city, and all 

cities other than A are connected with some other places. Prove that 

city A can be reached from the capital. 



ChapterS Turan's Theorem 

In 1941, a Hungarian mathematician Tunln brought forward his 

famous theory so as to answer the question that if a graph with n 

vertices does not contain a complete graph K m with m vertices as its 

subgraph, how many edges can the graph contain at most? Then a new 

branch of graph theory called "extremal graph theory" appeared. The 

extremal graph theory is one of the most active branch of graph 

theory. In 1978, a Hungarian mathematician B. Bollobas wrote a 

book called "extremal graph theory" which is the authoritative book of 

this branch. 

Then we begin with the definition of a k-partite graph. 

If the set of vertices V of a graph G can be decomposed into a 

union set of k subsets which do not intersect each other. Namely, 

k 

V = U Vi' V i n Vj = 0 , i =I=- j , 
i= l 

and there is no edge whose two vertices are in the same subset. We call 

such graph a k-partite graph denoted by G = eV1 , V 2 , ••• , V k ; E). 

Fig. 3. 1 shows us a 2-partite graph which is also called bigraph. 

Fig. 3.2 shows us a 3-partite graph. 

,,, ....... -- - - - ........ , 
, , 

AA' " , ' 

--- ---- ---
;'" -- ........ , 

, , , , 
'.... ..; 

Fig.3.1 Fig. 3. 2 
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Clearly, any graph with n vertices is n-partite graph. 

Suppose that there is a k-partite graph G = (VI' V 2 , ••• , V k ; E) 

with I Vi I = mi. A graph G is said to be a complete k-partite graph if 

any two vertices of G satisfy u E Vi' V E V j , i -=I=- j , where i , j = 1 , 

2, ... , k, u and v are adjacent. We denote G by Kmj.m2 • ..• mk. 

Fig. 3. 1 shows us a complete bigraph K 2. 3' There are m 2 and m (m + 1) 

edges in complete bigraphs K m. m and K m. m+1 , so the number of edges 

of the graph is [~2 J, where n is the number of vertices in G. (Here 

[x] denotes the largest integer no more than x.) Complete bigraphs 

K m • m andKm,m+1 contain no triangle, In Theorem 1, we can see that 

these two kinds of graphs contain the most number of edges among the 

graphs without triangles. 

Theorem 1 If a graph G with n vertices contain no triangle, the 

largest number of edges of G is [n42 J. 
Proof Assume that VI is the vertex with the maximum degree in 

G, d (v I) = d and we denote d vertices adjacent to VI by 

V n , V ll -1' ••• , V n -d+l. 

Since G contains no triangle, any two of v n , V,, - I' ••• , Vn - d+1 are 

not adjacent. So the number of edges of G satisfies 

e < d ( V I) + d ( V 2) + ... + d ( v" -d ) 

« n - d).d « n-~+df 

n 2 

4' 

Since e must be an integer, e < [~2 J. 
The upper bound can be met only when G = Km. m if n = 2m and 

G =Km,m+1 ifn = 2m + 1. 

We can also use induction to prove the theorem, and we leave it as 

an exercise, 

Example 1 Suppose that there are 20 vertices and 101 edges in a 
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graph G. Prove that there must exist two triangles which have a 

common edge in G. 

Proof In general, we can replace 20 by more general number 2n 

(n ~ 2). Now we use induction, if there are 2n (n ~ 2) vertices and 

n 2 + 1 edges in a graph G, there must be two triangles which have a 

common edge in G . 

When n = 2, there are 4 vertices and 5 edges in the graph G . 

Consider the complete graph K 4' there are (~) edges in K 4. It is not 

difficult to prove that whatever edge we remove from K 4' there must 

still be two triangles which have a common edge in G. So the theorem 

holds when n = 2. 

Suppose that the theorem holds for n = k (k = 2). Let G be a 

graph with 2(k + 1) vertices which are denoted by VI' V2' . .. , V2k+2 

and (k + 1)2 + 1 = k 2 + 2k + 2 edges. Note that 

[ (2k : 2) 2 ] = [k 2 + 2k + 1] < P + 2k + 2. 

According to Theorem 1, there must be a triangle in G. Without loss 

of generality, we denote this triangle by L"> VI V2 V3 and d (v I) ~ 

d(V2) ~ d(V3). 

If one of the vertices V4' VS' ... , V 2k+2 is adjacent to two of VI , 

V2' V3' then we get two triangles with a common edge. 

If each of V4' vs, .. . , V2k+2 is adjacent to at most one of V I , V2' 

V3' then the number of edges which join the vertex set {V4' VS, .•. , 

V2k+2 } to {VI' V2' V3} is less than (2k + 2) - 3 = 2k - 1. Then the 

number of edges which join the vertex set {VI' V2} to {V4' VS' ..• , 

V 2k +2 } is no more than ; (2k - 1). We remove the vertices VI , V2 and 

the edges adjacent to them from G to get G'. The number of vertices 

in G' is 2k and the number of edges is 

e' ~ k 2 + 2k + 2 - 3 - ; (2k - 1) 

= k 2 + ; k - ~ ~ k 2 + 1, since k ~ 2. 
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By induction, there are two triangles with a common edge in G', 

which are also in G. Then we complete the proof. 

Example 2 We denote integer pair by (a , b) C1 < a, b < n, a 7":­

b) by S, where (a, b) is the same as (b, a). Prove that there are at 

least ~: ( m - ~2 ) triples (a, b, c) satisfying (a, b), (a, c) and (b, 

c) E S. (Asian-Pacific regional Mathematical Olympiad in 1989) 

Solution We construct a graph G and denote the number i by v ; , 

wherei = 1, 2, ... , n,andCi,j) ES. Thevertexv;isadjacenttovj 

if and only if Ci, j) E S. Then there are n vertices and m edges in G. 

What we will prove is that there are at least ~: (m - n42
) triangles 

in G . 

Let the degree of vertex v; be d ; and denote the edge set of G by 

E. If (v ; , v j) E E, then there are d; + d j - 2 edges joining v;, v j 

with all other n - 2 vertices. So there are at least d ; + d j - n pairs of 

edges joining v;, v j with the same vertex . These edges together with 

the edge (v ; , v j) form triangles. So there are at least d ; + d j - n 

triangles containing (v;, v j) in G. Since we have counted every 

triangle containing the edge (v;, v j) in G three times, there are 

k =1-
3 
~ (d ; +dj - n) 

(Vi' 'lJj>EE 

triangles in G. Since the degree d; of vertex v; has been counted 3 

times in the above equation and the number of edges is m. So 

n 

1 n 

K = - ( ~d7 - mn) 
3 ;= 1 

Since ~ d; = 2m, apply the Cauchy Inequality to CD and get 
i = l 

k ~ ; [ ~ (~d;) 2 - mn ] 

= ; (4:2 - mn) 
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= 4m(m _ ~) 
3n 4' 

Remark The problem derives from a question in graph theory: if 

there are m edges and n vertices in a graph G, there must be no less 

than ~ (m - ~2 ) triangles in the graph G . 

Suppose that n = mk + r (k ~ 1, 0 ,,;;; r < 
m). We denote the complete m-partite graph 

K 'I, . "2 ' . ... "m by T m (n ), where n I = n 2 = .. . = 

n r = k + 1, n r+ 1 = .. . = n m = k. We also denote 

the number of edges of T m (n) by em (n ). 

Fig. 3. 3 shows us T 3 (5), where e3 (5) = 8. The 

formula to calculate em (n) is : 

Fig. 3. 3 

(n-k) (k +l) [n J em (n) = 2 + (m - l) 2 , k = m . 

We leave it as an exercise. 

Let G = (VI' V 2 , ••• , V m ; E) be an m-partite graph G with n 

vertices, and Pi = I v i I (~ :I Pi = n ) . We can show that the number 

of edges in G is less than em (n) and the equality holds if and only if 

G ~T men). (We leave the proof as an exercise.) In other words, 

T m (n) is the only m-partite graph with n vertices, which has the most 

number of edges. 

Clearly, any m-partite graph contains no K m + l • Furthermore, 

Turan prove that T m (n) is the only m-partite graph with n vertices, 

which contains the most number of edges and no K m+ I. 

Theorem2 SupposeG contains noK m+ l , then e (G) ";;;em (n). The 

equality holds if and only if G ~ T m (n). 

This is Turan's theorem and we omit the proof. If you are 

interested in it, you can read Graph Theory and Its Applications 

written by J . A. Bondy and U. S. A. Murty. 

Example 3 Let A I , A 2 , A 3 , A 4 , A s, A 6 be six points on a plane 

and there are no three points on a line . 
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(1) If we join the points randomly and get 13 line segments. 

Prove that there must exist four points so that each of them is adjacent 

to any other three points. 

(2) If there are only 12 line segments joining these points. Draw a 

graph to show that the conclusion of (i) is not true. 

(3) Can the conclusion of (i) be modified so that there must exist 

four copies of K 4? Give a counterexample or prove it. 

Solution 

(1) We can phrase the problem in the language of graph theory: 

There are 6 vertices and 13 edges in a graph G, prove that the G 

contains K 4. 

It is easy to calculate e4 (6) = 12 < 13. According to Theorem 2, 

we know that G must contain K 4. 

(2) Consider the complete 3-partite 

graph K 2 • 2. 2 . According to Fig. 3. 4, we 

choose any 4 vertices from K 2. 2. 2 and 

there must be 2 vertices belonging to one :, A ,~:"'--I-.,4----lH""':"'~Ji 6 ,: 

part. These two vertices are not adjacent. 

So the 4 vertices we choose arbitrarily 

cannot form a K 4 • 

, 
\ " 

Fig. 3. 4 

Remark (1) Of course, we can use Theorem 2 to prove it and 

there are many other ways. Here we list two different methods. 

(1) Since the sum of the degrees of 6 vertices is 2 X 13 = 26, there 

are at least 2 vertices whose degrees are 5 among the 6 vertices. 

Otherwise, the sum of degrees is 5 + 5 X 4 = 25 < 26. Without loss of 

generality, suppose that d (AI) = d (A 2 ) = 5, there are 9 edges 

incident to A l or A 2 • According to Fig. 3. 5, 

there are 13 - 9 = 4 edges joining A 3 , A 4 , A 5 , 

A 6 . Two ends of any of the four edges A6 

together with Al , A2 can form a K 4 • 

(2) Since there are 15 edges in a complete 

graph with 6 vertices, we delete two edges. 

We discuss the problem in two different cases. Fig. 3. 5 
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CD If there are common vertices in two deleted edges as Fig. 3. 6 

shows us, then A 2 , A 4, A s, A 6 form a K 4. 

(2) If there is no common vertex in two deleted edges as Fig. 3. 7 

shows us, then AI , A 3 , A s, A 6 form a K 4. 

A, 

A, A~A' 
AJ A, 

Fig. 3. 6 Fig. 3. 7 

(3) According to the above two cases, let us begin our discussion: 

In case CD, there are six K 4: (AI, A 4, As, A 6 ), (A 2 , A 4, As, A 6 ), 

(A 3 , A 4, A s, A 6 ), CA 2 , A 3 , A 4, A s), CAl' A 3 , A 4, A s), (AI, 

A 3 , As, A 6)' 

In case (2) , there are four K 4: (AI, A 3 , A s, A 6 ), (AI' A 4, As, 

A 6), (AI, A 3 , A 4, As), (AI, A 2 , A4 , As). So there must exist four 

copies of K 4 • 

Example 4 In a simple graph with eight vertices, can you find the 

maximum number of edges of a graph which contains no quadrangle? 

(The quadrangle consists of four vertices A, B, C, D and four edges 

AB, BC, CD, DA . ) (China Mathematical Olympiad in 1992) 

Solution The maximum number of edges is 11. 

First, Fig. 3. 8 shows us a graph with 8 

vertices and 11 edges, which contains no 

quadrangle. 

Next, we will prove the fact that if any 

simple graph contains 12 edges, the graph must 

contain a quadrangle. 

First, we must point out two obvious facts . 

Fig. 3. 8 

(a) Let A, B be two vertices (A =F B). If A is adjacent to vertices 

C I , Cz , ... , C k and B is adjacent to at least two of vertices {C, . .. , 
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C k }. the graph must contain a quadrangle. 

(b) If there are 5 edges joining 4 vertices. the graph must contain 

a quadrangle. 

Suppose that a graph contains 8 vertices and 12 edges. which 

contains a quadrangle. A is one of the vertex which is incident to the 

most vertices. 

(1) Suppose that A is incident to s ~ 5 edges and we denote the 

edge set incident to A by 5 and the vertex set other than A and 5 by 

T. According to (a) and Cb), we know that the number of the edges 

joining the vertices in 5 is no more than [ ~ J. The number of the 

edges joining the vertices in T is at most ( I : I ). The number of edges 

joining the vertices in 5 and T is at most I T I. SO the sum of edges is 

at most 

When s ~ 5, the number of edges is less than 12. A contradiction. 

(2) There are four edges from A, namely: AAj(j = 1,2,3,4). 

Let another three vertices be B l , B 2, B 3 • There are at most two edges 

joining {A 1 , A 2 , A 3 , A4} and at most three edges joining {B 1 , B 2 , 

B3 }. There are at most three edges joining these two vertex sets. Since 

there are 12 edges in the graph G, the number of edges in each of the 

three groups is 2, 3, 3 respectively. Without loss of generality, let the 

three edges in the third group be A jB j Cj = 1, 2, 3). Since there are 

two edges without a common vertex in the first group, there is one 

edge joining A 1, A 2, A 3 , denoted by A 1A 2. So A1A2B2Bl is a 

quadrangle. A contradiction. 

(3) There are three edges with an end point at A and every vertex 

is incident to three edges. Suppose that A, B are not adjacent. We 

denote the three edges with an endpoint at A or B by AA j. BB j (j = 

1, 2, 3). respectively. So according to (a), there are at most one 
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common vertex between {A 1 , A 2 , A 3 } and { B 1 , B 2 , B 3} ' 

If there is no common vertex between them, there is at most one 

edge joining two of the three vertices . There are at most three edges 

joining the two three-vertex sets, the number of edges is at most 11. It 

is a contradiction. 

If there are only one common vertex between the two three-vertex 

set, we consider the eighth vertex. According to the Pigeonhole 

Principle, among the three edges having the common vertex as an end 

there must be two edges which have ends in one three-vertex set. Then 

we get a quadrangle. It is a contradiction. 

In conclusion, we have proved that the graph containing 8 vertices 

and 12 edges must contain a quadrangle. So the maximum number of 

edges is 11. 

Example 5 G is a simple graph with n vertices. If G contains no 

quadrangle, then the number of edges is 

e < ! n C1 + J 4n - 3 ). 

Solution We denote the vertex set of G by V = {v l' V 2 ' ••• , 

V n }. For any vertex vi E V, the number of vertex pairs C x , y) 

(dCvi )) 

adjacent to Vi is 2 . Because G contains no quadrangle, when V i 

is changing in the V, all the vertices pairs ( x , y) are distinct. 

Otherwise , vertices pairs Cx, y) are counted in both (dC; ;)) and 

(d C; j ) ), respectively . Then V i ' x , V j , y construct a quadrangle. So 

In virtue of the Cauchy inequality, 
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So 

2 2 (n) --;;e - e ~ 2 ' 

e2 - ~e - ~n2en -1) ~ O 
2 4 "'" . 

We solve the above inequality and get 

e ~ ~ (1 + /4n - 3 ) . 

Remark This problem tells us an upper bound of the number of 

edges ·of graphs which contain n vertices and no quadrangle . But it is 

not the maximum number . For general n, we can do a further research 

into its maximum number . Example 4 has showed when n = 8, the 

maximum number is 11. 

Example 6 There are n vertices and l edges in a graph. Then n = 

q2 + q + 1, l ~ ~qeq + 1)2 + 1, q ~ 2, q EN . 

We know that any four points in the graph do not lie on one plane 

and every point must lie on at least one line . So there exists a point 

that lies on at least q + 2 lines. Prove that the graph must contain a 

quadrangle in the space, consisting of four points A, B, C, D and 

four lines AB, BC, CD, DA. e China Mathematical Competition in 

2003) 

Solution The condition that any four points cannot lie on a plane 

is to ensure that there are no three points on a line. So in terms of 

graph theory, we only need to prove that the graph contains a 

quadrangle. To solve this problem, we need to use the idea of Example 

5, but we cannot use it directly. Consider the removal of the de VI ) 

vertices which are adjacent to VI CdCV1) ~ q + 2). There will be 

( n - deVl») 
2 pairs of vertices left. 
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As in Example 5. when the graph contains no quadrangle . 

Similarly. 

n (de v ) - 1) 2:: ' = 2l - n + 1 - d e v ) . 
i~2 2 

Then use the Cauchy equality. 

[n - devI)J [n - de v I) - 1J 
2 

1 { n n } ~ 2 ~ [n - de V i ) J2 - ~ [n - de V i ) J 

~ ~ {n ~ 1 [2l - n + 1 - d e v I) J2 - [ 2l - n + 1 - d e Vi )] }. 

That is to say. 

and 

en - D[n - devI) J[n - de v I) - 1J 
~ [2l - n + 1 - de v I) J[2l - 2n + 2 - de vI )J 
~ [q3 + q2 - d e v I) + 2J[q3 - q + 2 - de v I ) J 

= [nq - q + 2 - de v I)J [nq - q - n + 3 - de v I) ]. 

It contradicts the fact that 

q [n - d ( V I) - 1 J ~ nq - 1 - n + 3 - d e v ). 

So the graph must contain a quadrangle . 

As an application of Tunin's Theorem. we give an example in 

geometry. 

In a point set 5 on the plane. let the maximum distance of any 

two points be d . If d is a finite number. we call d the diameter of the 

vertex set 5 . 

Let 5 = {x l . X2 ' •••• xn} be a point set which consists of n 
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points and whose diameter is 1. The n points determine the distance of 

two points in the G) point pairs. For a number d between 0 and 1, 

we can ask the following question: in a vertex set S = {x 1 , X 2 , ••• , 

x " } whose diameter is 1, how many points pairs are there such that the 

distance between two points in the point pairs is more than d? Here, 

we discuss only the special case when d = 1. 
First, when n = 6, then S = {Xl' X2' X3' X 4' X S' X 6}. We put 

them on the vertices of a regular hexagon so that the distance of two 

points in the point pairs (X l ' X4), (X2' Xs), (X 3 ' X6) is 1. Fig. 3. 9 

shows us that the diameter of S is 1. It is not difficult to find that the 

distance of two points in the point pairs ( X l' X 3 )' (X2' X4)' ( X3 ' 

X s ), (X4' X6)' (X S , Xl)' (X6' X2) is1. So there are 9 point pairs in 

the point set S whose diameter is 1. The distance of these 9 points 

.. h 12 paIrs IS more t an :2. 

X2Q---~-----bX, 

Fig. 3. 9 Fig. 3.10 

But 9 is not the best answer for 6 points. Suppose we arrange the 6 

points as Fig. 3. 10 shows us, namely, the vertices Xl' X 3 ' X s form a 

regular triangle with edges of length 1. The vertices X2' X4' X6 

construct a regular triangle the length of whose edges of length o. 8. 

The center of the new triangle coincide with the center of D X l X 3X S 

and the edges of the new triangle are paralleled to those of D X l X 3 X S' 

then the distance between two points in the point pairs other than (Xl' 
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X2)' (X 3 ' X4)' ( Xs' X6) is more than 1. So we have (~) - 3 = 12 

point pairs and the distance between two points in the point pairs is 

more than 1. In fact, it is the best answer we can get. For the 

general case, Theorem 3 gives the a solution to the question. 

Theorem 3 Let 5 = {X l ' X2' ••• , xn} be a point set on the plane 

whose diameter is 1, then the maximum possible number of the point 

pairs the distance of which is more than 1 is [~ ] . For every n, 

there exists a point set {Xl' X2' .. • , Xn} whose diameter is 1, and 

there are exactly [;3] point pairs such that the distance of two points 

. h·· h J2 In eac paIr IS more t an 2. 

Proof Draw a graph G: we denote n points by n vertices. Two 

vertices are adjacent if and only if the distance of two vertices is more 

than 1. First, we prove G contain no K 4 • 

For any four points on the plane, their convex hull could have 

only three case: a line segment, a triangle, or a quadrangle, as 

Fig. 3.11 shows us. Clearly in every case there is an angle L X iXj Xk no 

more than 900 
• For the three vertices X i ' X j , X k' it is impossible that 

the distance of any two vertices of the three points is all greater than 

J2 2 and less than or equal to 1. Here, we denote the distance between 

o ...... ~'--c~--co>----o 
x, ~I X k x, 

Fig. 3.11 
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x and y by d (x, y), d ( X j' Xk ) is more than 1 for all j, k and 

L X iXjXk ~ 90°, then 

d(Xi' Xk ) ~Vd2(X i ' X j ) + d 2 ( Xj ' Xk) > 1. 

Since the diameter of the vertex set S is 1, among any four 

vertices in G there is at least one pair whose vertices are not adjacent. 

It means that G contains no K 4' 

According to Theorem 2 the number of edges of G is no more than 

e 3 (n ) = [n3
3 J. 

We can construct a vertex set {x l ' X 2' ... , X n} which contains 

[ n33 
] vertex pairs so that the distance of two vertices in each pair is 

more than 1. The construction is as follows. Choose r so that 0 < 

r < ! (1 -1). Then draw three circles whose radii are all 1 and the 

distance of any two of their centers is all 1 - 2r. As Fig. 3.12 shows us, 

weputxI' X2 ' ... , X[ -n inacircle, x [t J+I' ... , 

circle and x [~ ] + I' . .. , x" in the third circle so 

that the distance of XI and x" is 1. Obviously, 

the diameter of this set is 1. Furthermore, d ( x i , 

Xj ) > 1 if and only if X i and X j belong to 

x [~ J in another 

different circles. So there exist exactly [n3
3 

] x, 

vertex pairs (Xi' Xj ) such that d (Xi' Xj ) > 1. Fig. 3. 12 

Exercise 3 

1 Prove that if a bigraph G (X, Y; E) is 8-regular, then 
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1 X 1= 1 Y I. 
2 Prove by induction Theorem 1. 

3 Draw a simple graph which contains 20 vertices, 100 edges and 

no triangle . 

4 Prove that if there are 2n + 1 vertices and n 2 + n + 1 edges in a 

simple graph G, then G must contain a triangle. 

S (1) The number of edges in a complete m-partite graph with n 

verticese m(n) = C ~k) + (m _ 1)(k ;1), wherek = [~ J. 
(2) Let G be a complete m-partite graph with n vertices . Then 

e(G) <em (n). 

6 There are n students from each of the two countries X and Y. 

Every student from X has danced with some (but not all) students 

from Y and every student from Y has danced with at least one student 

from X. Prove that it is possible to find two students x, X l from X 

and two students y, yl from Y so that x has danced with y and has not 

danced with yl while X l has danced with yl and has not danced 

with y . 

7 Use Tunin's Theorem to prove Problem 9 in Exercise 2 . 

8 If a graph G contains n (n > 5) vertices, then G and its 

complement G contain at least 214n(n - l)(n - 5) triangles in all. 

9 X is a set of n elements and set its m k-subsets A l , A 2 , • • • , 

. (k - 1)( n - k) + k (n) 
A m red k-subset. Prove that if m > k 2 • k _ 1 ' 

then there must exist a (k + 1) -subset of X so that all k -subsets are red 

k-subset. 

10 Let K 3• 3 be a graph. Prove that a graph with 10 vertices and 

40 edges must contain a K 3.3. 

11 In a circular city whose radius is 6 kilometers, there are 18 

police cars making the rounds. They use wireless equipments to 

communicate with each other. If the wireless is effective within 9 

kilometers . Prove that at any time , there must exist two cars, each of 
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them can communicate with five other cars. 

12 There are 2n points in the space and any four of them are not 

on one plane. If there are n 2 + 1 line segments joining them, then 

these line segments can form at least n distinct triangles. 
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Tree 

Among all kinds of graphs , there is a simple but important graph , 

which is called " tree" . Tree is very important because it is widely used 

not only in many other fields but also in graph theory itself. In graph 

theory , tree is a very simple graph, so when we discuss some general 

graph theory conjectures, we may study tree first. 

First , we introduce several concepts. 

Suppose, in graph G , a sequence consists of different edges: 

If edge e i = ( v i- 1 , V i ) , i = 1, 2 , . .. , m , then we call the sequence a 

chain from Va to v m ' The number m is called the length of the chain. 

V a and Vm are its ends. We denote the chain by VaV \ ... v m • 

A path is a chain where the v i are all distinct 

If the ends Va and v m of a chain are the same , then the chain is 

called a cycle CD . 

In Fig. 4.1 , e1' e2' e3' e4 ' es form a chain , whereas e1' e2' e3 

constitute a cycle . If for any two vertices u and v of graph G , there is 

a chain from u to v, then G is called a connected graph. Otherwise , G 

is called a disconnected graph. 

The graph in Fig. 4.1 is a connected graph. The graph in Fig. 4 . 2 

is a disconnected graph. 

Now , let us give the definition of a tree. 

CD In this book , "cycle" is actually a " closed chain" . It is different from the " cycle" in 

general graph theory. The "cycle" in graph theory is a "closed chain"vovI . . . v.,,(VO =v m ), 

in which vertices V I ' V2 , ... , v." are distinct . 
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l~ 
v, v, v, v, 

Fig. 4. 1 Fig. 4. 2 

A connected graph which contains no cycle is called a tree. We 

usually denote a tree by T. 

According to the definition of tree, tree is 

obviously a simple graph. A tree with eight 

vertices is shown in Fig. 4.3. Clearly, a graph 

without cycles must be composed of one or 

several trees whose vertices are disjoint. We 

call such graph a forest. 
Fig. 4. 3 

The graph in Fig. 4. 4 is a forest, which 1S composed of three 

trees. The vertex with degree 1 is called a pendant vertex (or leaf). 

Fig.4.4 

Theorem 1 If a tree T has no less than 2 vertices, then T 

contains at least two pendant vertices. 

Proof 1 Suppose we start from some vertex u, along the edges of 

T, every edge can only be passed by once. Since a tree has no cycle, it 

cannot return to the vertices which have been passed. It means that 

each vertex can be passed at most once. If the vertex we pass is not a 

pendant vertex, because its degree is more than 1, we can continue. 

But the number of vertices of T is finite, so it is impossible to continue 

forever. If we cannot continue further at v, then v is a pendant 
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vertex. 

We start from a pendant vertex v and we can end up at another 

pendant vertex v'. So tree T has at least two pendant vertices. 

Proof 2 Assume that f1. = uv 1 V 2 ••• V k V is the longest chain of T, 

we can show that d (u) = d (v) = 1, i. e. u, v are pendant vertices. 

In fact, if d (u) ~2, then there exists vertex w (w =I=- VI) adjacent 

to u. If w is one of V2' ..• , V k' v, then a cycle occurs. It 

contradicts the definition of tree. If w is different from V2' ... , V k , 

v, then wuv 1 ••• V k V is a chain longer than f1.' aeon tradiction. So 

d (u) = 1. Similarly, d ( v) = 1. Hence tree T has at least two 

pendant vertices. 

Remark Proof 1 is "by construction" and Proof 2 is by the 

method of "the longest chain". They are two very important methods. 

Theorem 2 Let n be the number of vertices of T, then the 

number of edges e = n - 1. 

Proof We prove by induction on n . 

When n = 1, e = 0, the conclusion holds. Suppose the conclusion 

holds for n = k. Let T be a tree on k + 1 vertices (k ~ 1) . By Theorem 

1, T has at least two pendant vertices. Let v be one of them, then 

deleting v and its adjacent edges. We can get tree T' on k vertices. 

According to the induction hypothesis, T' has k - 1 edges. So the 

number of edges of T is k, hence the conclusion holds for any natural 

number n. 

Theorem 3 Let T be a graph with n vertices and e edges. Then 

the following three propositions are equivalent: 

(1) T is a tree; 

(2) T has no cycle, and e = n - 1; 

(3) T is connected, and e = n - 1. 

Proof (1)~(2): 

Suppose T is a tree. According to the definition of T, T has no 

cycle. By Theorem 2, e = n - 1. Hence (2) holds. 

(2)~C3) : 

It suffices to show that T IS connected and T is disconnected. 
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Suppose T has k connected branches. Since each connected branch has 

no cycle, hence each connected branch is a tree. If the i th branch has 

Pi vertices, according to Theorem 2, the ith branch has Pi - 1 edges. 

So 

e = (Pl - 1) + ... + (Pi -1) = n - k :;:;;; n - 2. 

This contradicts e = n - 1. Hence T is connected. 

(3)-(1) : 

It suffices to show that T has no cycle, then T is a tree. When 

n = 1, the conclusion holds. Suppose n ~ 2, then T must have a 

pendant vertex. Otherwise, since T is connected and n ~ 2, the degree 

of each vertex of T is no less than 2. Hence 

This contradicts e = n - 1. 

Now by induction on n, we will show that T has no cycle. 

When n = 2, e = 1, T is has no cycle. 

Suppose the proposition holds for n = k. T is a graph on k + 1 

vertices, v is a pendant vertex. Deleting v and its adjacent edges, we 

obtain graph T'. By induction and T' has no cycle. Add v and its 

adjacent edges and we can obtain graph T again. Hence the 

proposition is correct. 

Theorem 3 shows that any two conditions of "connected", 

"having no cycle" , "e = n - 1" imply that T is tree. Hence they all can 

be the definition of a tree. 

Example 1 If T is a tree, then 

( 1) T is connected, but after deleting any edge of T, the 

obtained graph G is disconnected; 

(2) T has no cycle, but after adding any edge, the obtained graph 

G contains only one unique cycle. 

Conversely, if T satisfies (1) and (2), then T is tree. 

Proof (1) If graph G is connected, then G is still a tree, so G has 

n - 1 edges, equal to the number of edges of T, a contradiction. 
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(2) If G has no cycle, then G is still a tree. So G has n - 1 edges, 

equal to the number of edges of T . It is impossible, so G contains a 

cycle. Clearly, G contains only one cycle. 

If (1) and (2) hold, then T is tree. We leave it as an exercise. 

This exercise characterizes a feature of tree. Among all graphs 

with given vertices, tree is a connected graph with the least number of 

edges. Tree is also graph without cycle and with the most number of 

edges. From this, in any graph G, if e < n - 1, then G is 

disconnected; if e > n - 1, then G must have a cycle. 

Another feature of tree is also very useful, as shown below. 

Example 2 If T is tree, then there is only one chain between any 

two vertices of T. Conversely, if there is only one chain between any 

two vertices of T, then T must be a tree. 

Proof If T is a tree, then T is connected, and there is at least 

one chain between any two vertices. Since T has no cycle, there is 

only one chain between any two vertices of T. 

Conversely, if there is only one chain between any two vertices of 

T, then T is clearly connected and T has no cycle. Otherwise, there 

would be at least two chains between any two vertices on a cycle, this 

introduces a contradiction. 

Example 3 There are n cities, each city can call another city 

through some intermediate cities. Prove that there are at least n - 1 

direct lines, each of which connects two cities. (Hungary Mathe­

matical Olympiad) 

Proof Draw a graph G and denote n cities by n vertices. If there 

is a direct line between two cities, then join two corresponding 

vertices. By hypothesis, G is a connected graph. So the number of 

edges of G is no less than n - 1 , then there are at least n - 1 lines 

connecting every two cities. 

This problem can be considered III the following way. If the 

connected graph G obtained has a cycle, we delete an edge on the 

cycle and obtain a graph G 1 • The number of edges of G 1 is less than 

that of G by one, but G 1 is still connected . If graph G 1 still has a 
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cycle, we delete an edge on the cycle and obtain a graph G2 , and so on 

until the graph obtained has no cycle. The graph is certainly a tree. It 

has n - 1 edges, so graph G has at least n -1 edges. 

The above tree obtained is called the generating tree of graph G. 

Adding several edges to the generating tree, we can get the original 

graph. 

Example 4 In a certain region, twenty players of a tennis club 

have played fourteen singles. Every person plays at least once. Prove 

that there are six pairs singles, in which twelve players are distinct. 

Proof This question has occurred in Chapter 2. Here we prove it 

from the viewpoint of tree. 

Denote twenty players by twenty vertices. If two persons have 

played a game, add an edge between them. There are fourteen edges 

in all, each vertex is incident to at least one edge. Our conclusion is 

equivalent to: it is possible to find six edges so that any two of them 

are not adjacent. 

Suppose the graph has n connected branches, among which the 

ith branch has Vi vertices, ei edges. Clearly, ei ~ Vi -1, so 

" n n 

.z=ei ~ .z= (Vi - 1) .z=Vi - no 
i = l i =l i=l 

n " 

But .z= e i = 14, .z= Vi = 20, so 14 ~ 20 - n, n ~ 20 -14 = 6. Since 
i= l i = l 

every vertex is incident to at least one edge, it is impossible that there 

exists a connected branch, which contains only one isolated vertex. 

Hence choose an edge from every connected branch, which promises 

that they are not adjacent and the number of edges is at least six. We 

finish the proof. 

From Fig. 4. 5, the number of vertices is twenty, the number of 

edges is fourteen. Choose arbitrarily seven edges, then there must be 

two edges that are in the same connected branch and adjacent. Hence 

six is the best possible. 
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Fig.4.S 

Example 5 Given 2n vertices on a plane, cover them by some 

circles. Prove that if each circle covers at least n + 1 vertices, then any 

two vertices can be joined by a zigzag line on a plane, and this line is 

fully covered by the cycles. 

Proof We denote 2n points by 2n vertices. If there is a circle, 

which covers two points, then adding an edge between these two 

vertices, we obtain a graph G. By hypothesis, the degree of each 

vertex is no less than n . Each edge in the graph can be fully covered by 

a circle. So we only need to show that G is connected. 

If G is disconnected, then there exists a connected branch G I , 

which has at most n vertices. We have d (v) :0::;; n - 1 for every vertex v 

of G I . A contradiction. So G is connected. 

Example 6 n (n > 3) table tennis players play several single 

games . The opponents of any two players are different. Prove that we 

can remove one player so that the opponents of any two players in the 

remaining players are still different. (China Mathematical 

Competition in 1987) 

Proof Denote n players by n vertices VI' V2' ... , v". If the 

proposition is not true, i. e. any player cannot be removed. For player 

v k (1 :0::;; k :0::;; n), since he cannot be removed, after removing v k' we 

can always find a pair of players v j and v j' whose opponents are the 

same (if there are several pairs, choose anyone pair) . This indicates 

that the opponents of v j and v j are only different due to v k. Without 

loss of generality, we suppose that v i has played a game with v k' but 

v j has not played a game with v k. Add an edge between v j and v j , 

label k . We obtain a graph with n vertices and n edges, and there are 

n edges with n different numbers. 

The graph with n vertices and n edges must have a cycle. Suppose 
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Vi , ' Vi 2 , ••• , V ik is a cycle. Along the cycle, going through an edge 

means adding or subtracting a player from the players and the added 

player and the subtracted player are different. Going through a cycle, 

we can return to Vi } , i. e. after adding or subtracting players from the 

players who have played with Vi, ' the result is the same as the original 

opponents of V i, • A contradiction. 

Hence, there is at least one player who can be removed in n players. 

Example 7 In a lecture, there are five mathematicians. Each of 

them took a nap twice and every two of them took naps at the same 

time. Prove that there must be three persons who took naps at the 

same time. (USA MO 1986) 

Proof Denote ten naps of five mathematicians by vertices VI , V2' 

... , VlO' add an edge between V i and V j if and only if i th and j th 

took naps at a common time. We obtain a graph. 

By hypothesis, every two mathematicians took naps at a common 

time, so graph G has at least G) = 10 edges. But graph G has ten 

vertices , so G must have a cycle. 

Let the cycle be V i } Vi 2 ••. V ik V i , ' suppose V i , waked up first. Then 

as soon as Vi , waked up, where Vi2 and Vik were still taking a nap. This 

proves that there must be three persons who took naps at a common 

time. 

Example 8 There are 1990 residents in a district. Every day each 

of them tells the news they heard yesterday to all his acquaintances and 

any news can gradually be known to all. Prove that we can select 180 

residents so that they are informed of some news at the same time and 

after at most ten days, this news will be known by all residents . 

Proof Denote these residents by vertices, two adjacent vertices 

means that the corresponding residents are familiar. We obtain a 

graph G with 1990 vertices. 

By hypothesis, G is connected . Let this graph be a tree T 1990 • 

Otherwise replace it by its generating tree. In the tree T 1990 , choose 

the longest chain, and denote it by 
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V el) 
11 

v(ll 

" 

Choose v~l) as a representative of the residents, and delete edge 

(v\P, vW). Then T 1990 is divided into two trees. In the first tree, the 

distance of every vertex v and v~p is no more than 10. Otherwise, in 

tree T 1990 ' the chain from v to v~1) is longer than the chain from v~1) to 

v~1). Hence the news known to the representative v\P will be known to 

the persons in the first tree within ten days. The latter tree also have a 

longest chain, note that 

V (2) 
11 

V (2) 
m , 

where m ~ 1990 - 11 = 1979. Similarly, choose v\f) as a representative 

of the residents, and delete edge (v\f) , vg». The tree is divided into 

two trees again. 

Fig. 4. 6 

Continue in this way. After v~;) (i ~ 179) has been chosen, the 

remaining tree has at most 11 vertices. At the same time, the number 

of representatives is i + 1 ~ 180. The proposition holds. Otherwise we 

can find the representatives 

(1 79) 
... , V11 

Each representative can tell a news to the residents in the district 

in ten days . 

At the end, there is only one tree, which has at most 

1990 - 11 x 179 = 21 

vertices. Letv1v2 ... Vk be its longest chain. Ifk ~ 11, then choose V11 

as the 180th representative v~1 80) . If k < 11, then choose V 1 as the 

180th representative v~1 80) In this way, the 180 representatives 

are obtained 
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. . . , 

as required. 

Exercise 4 

1 If the number of vertices of a connected graph G is no less 

than 2, then there exists at least two vertices in graph G. After 

removing the two vertices and their adjacent edges, the graph is still 

connected. (A graph without vertices is also considered as a connected 

graph) 

2 On a coordinate plane, eleven vertical lines and eleven 

horizontal lines constitute a graph. The vertices of the graph are the 

points of intersection of the vertical and horizontal lines (lattice 

points), the edges are the vertical and horizontal segments between 

two lattice points. How many edges at least should be removed so that 

the degree of each vertex is less than four? How many edges at most 

should be deleted so that the graph keeps connected? 

3 If graph G has n vertices and n - 1 edges, then graph G is a 

tree. Is this proposition correct? Why? 

4 A tree T has three vertices of degree 3, one vertex of degree 2 

and other vertices are all pendant vertices. (1) How many pendant 

vertices are there in T? (2) Draw two trees which satisfy the above 

requirement of degrees. 

5 A tree has n i vertices whose degrees are i, i = 1, 2, ... , k. If 

the numbers nz, ... , n k are all known, what is nl? If n r (3 ~ r ~ k) 

is not known, and n j (j =F r) is known, what is n r? 
n 

6 Let d 1 , d 2 , ••• , d n be n positive integers, n ~ 2, and ~ d i 

i=1 

2n - 2. Prove that there exists a tree where the degrees of its vertices 

are d 1 , d 2' ••• , d n • 

7 There are n (n ~ 3) segments on the plane where any three of 
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them have a common end, then these n segments have a common end. 

8 Given a number table with n rows and n columns, every two 

rows are different. Prove that there must exist a column, after 

deleting it, every two rows are still different. 

9 Let V be the set of all the vertices of G, E the set of all the 

edges of G. Prove that if I E I ~ I V I + 4, then there must be two cycles 

which have no common edges. (Posa Theorem) 

10 In an evening, 21 persons make phone calls, someone finds 

that these 21 persons call 102 times and every two persons call at most 

once . He also finds there exist m persons, the first one calls the 

second, the second calls the third, ... , the (m - 1) th calls the m th , 

and the m th calls the first. He does not tell the value of m, only says 

m is odd. Prove that there exist 3 persons among 21 persons, each of 

the three persons calls each other. 

11 A country has a number of cities. There are roads connecting 

the cities and each city has 3 roads connected to it. Prove that there 

exist roads forming a cycle whose length is not divisible by 3. 



Chapter5 Euler's Problem 

Euler's problem arised from the famous seven-bridge problem. 

Konigsberg is located in Europe and Pregel River with a beautiful view 

runs across the city. In the river, there are two islands A and D. On 

the river, there are seven bridges joining two islands and the riversides 

Band C (Fig. 5. 1) . 

Fig. 5. 1 

Question: Can a traveler go through every bridge once and once 

only? This is the famous Konigsberg seven-bridge problem. 

Clever Euler, using his insight , found that it was an interesting 

geometry problem. In 1936, he published a thesis named "seven 

bridges of Konigsberg" and solved the seven-bridge problem. It was 

generally considered as the first thesis in graph theory. Euler changed 

Fig. 5. 1 into a graph G as shown in Fig. 5. 2. Islands A, D and 

riversides B, C are four vertices and seven edges 

in graph G denote seven bridges. Hence the 

seven-bridge game becomes the following 

problem: Can the graph be drawn without lifting 

one's pen and traversing every edge only once? 

Drawing a graph with a continuous line does not 

necessarily have to come back to the original 

c 

A c:-E'------¢D 

B 

Fig. 5. 2 
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starting point, that is to say, the problem of drawing a graph with a 

continuous line (or in the end, coming back to the original starting 

point) is equivalent to the problem whether the graph is a chain (or a 

cycle) . 

If G is a chain from Vl to V n+ l , then each vertex V i (i = 2, 3, ... , 

n) different from Vl and V n +l are even vertices. Because to vertex Vi' 

if there is an edge entering V i ' then there is also an edge leaving Vi. 

The entering and . leaving edges cannot be repeated. Hence there are 

always double edges adjacent to V i . Therefore, graph G has at most 

two vertices with odd degrees, i. e. Vl and V n+l' If G is a cycle, by the 

above reasoning, Vl and V n+l are also even vertices. Hence , if G is a 

chain (cycle), then the number of vertices with odd degrees in G is 

equal to 2(0). This is the necessary condition that G is a chain (cycle) . 

In other words, if the number of vertices with odd degrees in G is 

more than 2, then G is not a chain and it cannot be drawn without 

lifting one's pen . 

In Fig. 5. 2, A, B, C, D are all odd vertices, hence this graph is 

not a chain and it cannot be drawn without lifting one's pen. That is to 

say, it is impossible for a traveler to go through each bridge once and 

only once. 

The following is "the solution to Euler's problem". 

Theorem 1 A finite graph G is a chain or a cycle if and only if G 

is connected and the number of vertices with odd degree in G is equal 

to 2 or O. When and only when the number of vertices with odd 

degrees in G is equal to 0, the connected graph G is a cycle. 

Proof The necessity has been proved above, and next we prove 

the sufficiency. 

First, we prove: If G is connected and the number of odd vertices 

is 0, then G must be a cycle . 

Start from any vertex Vo of G and go to Vl through the adjacent 

edge el . Since d (V l ) is even, go to V2 through the adjacent edge e2 

from Vl , and continue in this way. Each edge is chosen only once and 

we must return to Vl after several steps, so we obtain a cycle f1. 1 : 
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VOV1 ••• VI). 

If (.11 is G itself, then the proposition holds. Otherwise we can 

find a subgraph GI by deleting /11 in G, then every vertex in G I is also 

an odd vertex. Since G is connected, then there must exist a common 

vertex u in /11 and in G I and a cycle /12 from u to u in G I . So /11 and /12 

still constitute a cycle. Repeat the above process. Since G has only a 

finite number of edges in all, the cycle finally obtained is graph G 

itself . 

Now we prove the second case. Suppose G is connected, and the 

number of odd vertices is 2. Let u, V be the two odd vertices, add an 

edge e between u and v, we get graph G' . Hence the number of odd 

vertices is 0 in G' , so G' is a cycle. Therefore, after deleting e, G is a 

chain. 

We call a cycle in a graph an Euler tour if it traverses every edge 

of the graph exactly once. A graph is Eulerian if it admits an Euler 

tour. 

Furthermore, there is the following question: If the number of 

odd vertices in a connected graph G is not 0 or 2, then by lifting one's 

pen how many times can G be drawn? We know that the number of 

odd vertices is even, so we have the following conclusion. 

Theorem 2 If G is connected and has 2k odd vertices, then graph 

G can be drawn by lifting one's pen k times and at least k times. 

Proof Divide these 2k odd vertices into k pairs: VI' V'I; V2' 

I I dd d b d'd b . G' V2; ••• ; V k' V k' a an e ge e i etween v i an v i an a tam . 

Graph G' has no odd vertex, so G' is a cycle. Delete these k added 

edges, then this cycle is divided into at most k parts, i. e. k chains. 

This indicates that G can be drawn by lifting one's pen k times. 

Suppose G is divided into h chains, each chain has at most two 

odd vertices. Hence 2h ;?: 2k, i. e. h ;?: k. Graph G can be drawn by 

lifting one's pen at least k times. 

Example 1 Fig. 5.3 is a plane graph of a building and there is a 

living room. After entering the front door into the living room, there 

are four other rooms . If you enter from the front door, can you enter 
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all the rooms (including the living room) through all the doors and go 

through each door only once? 

front door 

Fig. 5. 3 Fig. 5. 4 

Proof The answer is no. 

Consider five rooms, the area outside the front door and that 

outside the back door can be denoted by vertices, add an edge between 

the corresponding vertices if these places are connected by doors and 

we get a graph G (see Fig. 5. 4). In graph G, the number of odd 

vertices is 4, so G is not a chain. So the answer is no. 

Example 2 Fig. 5. 5 can be drawn by lifting one's pen 5 times and 

Fig. 5. 6 can be drawn by lifting one's pen 4 times . 

Fig. 5. 5 Fig. 5. 6 

Example 3 On an 8 x 8 chessboard with 64 black and white 

squares we move a knight. In whatever direction the knight moves, is 

it possible to make the knight move to all the squares and each square 

only once? (A knight moves from a corner square of a rectangle with 

2 X 3 black and white squares to another corner square diagonal to the 

starting position. ) 

Proof Fig. 5.8 gives us an answer of the question. 
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56 41 58 35 50 39 60 33 

47 44 55 40 59 34 51 38 

42 57 46 49 36 53 32 61 

45 48 43 54 31 62 37 52 

20 5 30 63 22 11 16 13 

29 64 21 4 17 14 25 10 

6 19 2 27 8 23 12 15 

1 28 7 18 3 26 9 24 

Fig. 5.7 Fig.S.8 

Solving this question, we often try the following four methods. 

1. Each time we place the knight in a position where the number 

of squares where the knight can move to (though it has not moved) is 

the least, i. e. first move to the squares where the knight has fewer 

places to move to, last move to the squares where the knight has move 

places to move to. 

2. Divide the chessboard into several parts and find a Hamiltonian 

chain in each part (see Chapter 6) and join them together. 

3. Find several cycles on the chessboard and join them. 

4. Add edges to a smaller chessboard and get a Hamiltonian chain 

of the whole chessboard. 

Example 4 In Fig. 5. 9, two ants lie in 

positions A, B. Ant A tells ant B: "Let us 

compete and see who can first creep nine edges B 

of this graph and arrive at E first." Ant B 

agrees . Suppose the two ants have the same 

speed and start at the same time. Which ant 

will arrive at E first? 

A 

G 

Fig. 5. 9 

E 

Proof Consider A, B, C, D, E as vertices, the original nine 

edges as nine edges, and we obtain graph G . Then G is connected and 

the number of odd vertices is 2. According to Theorem 1, it is a chain. 

Since B is an odd vertex, E is also an odd vertex, there exists a 

chain from B to E, for example 

BCDACEABDE. 
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For ant B, it can start from B and arrive at E along this chain. 

But vertex A is an even vertex, it is impossible to go through all 

edges of C from A to E without repeating. Ant A must repeat at least 

an edge. So ant B may choose a suitable route to reach E earlier than 

ant A . 

Example 5 As shown in Fig. 5.10, the three vertices of the big 

triangle are dyed in colors A, B, C. Choose some points in the 

interior of the big triangle, divide the big triangle into several small 

triangles. Each of the two small triangles has either a common vertex, 

or a common edge, or no common vertex at all. Color the vertices of 

each small triangle by one of A, B, C. Prove that whatever way you 

color, there must be a small triangle whose three vertices are all 

different. 

A 

G 

Fig. 5.10 

A 

G' 

Fig. 5.11 

Proof Choose a point outside the big triangle and a point in the 

interior of small triangle as vertices, respectively. When two faces 

have a common edge AB, add an edge between the corresponding two 

vertices, and obtain graph C', as shown in Fig. 5. 11. 

A small triangle with its vertices colored A , B, C corresponds to 

the any vertex C' with degree 1. Other small triangles correspond to 

the vertices of C' with degree ° or 2. Since the degree of a vertex 

outside the big triangle is 1 and the number of odd vertices is even, 

Therefore C' has at least an odd vertex v except u . That is to say, in 

Fig. 5. 11, there is at least a small triangle whose three vertices have 

three colors A, B, C, respectively. 
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Note By the conclusion of this example, the famous Brouwer 

fixed point theorem follows. 

Example 6 A graph which consists of a convex n-polygon and 

n - 3 disjoint diagonal lines in the polygon is called a subdivision 

graph. 

Prove that there exists a subdivision graph which is a cycle drawn 

without lifting one's pen (i. e. start from a vertex, go through each 

segment only once and return the starting point) if and only if 3 In. 

(The 5th China Mathematical Competition) 

Proof First prove by induction that the condition 3 I n is 

sufficient. 

When n = 3, clearly the proposition holds. 

Suppose for any convex 3k-polygon, there 

exists a subdivision graph which is a cycle drawn 

without lifting one's pen. For a convex3(k +1) = 

3k + 3 -polygon A j A 2A 3 . .. A 3k +3, join A 4A 3k +3. 

Since A4AS . .. A 3k +3 is a convex 3k-polygon, by 

induction, A4AS ... A 3k +3 contains a subdivision 

graph which is a cycle drawn without lifting 

A, 

A, A JI.- -J 

Fig. 5. 12 

one's pen. Construct this subdivision graph and join A 2A 4, A 2 A 3k+3, 

so we obtain a subdivision graph of a convex 3(k + 1) -polygon 

A j A 2A 3 . .. A 3k +3. Since the subdivision graph of A4As . .. A 3k +3 is a 

cycle, we start from A 3k +3, go through each edge of the subdivision 

graph only once and return to A 3k +3. Then go through A 3k +3A j , A j A2 , 

A 2A 3, A 3A4' A4A2' A 2A 3k +3, and return to A 3k +3 , again. This proves 

that for any convex Ok + 3) -polygon, there also exists a subdivision 

graph, which is a cycle drawn without lifting one's pen. So the 

sufficiency has been proved. 

Next prove the necessity. Assume that a convex n-polygon has a 

subdivision graph, which is a cycle drawn without lifting one's pen. 

Then each vertex of the graph is an even vertex. Clearly a convex 

quadrangle and a convex pentagon do not have a subdivision graph 

such that each vertex is an even vertex. Thus when 3 < n < 6, if a 
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convex n -polygon has a subdivision graph, such that each vertex is an 

even vertex, then n = 3. When 3 ~ n < 3k (k > 2), if a convex 

n-polygon has a subdivision graph, such that each vertex is an even 

vertex, then 3 1 n. Now consider 3k ~ n < 3 (k + 1). Suppose that a 

convex n-polygon A IA 2 • •• An has a subdivision graph, such that each 

vertex is an even vertex. It is easy to see that any subdivision of a 

convex n (n > 3) -polygon can divide the convex n-polygon into n - 2 

small triangles, which have no common interior, and at least two of 

these triangles contain two adjacent edges of the convex n-polygon as 

two edges. Hence without loss of generality, let AlA3 be a diagonal 

line of a subdivision graph of the convex n-polygon A IA 2 • •• A n (as 

shown in Fig . 5.13). So AlA3 is still an edge of another L~AIA 3A i in 

the subdivision graph. By hypothesis that A IA 2 ••• An has a 

subdivision graph such that each vertex is an even vertex, hence i "* 4. 

Otherwise, A 3 is an odd vertex . Equally i "* n; otherwise, Al is an odd 

vertex. Therefore 4 < i < n. The subdivision 

graph of A I A 2 • •• An gives rise to subdivision 

graphs of a convex (i - 2) -polygon A 3A4' " Ai 

and a convex (n - i +2) -polygon A IA 2 ••• An' 

respectively. Each vertex of the convex 

polygons corresponding to these two subdivision 

graphs is even. Hence by induction, 

3 I i - 2,3 I n - i + 2, 

so 3 1 n. Hence the necessity has been proved. 

Fig. 5. 13 

The necessity also can be proved by the coloring method. For a 

subdivision graph of a convex n-polygon, we can color the divided 

triangles using two colors, such that two triangles with a common edge 

have different colors. Do as follows: draw diagonal lines in sequence 

so that each diagonal line divides the interior of polygon into two 

parts, in one part keep the original color, in another part change color. 

Finally, we draw all the diagonal lines and obtain the needed color. 

Since convex polygon has a subdivision graph, which is a cycle 
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drawn without lifting one's pen, each vertex is an even vertex. So the 

number of triangles at each vertex is odd. In the above coloring 

method, all the edges of the polygon belong to the triangles with the 

same color. Let it be black (see Fig . 5.14). Denote 

the number of edges of white triangles by m. 

Clearly 3 1m, each edge of the white triangles is 

also that of the black triangles . However, all the 

edges of the polygon are those of the black 

triangles, so the number of edges of the black 

triangles is m + n, so 31 n . 

Fig. 5.14 

Example 7 Suppose n > 3 , consider the set E of 2n - 1 distinct 

points on a circle . Color some points of E black, and other vertices no 

color. If there exists at least a pair of two black points such that 

between two arcs with the two black points as their endpoints we can 

find one of them whose interior (not including endpoints) contains 

exactly n points, then we call the coloring "good" . If each coloring 

with k points of E colored black is good, find the minimum value of 

k. (31 th International Mathematical Olympiad) 

Proof Denote the points of E by V1' V2' • •• , V 2n -1 according to 

the anti-clockwise direction and add an edge between v i and v i + ( n - J) , 

i = 1, 2, ... , 2n - 1. We assume that V j +(2n -J)k = Vj' for k = 1, 2, 

3, .... Then we get a graph G . The degree of each vertex in G is 2 

(i.e . every vertex is adjacent to two other vertices) and V i andv i+3 are 

adjacent to a common vertex . Since each vertex of G is an even 

vertex, G consists of one or several cycles. 

(i) When 3 1 (2n - 1) , graph G consists of three cycles, the vertex 

set of each cycle is 

{ vi i i = 3k, k = 1, 2, . . . , 2n 3- 1 } , 

{ vii i = 3k + 1, k = 0, 1, ... , 2n 3- 4 } , 

{ vii i = 3k + 2, k = 0, 1, .,. , 2n 3- 4 } . 
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Since the number of vertices in each cycle is 2n 3- 1 • it is possible 

1 (2n - 1 ) n - 2 . f to choose at most:2 --3- - 1 = -3- vertices and every two a 

them are not adjacent (note that 2n 3- 1 is odd). So we may choose 

n - 2 vertices which are all not adjacent pairwise. By the pigeonhole 

principle. we must color at least n - 1 vertices black to assure that 

there is at least a pair of adjacent black vertices. 

(ii) When 3 '} (2n - 1). each vertex of Vl' V2' ...• V2n - l can be 

denoted in the form of V3k' So graph C is a cycle with length 2n - 1. 

We can choose n - 1 nonadjacent vertices on this cycle and at most 

n - 1 nonadjacent vertices. Hence color at least n - 1 vertices black so 

that there is at least a pair of adjacent black vertices. 

In other words. when 3'} (2n -1). the minimum value of k IS n. 

and when 3 I (2n - 1). the minimum value of k is n - 1. 

Exercise 5 

1 What is the value n when the complete graph K n is a cycle? 

What is the value n when the complete graph K" is a chain? What are 

the values m. n. when the complete bipartite graph Kin." is a cycle? 

2 Suppose graph C can be drawn by lifting one's pen at least k 

times. C' is obtained by deleting an edge. How many times at least can 

C' be drawn by lifting one's pen? 

3 Determine whether each of the Fig. 5. 15 can be drawn without 

lifting one's pen. 

r 1 

Fig. 5,15 
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4 Choose arbitrarily n (n > 2) vertices, and join each vertex to 

all other vertices. Can you draw these segments without lifting one's 

pen, so that they join end to end and finally return to the starting 

point? 

5 If at a conference, each person exchanges views with at least 

() ~ 2 persons. Prove that it is definitely possible to find k persons VI , 

V 2 ' . .. , V k , such that V I changes opinion with V2' V2 exchanges views 

with V3 ' . • . , V k - I changes opinion with v k ' and v k exchanges views 

with VI , where k is an integer greater than O. 

6 As shown in Fig . 5.16, graph G has 4 vertices, and 6 edges . 

They are all on a common plane. This plane is divided into 4 regions 

I, IT , ill, N, and we call them regions faces. Suppose there are two 

points QI' Q 2 on these faces. Prove that there is no line f-t joining Q I 

and Q 2 which satisfies : (1) f-t cuts across each edge only once; (2) f-t 

does not go through any vertex v j (j = 1, 2, 3, 4) . 

V , 

V) 

Fig. 5. 16 

7 Arrange n vertices V I' V 2' ... , V n in order on a line. Each 

vertex is colored in red or blue. If the ends of a segment v iV i +1 are 

colored differently, we call it a standard segment. Suppose the colors 

of V I and v n are different. Prove that the number of the standard 

segments is odd. 

8 Choose some points on the edges and in the interior of L:,ABC. 

Divide L:,ABC into various small triangles. Each two small triangles 

has either a common vertex, or a common edge, or no common vertex 

at all . Use A, B or C to label those vertices in the interior of L:,ABC. 

Use A or B to label the vertices on the edge AB of the big triangle, 
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label B or C to the vertices on the edge BC of the big triangle, and 

label C or A to the vertices on the edge CA of the big triangle. Prove 

that there must be a small triangle, whose three vertices are A, B, C. 

9 In the following figure with 25 small squares, try to design a 

walk starting from point A, going through the edges of all the small 

squares and finally returning to A, such that the path is the shortest. 

Fig. 5. 17 



Chapter6 Hamilton's Problem 

In 1856, the famous British mathematician Willian Rewan 

Hamilton brought forward a game whose name was" go around the 

world". He denoted twenty big cities by twenty vertices of a regular 

dodecahedron. You should go along the edges, pass through every city 

once and at last return to the starting point. 

The game was welcomed all around the world. In this game, we 

see a chain that it passes through every vertex only once. We call this 

chain (cycle) a Hamiltonian chain (cycle). If a graph contains a 

Hamiltonian cycle, we call it a Hamiltonian graph. 

On the surface, Hamilton's problem is similar to Euler's problem. 

But, in fact, they are different in nature. Hamilton's problem is one 

difficult problem in graph theory that has not been solved. Until now 

we can not find a necessary and sufficient condition to characterize it. 

So we have different methods for different problems. We shall use 

some examples to illustrate. 

Example 1 Does Fig. 6.1 contain a 

Hamiltonian chain or a Hamiltonian cycle? 

Solution As Fig. 6. 1 shows us, according 

to numbers shown we can find a Hamiltonian 

cycle. 

Here we use the" direct search" method to 

solve the problem of "go around the world". 

That is, go from a vertex and search one by one 

2 

3 

7 

Fig. 6. 1 

in order to find the Hamiltonian chain (cycle). If we find one chain, 

we have found one solution. If not, there does not exist a solution . 
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This method can always be used on simpler graphs and often to those 

graphs which contain a Hamiltonian chain (cycle). 

Example 2 In an international mathematics conference, there are 

seven mathematicians come from different countries. The language 

they can speak is 

A: English 

B: English and Chinese 

C: English, Italian and Spanish 

D: Chinese and Japanese 

E : German and Italian 

F: French, Japanese and Spanish 

G: French and German 

How can we arrange these seven mathematicians round a table so 

that everyone can talk with the person beside him? 

Solution We denote the seven mathematicians by seven vertices 

A, B, C, D, E, F, G. If two persons can speak a common language , 

then we join the vertices representing them and we get a graph G. As 

Fig. 6 . 2 shows us, the problem of arranging seats becomes a problem 

of finding a Hamiltonian cycle. Arrange the seats in the order of the 

cycle, so that everyone can talk with the person beside him. 

B(En, Ch) 

C (En, 

A (En) 

1:k-~--........j..-..,,oF(Fr, .la, Sp) 

D(Ch, .Ia) E (Ge, It) 

Fig. 6. 2 

A 

E 

Fig. 6. 3 

Note Ch = Chinese, En = English, Fr = French, Ge 

German, It = Italian, Ja = Japanese, Sp = Spanish. 

In Fig. 6. 2, we draw a cycle in a bold line and then we get our 

solution, which also means if we arrange the seats in the order A, B, 

D, F, G, E, C, everyone can talk to the persons beside him. The 
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common language is labelled on each corresponding edge in Fig. 6. 3. 

Example 3 Determine whether the graph G in Fig . 6. 4 contains a 

Hamiltonian chain or cycle? 

Fig. 6. 4 

A 

B 

Fig. 6. 5 

Solution We mark one vertex in graph G as A. For example, we 

mark the vertex a as A and all the vertices adjacent to the vertex a as 

B all the vertices adjacent to B as A . Then we mark the vertices 

adjacent to the vertex which is marked B as A and the vertices 

adjacent to the vertex which is marked A as B until we mark all the 

vertices. As Fig . 6. 5 shows us, if G contains a Hamiltonian cycle, the 

cycle must go through A and B in turn. So the difference between the 

numbers of A and B is no more than 1. But in Fig. 6. 5, there are nine 

A vertices and seven B vertices. The difference is 2, so there are no 

Hamiltonian chain. 

Generally, to a higraph G = (VI' V 2 , E), there is a simple 

method to see whether the graph contains a Hamiltonian chain or a 

Hamiltonian cycle. 

Theorem 1 In a bigraph G = (VI' V 2 , E), if I VI 10:/=1 V 2 I , G 

must contain no Hamiltonian cycle. If the difference between I VI I 

and I V 2 I is more than 1, G must contain no Hamiltonian chain. 

We can use the same method as Example 3 to prove it. 

Example 4 Fig. 6. 6 shows us half of 

a chessboard. A knight is at the bottom 

right corner. Can the knight move along 

every square continually once only? What 

happens if we delete the black panes at Fig. 6. 6 
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the two corners of the half chessboard? 

Solution We consider the following graph. We denote the 

squares in the half of a chessboard by the vertices of a graph. If a 

knight can move along from one square to another square in one step, 

we join the two vertices representing the panes. So the problem 

becomes a new problem of determining whether the graph contains a 

Hamiltonian chain. In the graph, whether the two vertices are 

adjacent is determined by the . rule of how a knight moves. Two 

vertices are adjacent if they are at the two ends of the shape of letter 

"L" on the chessboard. Color a vertex by the color of the square 

representing the vertex in the chessboard, the colors of the two 

adjacent vertices are always different. So between the two adjacent 

vertices in the graph, one vertex is black 

and the other is white . The number of 

the black vertices is the same as the 

number of white vertices, so there exists 

a Hamiltonian chain. We can use the trail 

and error to find a chain. 

15 

8 

17 

20 

18 7 

21 16 

14 19 

9 32 

22 11 28 5 24 

27 6 23 2 29 

10 31 12 25 4 

13 26 3 30 1 

Fig. 6. 7 

Now let us consider the second part of the problem . Again we use 

the above method to convert the problem to determining whether the 

graph contains a Hamiltonian chain. The number of the black squares 

is 14 and the number of white squares is 16. According to Theorem 1, 

the graph contains no Hamiltonian chain. It means that the knight 

cannot move along every square continually once only when we delete 

the black squares. 

Now we do not know the necessary and sufficient condition of the 

problem, namely, whether a connected graph contains a Hamiltonian 

chain (cycle). However many first-class mathematicians have done 

some hard work for more than one century, they have found some 

sufficient conditions and some necessary conditions. In what follows 

we give a sufficient condition for the problem whether a simple graph 

contains a Hamiltonian chain. 

Theorem 2 G is a simple graph with n (n ~ 3) vertices. For every 
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pair of vertices v, VI, 

d(v) +d(v') ~ n -1, 

then G contains a Hamiltonian chain. 

Proof First, we prove that G is a connected graph. Suppose that 

G contains two or more connected components. Suppose one of them 

has n 1 vertices, and another has n 2 vertices. We take one vertex each, 

VI and V2' from the two components. Thend(vl) <nl -1 andd(v2) < 
n2-1. So 

It contradicts the hypothesis. So G is a connected graph. 

Now we prove that there exists a Hamiltonian chain. The method 

of proof in fact gives us a method to construct a Hamiltonian cycle. 

Suppose G contains a chain from VI to V p: VI V2 . •. V p. If VI or 

V p is adjacent to one vertex which does not lie in the chain, we can 

extend this chain so that the vertex lies in the chain. Otherwise, V I 

and V p are only adjacent to the vertices of the chain. There must exist 

a cycle with vertices Vj' V2' ... , v p. Suppose the vertex set adjacent 

to Vj is {Vjl' Vj2' ... , V jk }. Here Vjl' VJ2' •.. , V jk are the vertices 

on the chain and p < n. 

If Vj is adjacent to v p' then there exists a cycle Vj V2 . .. V pVl . 

If Vj is not adjacent to v p' then there exists a vertex v [(2 < l < 
p) which is adjacent to Vj and v [-1 is adjacent to v p as Fig. 6.8 shows 

us. If not, v p is adjacent to p - k -1 vertices at most, which excluding 

Vjl-l' Vj2-j, ••• , Vjk-1 and Vp' means that 

d (v 1) + d (v p) < k + (p - k - 1) = p - 1 < n - 1. 

~ v, __ -]--_VP 
'".~l _-----

"""""~"------~~_----- V,-l 

---------------- VI V I .. \ 

Fig. 6. 8 
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It contradicts the hypothesis. So there exists a cycle containing VI , 

V l ' •.. , Vp: V I V/V /+I ••• VpV/ - I V/-l ••• V1VI. 

If P = n , already there exists a Hamiltonian cycle. If p < n , since 

G is connected, G must contain a vertex v' which does not belong to 

the chain and is adjacent to one vertex v k of VI Vl ... v p. As Fig. 6. 9 

shows us, we can get a cycle containing VI ' V 2 ' ... , V p ' v' : 

V 'Vk Vk+l _ •• Vt-1V pVp - l ••• VIVI V 2 ••• VkV'. Repeat above process until 

there exists a chain with n - 1 edges. 

~: __ L __ v:;jv, 
"''''''' , VI. V " <l ......... ..- V,.--2 

"'--, -- ---- ---~;:, -
v ; 

Fig. 6. 9 Fig. 6. 10 

It is easy to see that the condition of Theorem 2 about the 

existence of a Hamiltonian chain is sufficient, but not necessary. 

Suppose G is a polygon of n sides, as Fig. 6.10 shows us. Here n = 6. 

Though the sum of the degrees of any two vertices is 4 < 6 - 1, G 

contains a Hamiltonian chain. 

In 1960, Ore gave us a sufficient condition for a Hamiltonian 

graph in American Mathematical Monthly. 

Theorem 3 G is a simple graph with n vertices. For every two 

nonadjacent vertices v, v' 

dC v ) + dC v' ) ?:; n, 

then G is Hamiltonian cycle. 

Proof When n = 3, by the given condition we know that G must 

be a complete graph K 3. The conclusion is true. 

Suppose n ?:; 4, we prove by contradiction. Suppose G with n 

vertices satisfies the given condition of degree and contains no 

Hamiltonian cycle. 
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Without loss of generality, G is the graph which satisfies the given 

condition and contains the most number of edges. In other words, 

after adding an edge to G, G contains a Hamiltonian cycle. 

Otherwise, G can be added several edges until we can not add edges. 

After adding edges, the degrees of vertices satisfy the condition of 

degree. Then we get a Hamiltonian chain contains every vertex of G. 

We denote the chain by VI V2 . .. v,,, then VI is not adjacent to v". So 

Then among V2' V3' ... , V,, - I , there must be a vertex v i so that 

VI is adjacent to Vi and v" is adjacent to Vi-I as Fig. 6.11 shows us. 

Otherwise, there are d(vI) = k vertices Vi, ' Vi 2 , ••• , Vik (2 :s;;; i l :s;;; 
i2 :s;;; ••• :S;;; i k :s;;; n -1) adjacent to VI' and Vn is not adjacent to Vi,-I' 

V i2 -1' ••• , V ik - l ' So 

then 

dev I ) + d(v,.):S;;;k + n - l-k =n - 1 <n, 

which contradicts the condition. So G contains a Hamiltonian cycle 

VIV2 ... Vi - IV"VI/-"" V iVj, which also contradicts the hypothesis. 

We complete the proof . 

V,~ __ ~ v, 

V, _ l 

Fig. 6.11 

For the complete graph K 1/ (n ~ 3), clearly there is Hamiltonian 

cycle . 

Example 5 n persons take part in a conference. During the 

conference time, everyday they must sit at a round table to have 

dinner. Every evening, every person must sit beside different persons. 

How many times at most will there be such dinners? 



70 Graph Theory 

Solution We denote n persons by n vertices. Draw a complete 

graph K", then the Hamiltonian cycle in K n is a way of sitting round 

the table. The most number of times is equal to the number of 

Hamiltonian cycle with no common edges in K" . 

K" contains ~ n (n - 1) edges and every Hamiltonian cycle 

contains n edges. There are at most [n ~ 1] Hamiltonian cycle with 

no common edges. When n = 2k + 1, we arrange the vertices 0, 1, 

2, ... , 2k as Fig . 6. 12. First, we take a 

Hamiltonian cycle (0, 1, 2, 2k, 3, 2k - 1, 

4, ... , k + 3, k, k + 2, k + 1, 0), then 

rr 2rr (k rr rotate k' k' ... , - 1) k clockwise 

around the 0 and get k [n ~ 1 ] 

Hamiltonian cycle with no common edges. If 

n = 2k + 2, add a vertex v in the center and 

also get k Hamiltonian cycle . 

k+ 1 

Fig. 6. 12 

From Theorem 3 we can induce next Theorem 4, which is given 

by the mathematician Dirac in 1952 . 

Theorem 4 G is a simple graph with n vertices. If the degree of 

every vertex v is no less than ; , then G must contain a Hamiltonian 

cycle. 

Example 6 Arrange 7 examinations in 7 days so that the two 

courses which are taught by one teacher cannot be arranged in two 

consecutive days. If every teacher can teach at most 4 courses which 

have examination. Prove that it is possible to arrange the examinations 

in the above way. 

Solution Suppose the graph G contains 7 vertices. Every vertex 

represents an examination. If two courses are not taught by one 

teacher, then we join the two vertices representing the two courses. 

Since the number of courses taught by one teacher is no more than 4, 
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the degree of every vertex is at least 3. The sum of degrees of any two 

vertices is at least 6. By Theorem 2, G contains a Hamiltonian chain. 

Since in this chain every two vertices which are adjacent represent two 

courses which are not taught by one teacher, we can arrange 7 

examinations in the order of vertices in this chain. 

Example 7 A factory produces two-color cloth using 6 distinct 

colored yarns. Among six kinds of yarns, every color must be matched 

in groups with three other colors. Prove that it is possible to choose 

three kinds of two-color cloth so that all 6 colors are present. 

Proof We denote six colored yarns by six vertices. If two colors 

are in the same group, then we join the vertices of the two colors, and 

we get a graph G. What we know is that every color can be matched in 

groups with three other colors. For any vertex v j , d (v j) ;? 3, what we 

will prove is that graph G contains three edges, any two edges of 

which contain no common end. 

For any vertex v in the graph G, by Theorem 4, G contains a 

Hamiltonian cycle which we denote by VIVZV 3 V4VSV6VI. Then edges 

(VI' V 2 )' (V3' V4)' (vs ' V6) are the three edges which contain no 

common vertex. 

We always use the fact that the graph satisfies the sufficient 

condition to determine that the graph is a Hamiltonian graph and the 

fact that the graph does not satisfy the necessary condition to 

determine that the graph is not a Hamiltonian graph. Next we give a 

necessary condition. 

Theorem 5 If G contains a Hamiltonian graph, remove several 

vertices VI' VZ, ... , V k and their adjacent edges from the G to get a 

new graph G', then the number of connected components in G' is no 

more than k. 

Proof Suppose c is a Hamiltonian cycle in G. After removing 

several vertices VI' vz, ... , V k and their adjacent edges from G, the 

cycle c can be divided into at most k parts. So the number of 

connected components in G' is at most k. 

Example 8 Prove that there is no Hamiltonian graph in 
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Fig. 6 . 13. 

Proof Remove the vertices VI' V 2 and 

their adjacent edges from Fig. 6. 13. We 

obtain G' with three connected components. 

It does not satisfy the necessary condition of 

Theorem 5. So there is no Hamiltonian graph 

in Fig. 6.13. 

V, 

V , 

Finally, we give another example to end Fig. 6. 13 

this chapter. 

Example 9 If A oAIA2 ... A 2n-1 is a regular polygon of 2n sides. 

Join all its diagonals to get a graph G. Prove that every Hamiltonian 

cycle of G must contain two edges which are paralleled in the graph. 

Proof Suppose A;A j is parallels to A kA l • Since the number of the 

vertices between A i and A l is equal to the number of the vertices 

between A j and A k , i - l = k - j. The sufficient and necessary 

condition for A iA j parallel to A kA I is : 

i + j - k + l (mod 2n ) . 

Suppose A io A i, .. . A i2n _, is a Hamiltonian cycle. 1 0 ' 11 ' ... , i 2n -1 is a 

rearrangement of 0, 1, ... , 2n . Among them any two edges are not 

paralleled. So among the 2n numbersio + i" i , + i2 , i2 + i3 , •• • , i2n -1 + 
i n any two numbers are not congruent module 2n . That is, the above 

2n numbers is in a surplus system of module 2n. Then 

Uo + i , ) + U I +i 2 ) + U2 +i 3 ) + .. . + U2n - 1 + io) 

= 0 + 1 + 2 + ... + 2n - 1 = 2n 2 - n 

- n(mod 2n) . 

On the other hand, 

(ill + i , ) +U I + i2 ) + (i 2 + i3 ) + ... + (i2n-1 +io ) 

= 2(i o + i l + i2 + . .. +i2n- l ) 

= 2 (0 + 1 + 2 + .. . + 2n - 1) = 2n 2 - n 

= 2n(2n - 1) 

= O(mod 2n). 
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We get two results which contradict each other. So the proof is 

complete. 

Exercise 6 

1 What is the value n so that the complete graph K n is a 

Hamiltonian graph? What are the values m, n so that the complete 

bigraph Km, n is a Hamiltonian graph? 

2 The graph representing the regular tetrahedron, hexahedron, 

octahedron or icosahedron is a Hamiltonian graph. 

3 We use paper to construct an octahedron. Can we cut it into 

two parts so that every face is also cut into two parts and the cutting 

lines do not go through the vertices of the octahedron? 

4 A mouse eats the cheese whose size is the same as 3 X 3 X 3 

cube. The way to eat it is to get through all the 27 of the 1 X 1 X 1 

subcube. If the mouse begins from one corner, then goes to the next 

subcube which has not been eaten. Can the mouse be at the center 

when he has eaten the cheese . 

S We divide 6 persons into 3 groups to finish 3 missions. There 

are 2 persons in every group. Everyone can cooperate with at least 3 

persons among the other 5 persons. (1) Can the two persons of every 

group cooperate with each other? (2) How many distinct grouping 6 

persons into 3 groups can you give? 

6 A king has 2n ministers, among whom there are several 

ministers hate each other. But the number of persons every minister 

hate is no more than n - 1. Can they sit in a round table so that no two 

adjacent ministers hate each other? 

7 Among 9 children, every child knows at least four children. 

Can these children be arranged in a line so that every child know the 

child beside him? 

8 A chef uses eight materials to do the cooking. He should use 

two materials for each dish. Every material should be used in at least 
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four dishes. Can this chef cook four dishes so that he uses 8 distinct 

materials? 

9 All the subsets of a finite set can be arranged side by side in a 

way so that every two adjacent subsets differ only in one element. 

10 In a plane, a graph with n vertices and several edges is not a 

Hamiltonian graph. But if we remove one vertex and its adjacent edges 

from the graph, the graph will become a Hamiltonian graph. Find the 

minimum n. 

11 Around a table there sit at least five persons and it is possible 

to rearrange their seats so that beside everyone there are two new 

neighbours. 



Chapter 7 Planar Graph 
~ -=--:::..--

A graph is called a planar graph, if it can be drawn in the plane 

so that its edges intersect only at their ends . 

Some graphs seem to have edges intersecting, but it is not clear 

that they are not planar graphs. See Fig. 7. 1 (1), it is isomorphic to 

Fig. 7.1(2). So it is easy to see that Fig. 7.1(1) is a planar graph. 

( I ) (2) 

Fig. 7. 1 

When we talk about a planar graph G, we always assume that the 

planar graph is drawn according to such requirement. The vertices and 

edges of a graph partition the plane into 

several separated regions. Each area is 

called a face of G. The only unbounded 

face is called the outer face and the others 

are the inner faces. In Fig. 7. 2, F 1 , F 2 , 

F 3 ' F 4 are inner faces, F 5 is the outer 

face. 

V,<r------''<l: .O------'>P V , 

Fig. 7. 2 

We know Euler's Formula of a convex polyhedron in middle 

schools. That is, if a convex polyhedron has v vertices, e edges and f 
faces, then v - e + f = 2. We can generalize it to planar graphs. 

Theorem 1 (Euler's Formula) For a connected planar graph G 

wi th v vertices, e edges and f faces, then 
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v -e + 1 = 2. 

Proof We prove by induction on e. 

If G has only one vertex, then v = 1, e = 0, 1 = 1 , the assertion 

v - e + 1 = 2 holds. 

If G has one edge, then v = 2, e = 1, 1 = 1, then the assertion 

v -e + 1 = 2 holds. 

Suppose that it is true for all connected planar graphs with k 

edges, i.e. Vk -ek + Ik = 2. Now we discuss the case when G hask + 
1 edges . 

If we add a new edge to a connected graph G with k edges such 

that G is still a connected graph, there must be two cases. 

(i) Add a new vertex v' which is adjacent to a vertex v of G as 

Fig. 7.3(1) shows us . Then both v k and ek increase by 1, Ik does not 

change. So 

(ii) Add a new edge to join two vertices of G as Fig. 7. 3 (2) shows 

us. Then both Ik' ek are added by 1, V k does not change. So 

By the induction hypothesis, the theorem holds for every positive 

integer e. 

v' 

(I) (2) 

Fig. 7. 3 

We can use Euler's Formula to determine the maximum number of 

edges in a simple planar graph. Since a face has at least 3 edges, the 

boundaries of 1 faces have at least 31 edges. In addition, one edge 
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2 belongs to the boundaries of at most 2 faces. So 2e ?:?- 31, and 1 ~ 3e. 

Use Euler's Formula 

2 
2 = v - e + 1 ~ v - e + 3e , 

that is 

e ~ 3v - 6. 

This proves the following theorem. 

Theorem 2 For a connected simple planar graph G with v (v ?:?- 3) 

vertices and e edges, then 

e ~ 3v - 6. 

In fact, Theorem 2 also holds for disconnected simple planar 

graphs. Theorem 2 can be used to determine whether a graph is a 

planar graph or not. 

Example 1 Prove that the complete graph K 5 is not a planar 

graph. 

Proof Since v = 5, e = 10 do not satisfy e ~ 3v - 6. So K 5 is not 

a planar graph. 

Example 2 Prove that K 3 . 3 is not a planar graph. 

Proof Suppose that K 3 • 3 is a planar graph. Since we choose 3 

vertices randomly in K 3.3' there must be 2 vertices which are not 

adjacent to each other. Therefore, each face has at least 4 edges as its 

boundary. By 

Use Euler's Formula 

that is 

41 ~ 2e, 1 ~ ~. 

e 
2 = v-e + l ~ v-e+2' 

e ~ 2v - 4. 
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In K 3.3 ' V = 6, e = 9, so 9 > 2 X 6 - 4, this leads to a 

contradiction. So K 3 • 3 is not a planar graph. 

Although Euler's Formula and the inequality derived from it can 

be used to prove that a graph is not a planar graph, but it can do 

nothing to prove that a graph is a planar graph. The Polish 

mathematician Kuratowski showed us a brief result in 1930. Every 

nonplanar graph has either K 5 or K 3.3 as its subgraph. To depict the 

result clearly, we give the definition of homeomorphism first. 

Two graphs G 1 , G2 are called homeomophic, if G 1 can be obtained 

by inserting some new vertices on G2 's edges . The two graphs in 

Fig. 7.4 are homeomorphic. By the definition of homeomorphism, we 

know that inserting or deleting a number of 2-degree vertices does not 

change the planarity. Kuratowski's theorem is as follows. 

MM 
0 ) (2) 

Fig. 7. 4 

Theorem 3 A graph is planar if and only if it contains no 

subgraph homeomorphic to K 5 or K 3 . 3 • 

Although the theorem is basic, but the proof is too long to show. 

Example 3 Are Fig. 7.5, Fig. 7.6 planar graphs? 

Proof Fig. 7. 5 contains a K s as its subgraph, and Fig. 7. 6 

includes a K 3 • 3 as its subgraph. By Kuratowski's Theorem, it is easy to 

see that neither of them is a planar graph. 

Fig. 7. 5 Fig. 7.6 
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Example 4 How many kinds of regular polyhedrons are there? 

Can you give their numbers of edges, vetices and faces? How many 

edges is a vertex incident to? 

Proof As each vertex in a regular polyhedron lies on at least 3 

faces, when every internal angle at a vertex in a regular polyhedron is 

no less than 1200
, it cannot be a vertex of a regular polyhedron. 

Therefore, we can only consider polyhedrons with regular pentagons, 

squares and regular triangles as faces. 

(1) Polyhedron constructed from regular pentagons. 

Since the internal angle of a regular pentagon is ; TC, and ; TC X 

4 > 2TC, each vertex is 3-degree. Hence 3v = 2e, ~ f = e, and by 

Euler's Formula 

It is easy to see that 

e = 30, v = 20, f = 12. 

So, there is only one regular polyhedron constructed from regular 

pentagons. It is a regular dodecahedron with 20 vertices, 30 edges, 

and each vertex incident to 3 edges. 

(2) You may prove polyhedrons constructed from squares and 

regular triangles by yourselves. There are 4 kinds as follows shown in 

Fig. 7. 7. Therefore, there are 5 kinds of regular polyhedrons. 

regular dodecahedron cube regu.lar tetrahedron regular octahedron regular isosahedron 

Fig. 7. 7 
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Example 5 We partition a square into n convex polygons, where 

n is fixed . What is the largest number of edges that a convex polygon 

could have? 

Proof By Euler's Formula, we know that when a convex polygon 

is partitioned into n polygons, then v -e + n = 1 (because f = n + 1 ). 

As we partition a square into n convex polygons, for each vertex 

of these polygons, if it does not belong to the square, then it must be 

the vertex of at least 3 convex polygons. We use A, B, C, D to 

denote the vertices of the square, and v is an arbitrary vertex except 

A, B, C, D, then 

d(v) ~3(d(v) -2). 

Calculating the sum of all the vertices except A, B, C, D, 

2e - (d(A) + d(B) +d(C) + d(D» 

~ 3(2e - (d(A) +d(B) + d(C) +d(D» - 6(v -4». 

So, 

4e ~ 2(d(A) + d(B) +d(C) + d(D» + 6(v -4). 

Sinced(A) ~2, deB) ~2, d(C) ~2, d(D) ~2, hence 

2e ~ 8 + 3 (v - 4). 

Using 

v-e + n = l, 

we can obtain the following result 

3(e + 1) = 3v + 3n ~ 2e + 4 + 3n, 

that is, e ~ 3n + 1. 

Draw n -1 lines crossing an edge of a square such that all the lines 

are parallelled to their adjacent edge and divide the square into n 

rectangles. The number of edges is 

4+3(n - 1) = 3n+1. 

In summary, the largest edge number is 3n + 1. 
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In 1968, two Soviet mathematicians Kozyrev and Grinberg gave a 

necessary condition to planar graphs with Hamiltonian cycles. 

Theorem 4 If a planar graph has a Hamiltonian cycle c, let f: be 

the number of i-polygons inside c, and j':be the number of i-polygons 

outside c, then 

(1) 1 • f~ + 2 • f: + 3 • f~ + ... = n - 2 ; 

( 2) 1 • j'~ + 2 • j'~ + 3 • j'~ + ... = n - 2 ; 

(3) 1 • Cf~- j'~) +2· Cf: - j'~) + 3· Cf~- j'~) + ... = 0, where 

n is the number of the vertices of G, and also the length of c. 

Proof Suppose there are d edges inside c. As G is a planar 

graph, its edges do not intersect and one edge divides the face into two 

parts. Try to think of these edges putting side by side in the graph. We 

get one more face each time we put an edge in the graph. So d edges 

divide the interior of c into d + 1 faces . The total number of the faces 

inside c is 

(1) 

We can mark each i-polygon inside c with number i. The sum of 

all the numbers marked on the faces is the number of the edges that 

form the faces. Each edge inside c is counted twice, but the edges on c 

is counted once. So 

2· f~ + 3. f~+ 4. f:+5. f~+··· = 2d + n. (2) 

Subtracting equation (1) twice from equation (2), we can get 

1 • f~ + 2 • f: + 3 • f~ + ... = n - 2. 

Similarly, we can get the following result 

1 • j'~ + 2 • j'~ + 3 • j'~ + ... = n - 2. 

Equation (4) subtracted from equation (3), you can get 

1 • (f~ - j'~ ) + 2 • Cf: - j'~) + 3 • (f~ - j'~) + ... = o. 

(3) 

(4) 

Example 6 Prove that the Grinberg graph (see Fig. 7. 8) has no 

Hamiltonian cycle . 
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Proof Suppose that the Grinberg graph 

includes a Hamiltonian cycle. Since there are 

only pentagon, octagon and enneagon, from 

Theorem 4, 

3 • (j~ - 1'~) + 6 • (j~ - 1'~) + 7 • (j~ - 1';) 
= o. 

That is 

7 (j~ - 1'~) - 0 (mod 3). 
Fig. 7.8 

It contradicts I~ - 1'~ = 1. Therefore, the Grinberg graph has no 

Hamiltonian cycle. 

Exercise 7 

1 Let G be a simple planar graph, then it must have a vertex 

whose degree is no more than 5. 

2 Prove that a simple planar graph with edges less then 30 must 

have a vertex whose degree is no more than 4. 

3 Prove that in a simple planar graph with 6 vertices and 12 

edges, each face is surrounded by 3 edges. 

4 G is a graph with 11 or more vertices. G is the complement of 

G, that is, G has the same vertices as G and all the possible edges but 

not in G . Prove that G or G is not a planar graph . 

S Divide the plane into 1 parts, and every two parts are 

adjacent. What is the largest value of I? 
6 Suppose that each vertex in a convex polyhedron is adjacent to 

all the other vertices. Prove that except tetrahedron such convex 

polyhedron does not exist. 

7 In a bus network there are n stations. Each station IS 

connected to at least 6 roads. Prove that there must be two roads 

intersecting on the plane. 
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8 If a polyhedron containing n edges exists, what is the value of 

n? 

9 A convex polyhedron has iOn faces. Prove that there are n 

faces which have the same number of edges. 

10 Prove that the graph in Fig. 7.9 has no Hamiltonian cycle. 

Fig. 7. 9 Fig. 7.10 

11 The graph in Fig. 7. 10 contains a Hamiltonian cycle. Prove 

that for any Hamiltonian cycle, if it contains edge e, then it must not 

contain edge e'. 

12 Let S = {Xl' X2' ••• , Xn} en ~ 3) be the set of vertices on 

the plane. The distance between two arbitrary vertices is no less than 

1. Prove that there are at most 3n - 6 pairs of vertices whose distances 

are 1. 
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Usually, Ramsey's problem refers to problems involving coloring, 

Ramsey number (Ramsey, an English logician) and the Pigeonhole 

Principle. 

First we begin with a mathematical Olympiad problem. The 

problem appeared in a Hungarian mathematics competition in 1947. 

Example 1 Prove that among every six persons, you can always 

find three persons who know each other or do not know each other. 

We denote six persons by six vertices. If there are two persons 

who know each other, we join the corresponding vertices and color it 

red. If there are two persons who do not know each other, we join the 

corresponding vertices and color it blue. What we are to prove is that 

there must exist a monochromatic triangle. That is, there is a triangle 

whose edges are either all red or all blue. 

The above is not the only one such question. A similar problem 

appeared in Putnam Mathematics Competition: In the space, there are 

six points among which any three points are not on a line and any four 

points are not on a plane. We join six points in pairs to get 15 line 

segments. We use red and green to color these line segments. (A line 

segment can only be colored in one color. ) Prove that in whatever way 

the line segments are colored, there must be a monochromatic 

triangle. 

Next let us begin our proof to the Putnam competition problem 

which can be regarded as a standard pattern. 

Proof Let A I , A 2 , ••• , A 6 be the six vertices given. Consider 5 

line segments AIA2' AIA3' ... , AIA6 adjacent to AI. Since there are 

only two colors coloring the 5 line segments, there must be 3 line 
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segments in one color . Without loss of generality, let the three line 

segments be AIA2' A IA 3, AlA4 which are colored red. (We denote 

red by a solid line and blue by a dotted line.) If DA2A3A4 are blue 

(see Fig. 8.1), then it is a monochromatic triangle. If in DA2A3A4' 

there are at least one edge, for example, A2A3 is red (as Fig. 8. 2 

shows us), then D AlA2A3 is a monochromatic triangle. In other 

words, in either case there is a monochromatic triangle. 

AI AI 

A, 
A2 

A2 

A, A, 

Fig.8.l Fig. 8.2 

From this example, we can easily know that when n ~ 6, we use 

two colors to color all the edges of K n which is called a two-color 

complete graph K n for short. Then there must 

exist a monochromatic triangle. 

Fig. 8.3 shows us a complete graph K 5 in two 

colors, which contains no monochromatic 

triangleb) • 

In summary, we can get the next conclusion. Fig. 8. 3 

Theorem 1 If a complete graph K 11 in two colors contains a 

monochromatic triangle, then the minimum n is equal to 6. 

Example 2 Prove that it is impossible to color the K 10 10 four 

colors so that any subgraph K 4 of K 10 contains all four colors. 

Proof We prove by contradiction. Suppose that we can find a 

coloring satisfying the requirement. 

b) Vice versa, it is easy to prove that the two-color complete graph K 5 without 

monochromatic triangle consists of two pentagon with different colors. In other words, in the 

two-color complete graph K 5 , if there are no blue triangle and pentagon, then there must be a 

red triangle. 
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If a vertex is adjacent to 4 edges with the same color, say blue, we 

color AB, AC, AD, AE all in blue. Among the edges joining B, C, 

D, E there must be an edge in blue. Let it be BC. Then there are 4 

blue edges joining A, B, C, D, and the remaining two edges should 

be colored in three colors. A contradiction. So A must be adjacent to 

at most 3 monochromatic edges and there must be one color coloring 

three edges. Without loss of generality, suppose that AB, AC, AD 

are all blue. There are 6 edges joining A, B, C, D, so the remaining 

three edges are colored in different colors. There are no blue edges in 

BC, BD, CD. 

Consider the remaining six vertices. By Theorem 1, the graph 

must contain a blue triangle or a triangle without blue edges. 

If there are three vertices E, F, G with no blue edges joining 

them, then there is no blue edges joining A, E, F, G. It is a 

contradiction. So without loss of generality, let DEFG be a blue 

triangle. Since there are no blue edges joining B, C, D, E, there 

must be one blue edge among BE, CE, DE . Suppose that BE is blue, 

then there must exist four blue edges joining B, E, F, G. It is also a 

contradiction. In summary, the proposition is true. 

Using the above conclusion, we can solve the following problem 

in the 33th International Mathematical Olympiad. 

Example 3 Given nine points in the space, among them there are 

no four points on a face. Join every pair of points and try to find the 

minimum n so that you can color everyone of any n line segments by 

red or blue arbitrarily . In the set of the n line segments, there must be 

a monochromatic triangle. 

Solution By assumption there are no four points in a face, which 

assures that among nine points there are no three points on a line. So 

this problem is still a planar graph problem . The problem can be stated 

as follows: There are nine points on a plane and among them there are 

no three points on a line and there are 36 lines . How many lines should 

we take so that there must be a monochromatic triangle when we color 

the graph in two colors randomly? 
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We construct a graph G with 9 vertices, 32 edges and in two 

colors. We color the edges joining the vertex VI and V2' V3 ' V S , V 9 by 

red (a solid line) while we color the edges joining the vertex VI and V4' 

vs, V6' V 7 by blue (a dotted line). We divide the vertices other than 

VI into four groups: I: (V2' V 3 ); II: (V4' v s ); ill: (V6' V 7 ); N: 
(vs ' V 9 ). We call I and II, II and ill, ill and N adjacent groups. 

Except VI , two vertices belonging to one group are not adjacent, two 

vertices belonging to two different adjacent groups are joined by a 

solid line (red) and two vertices belonging to two different groups 

which are not adjacent are joined by a 

dotted line (blue). Fig. 8. 4 shows 

that there are G) - 4 = 32 edges in v , 

the graph G which contains 16 red 

edges (solid lines) and 16 blue edges 

(dotted lines). It is not difficult to 

know that G contains no 

monochromatic triangle. So n ;? 33. 

v, 

Fig. 8. 4 

Next let us prove n ~ 33. Suppose 33 edges connecting have been 

colored. While there are 3 edges which have not been colored. 

Without loss of generality, we denote the 3 edges by el' e 2' e 3 ' 

Choose one end V I ' V2 ' V 3 from e l' e2' e3' respectively. Then we 

delete the three vertices from K 9 and the remaining 6 vertices form a 

graph K 6 ' So if we color the graph by red and blue, the graph must 

contain a monochromatic triangle. 

So n = 33. 

To generalize Theorem 1, we first need to increase the number of 

colors. 

We use k colors CI' C2' •.. , C k to color the complete graph K". 

We call the complete graph K" k-color complete graph K " if every 

edge is colored in one color. We can imagine if n is large enough, 

k-color complete graph K" must contain monochromatic triangle. We 

denote the least n by r k' In Theorem 1, r2 = 6. It is clear that rl = 3. 
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The existence of r k was firstly proved by British mathematician 

and logician Ramsey. We call r k the Ramsey number. Concerning rk 

we have the next conclusion. 

Theorem 2 (1) For every positive integer k, the Ramsey number 

rk exists. When k ~ 2, 

rk ~ k (rk-j - 1) + 2. 

(2) For any natural number k , 

k' k' r k ~1 + 1 +k +k(k - 1) + "'+2! + 1f + k!. 

Proof (1) Apply induction on k. We know that rl' r2 exist and 

rl =3, r2 = 6~2(rl - 1)+2. 

Suppose that rk exists and rk ~ k (rk-l - 1) + 2 holds. Take n = 

(k + l)(rk -1) + 2 and let K n be a (k + 1) - color complete graph 

whose vertices are AI, A 2 , ••• , An. Take a vertex A 1 from K n 

randomly, which is adjacent to n - 1 = (k + 1 )(rk - 1) + 1 edges. 

There are k + 1 colors in these edges . By the Pigeonhole Principle, in 

these edges there are at least rk monochromatic edges . Suppose that 

these r k edges are A IA2' AIA3' ... , A IArk + 1' which are all colored 

in color C I. Consider r k -subset K r k consisting of the vertices A 2 , 

A 3, ... , A rk+ l • If K rk contains an edge with colored CI such as A 2A 3, 

then L AIA2A 3 is a monochromatic triangle. If K rk contains no edges 

with color C I' then there are k colors coloring the K r k ' which means 

that K rk is k -color complete graph. By the induction hypothesis, K rk 

contains a monochromatic triangle . 

In summary, K n contains a monochromatic triangle . We know 

thatM = {m I any (k + 1)-color complete graph with m vertices that 

contains a monochromatic triangle} is a nonempty subset of the natural 

number set N, then there is a minimum rk+1 and 

r k+ 1 ~ n = (k + 1) (rk -1) + 2. 

(2) Apply induction. Whenk = 1, rl =3 ~ 1 + 1 +1. Suppose that 

the property is true for k, then by (1) and the induction hypothesis, 

we get 
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rk+1 :s;; (k + 1 )(rk - 1) + 2 

:s;; (k + 1) [ 1 + k + k(k - 1) + ... + ; i + ~ i + k ! ] + 2 

= (k + 1) + (k + 1)k + (k + 1)k (k - 1) + .. . 

+ (k + 1)! + (k + 1)! + (k + 1)' + 2 
2! 1! . 

= 1 + 1 + (k + 1) + (k + l)k + ... 

+ (k + 1)! + (k + 1)! + (k + 1)' 
2! 1! .' 

So the property is also true for k + 1. 
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If we make use of the expanding formula of base number of the 

natural logarithm in advanced mathematics 

e = 1 + -.1 + -.1 + ... + ---.L + ... 
1! 2! n! ' 

we can simplify (2) and get rk :s;; [k !eJ + 1. Here we denote the largest 

integer no more than x by [x]. 

Though Theorem 2 proves the existence of rk and gives an upper 

bound of r k , we only know three exact values of rk' Other than rl = 

3, rz = 6 mentioned above, we also know r 3 = 17. In face, according 

to (1) in Theorem 2, we know 

r 3 :s;; 3 (rz - 1) + 2 = 3 X 5 + 2 = 17. 

We follow the conclusion of Theorem 2 and obtain a result which was set as 

a problem in the 6th International Mathematical Olympiad in 1964: 

There are 17 scientists among which 

everyone communicates with any other 

person. They only discuss three problems 

when they are communicating and every 

two scientists can only discuss one problem. 4 

Prove that there are at least three scientists 

discussing one problem. On the other hand, 

we can color the complete graph K 16 to 

using three colors so that the graph contains 

no monochromatic triangle. As Fig. 8. 5 

o 
15 
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shows us, a solid line represents a red edge, a dotted line represents a 

blue edge and no line represents a yellow edge. This means that r 3 ~ 

17. So r 3 = 17. 

We can have another generalization of Theorem 1. 

Suppose every edge of the complete graph K n is colored in red or 

blue, which means that K" is a two-color (red, blue) complete graph 

K". For two constant natural numbers p, q, when n is large enough, 

the two-color C red, blue) complete graph K" must contain a red K p or 

a blue K q . We denote the least n satisfying the above proposition by 

rCp, q). We also call rCp, q) the Ramsey number. 

Using the concept of subgraph and complementary graph, we call 

rCp, q) the minimum n so that any n-subgraph G of the complete 

graph K n contains a complete subgraph K p or its complementary graph 

G contains a complete subgraph K q • 

By definition and Theorem 1, we know that r (3, 3) = r 2 = 6. 

Furthermore, it is easy to find thatrCl, q) = rCp, 1) = 1. 

In order to understand the next general conclusion of r C p, q), we 

prove an example: r (3, 4) = 9. First prove r (3, 4) ~ 9 and we can 

also give another example with the same form as Example 1. 

Example 4 Prove that among any nine persons, you can find 

three persons knowing each other or four persons not knowing each 

other. 

Proof We denote nine persons by nine vertices AI' A 2' ... , 

A ~. We join every two vertices and if A; knows A j' then color 

A;A j red. Otherwise, we color it blue. What we need prove is that 

in the two-color complete graph K 9 there must exist a red K 3 or a 

blue K 4. 

If a vertex is adjacent to no less than four red edges, we denote 

them by A t A 2' A t A 3 ' A t A 4' A t A 5 . If there is an edge joining 

A 2 , A 3, A 4 , A5 by a red line, for example A 2A 3. Then 6 A tA2A3 

is a red triangle. If there is no edge join A 2' A 3 ' A 4' A 5 by a red 

line, then A 2, A 3 , A 4 , A5 form a blue triangle. We complete the 

proof. 
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If the number of red edges adjacent to every vertices is less than 

4, then the number of blue edges adjacent to every vertex is no less 

than 5. Consider the graph consists of AI, A 2 , • • • , A 9 and all the 

blue edges. Since the number of odd edges is even, there must be an 

even vertex such as VI ' Since the number of blue edges adjacent to AI 

is even, the number of blue edges adjacent to Al is no less than 6. Let 

AIA 2' A IA 3' .. . , AlA7 be blue edges . Consider six vertices A 2 , 

A 3 , •• • , A 7 , every two of them are incident to be red or a blue edge. 
s 

By Theorem 1, the graph contains a red triangle or a blue triangle . In 

the first case, the proposition is true, and we complete the proof . In 

the second case, let ~A2A3A4 be a blue triangle. Then the complete 

graph K4 with vertices AI ' A 2 , A 3 , A 4 is blue. The proposition is also 

true. 

Considering a complete two-color complete 

gra ph K 8 as Fig. 8. 6 shows us, we denote red edges 

by solid lines and blue edges by dotted lines. There 

exists a color of graph K 8 such that K 8 contains no 

red K 3 and no blue K 4 • It means that r(3, 4) > 8. 

In summary, r(3, 4) = 9. 

Concerning rCp, q), we have the next conclusion. 

Theorem 3 C 1) r C 2, q) = q, r C p, 2) = p. 

(2) rCp, q) = rCq, p). 

(3) When p ~ 2, q ~ 2, 

rCp , q) ~ rCp - 1, q) + rCp, q - 1). 

Fig. 8. 6 

The inequality holds when rCp -1, q) and rCp, q - 1) are all even. 

We prove the theorem using subgraphs and their complementary 

graphs . The proof of (3) is very difficult. We may refer to the proof 

of Example 4 . 

Proof C 1) Let G be a graph with q vertices . If two vertices in G 

are adjacent, G contains K 2. Otherwise G contains a K q ' So r C2, 

q) ~ q. Since q - 1 vertices which are not adjacent to each other form 

a graph G. Obviously G contains no K 2 and its complementary graph 
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GcontainsnoKq. SorC2, q) ~ q. 

In summary, rC2, q) = q. Similarly, we can prove rCp, 2) = p. 

(2) If G contains rCp, q) vertices, then G also contains r Cp, q) 

vertices. So G contains K p or G contains K q. In other words, G 

contains Kq or G contains K p. So rCp, q) ~ rCq, p). Similarly, rCq, 

p) ~ rCp, q). SorCp, q) = rCq, p). 

(3) SupposeG containsrCp, q - 1) +rCp - 1, q) vertices, and VI 

is a vertex of G. 

IfdCvI) ~ rCp - 1, q), let () = rCp - 1, q) vertices be Vu 

V3' ... , 1.S, 1.S+1 which are adjacent to VI. Then we remove other 

vertices and their edges from G to get G I . According to the definition 

of () = r Cp - 1, q), G I contains K P- I or G I contains K q. If G I contains 

K p- I' then in G, K p-I and VI form a complete graph K p. If G I 

contains K q' then G also contains this K q • 

If the number of the vertices adjacent to VI is less than rCp - 1, 

q), then VI is not adjacent to at least r Cp, q - 1) vertices. We denote 

the vertices not adjacent to VI by VZ, V3' ... , V s ' V,+I' where 

£ = rCp, q - 1). We remove the vertices except vz, V3' ... , V,+I and 

their adjacent edges to get G z. According to the definition of £ = rCp, 

q - 1) , Gzcontains Kp or G z contains K q- I . If G z contains K p , G also 

contains this Kp . If Gz contains K q- I , then in G, VI and K q- I form 

a K q • 

In summary, we get 

rCp, q) ~ rCp, q - 1) + rCp - 1, q). 

If r Cp, q - 1) and r Cp - 1, q) are even, we choose a graph G with 

rCp, q - 1) + rCp - 1, q) - 1 vertices. Since the number of odd 

vertices is even and rCp, q - 1) + r(p - 1, q) - 1 is odd, G contains an 

even vertex VI. For VI' either d C V I) ~ rCp - 1, q) - 1, or VI is not 

adjacent to at least rCp, q - 1) vertices. Since the number of vertices 

adjacent to VI is even, in the first case, d C V I) ~ rCp - 1, q). 

According to the same method we get 
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rep, q) ~ r(p, q -1) +r(p - 1, q) - 1 

< rep, q - 1) + r(p -1, q). 

We complete the proof of Theorem 3. 
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By Theorem 3, we get an upper bound of some Ramsey numbers 

rep, q). For example, 

r(3, 3) ~r(3, 2) +r(2, 3) = 3 + 3 = 6, 

r(3, 4) ~r(3, 3) +r(2, 4) -1 ~6 + 4 - 1 =9, 

r(3, 5) ~r(3, 4) +r(2, 5) ~ 9 +5 = 14, 

r(4, 4) ~ r(4, 3) + r(3 , 4) = 9 +9 = 18. 

We have provedr(3, 3) =6, r(3, 4) =9, similarly, we can prove 

r(3, 5) = 14, r(4, 4) = 18. By a known inequality, of course we need 

only to prove r(3, 5) > 13, r(4, 4) > 17. Here, we only prove the 

first inequality and leave out the second proof. 

Consider the graph which Fig. 8. 7 shows 

us, it contains no K 3 and its complementary 

graph G contains no Ks. So r(3, 5) > 13. 
II 

Applying Theorem 3, we can get a simple upper 

bound of r (p, q), as shown in Theorem 4. 

Theorem 4 When p ~ 2, and q ~ 2, 

( P + q-2) 
r(p,q) ~ . 

p -1 

8 7 

Fig. 8. 7 

Proof Note that l = P + q. We apply induction on l. 

4 

When l = 4, P = q = 2. The left side is r(2, 2) = 2 and the right 

(4 - 2) 
side is 1 = 2. 

Suppose the theorem is true when l = k (k ~ 4). When l = k + 1, 

consider the case when p = k - 1, q = 2, or P = 2, q = k - 1 , 

(k - 1) (k - 1) 
r(k - 1, 2) = r(2, k -1) = k -1 = k _ 2 = 1 . 

The theorem is true . Whenp ~3, and q ~3, we havep +q = k + 1, 
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apply (3) in Theorem 3 and by induction, we have 

rCp, q) ~ rCp - 1, q) + rCp, q - 1) 

~ (P + q - 3)+ (P + q - 3) 
p - 2 p - 1 

= (P + q - 2). 
P - 1 

The theorem is also true. By induction, Theorem 4 is proved. 

In spite of the result, it is difficult to find the exact value of rCp, 
q) . Except forrO, q) = rep, 1) = 1, rCp, 2) = p , rC2, q) = q, we 

know only a few values of rCp, q). They are listed in the next table in 

which the numerator represents the low bound and the denominator 

represents the upper bound. 

~ 3 4 5 6 7 8 

3 6 9 14 18 23 28 
29 

4 9 18 25 34 
28 36 

5 14 25 42 51 
28 55 94 

6 18 34 38 102 
36 94 178 

If we combine the above two generalizations , we obtain the next 

generalization. 

Color the complete graph K n in [ colors C I ' C 2' ••. , c,. Every 

edge can be colored in only one color and we get an [-color complete 

graph. When n is large enough, [-color complete graph K n contains a 

c I -color complete subgraph K PI or a c 2 -color complete subgraph 

K P2' .•. or a c , -color complete subgraph K PI . We denote the 

minimum n satisfying the above propositions by r CPI' Pn . .. , PI). 

We also call it a Ramsey number . 

If we introduce the definition of hypergraph , we can make 



Ramsey's Problem 95 

further generalization. We do not elaborate here. 

Example 5 We divide 1, 2, 3, 4, 5 into two groups A, B 

randomly. Prove that it is possible to find two numbers in a group and 

the difference of the two numbers is the same as one number of this 

group. 

Proof We divide 1, 2, 3, 4, 5 into two groups A, B randomly. 

Choose six vertices and label them as 1, 2, 3, 4, 5, 6. For any two 

vertices i > j , it is always true that 1 < i - j < 5. For the two vertices 

i > j, if i - j is in group A, we color the edge ij red; if i - j is in 

group B, we color the edge ij blue. So we get a 2-color complete 

graph K 6. By Example 1, this K 6 contains a monochromatic triangle 

which is D, ij k (i > j > k). This means that a = i - k, b = i - j , 

c = J - k. The three numbers are in one group, and 

a -b = Ci -k) -Ci -j) =j - k =c. 

We have completed the proof. 

Remark In this example, it is possible that b = c, then a = 2b. 

The problem can be rewritten as follows. We divide 1, 2, 3, 4, 5 into 

two groups A, B randomly. Prove that it is possible to find a number 

in a group so that it is twice one number in the group or the sum of two 

numbers in the same group. 

Question 8 in Exercise 8 of this chapter is an IMO problem in 1978 

which is an extension or generalization of this example. Generalize 

Question 8 further, we get the famous Schur Theorem (Question 7). 

A variate of monochromatic triangle is heterochromous triangle 

whose three edges are colored in three distinct colors. The following is 

a question from Hungarian Mathematical Olympiad. 

Example 6 There are 3n + 1 persons in a club. Any two persons 

can play one of the three games: Chinese chess, the game of go, 

Chinese checkers. It is known that everyone must play Chinese chess 

with n persons, the game of go with n persons and Chinese checkers 

with n persons. Prove that among the 3n + 1 persons, there must be 

three persons so that there are Chinese chess player, go player, and 
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Chinese checkers player among the three. 

Proof We denote 3n + 1 persons by 3n + 1 vertices. If two persons 

play Chinese chess, the corresponding edge of them is colored red. If 

two persons play the game of go, the corresponding edge of them is 

colored blue. If two persons play Chinese checkers, the corresponding 

edge of them is colored black. Then we get a 3-color complete graph 

K 3n+1. What we must prove is that in this 3-color complete graph 

K 3n + 1 , there must be a heterochromous triangle. 

If two edges adjacent to one vertex are not monochromatic, we 

call the angle of the two edges heterochromous angle. A triangle is 

heterochromous if and only if its three angles are heterochromous 

angles. Every vertex is adjacent to 3n edges during which there are n 

red edges, n blue edges, n black edges, respectively. Therefore, the 

number of the heterochromous angles induced by one vertex is (~) n 2 

3n 2. The 3-color complete graph K 3n+1 contains 3n 2 On + 1) 

heterochromous angles at all. On the other hand, complete graph 

(3n + 1) 1 
K 3n+1 contain 3 = 2 n On + 1) On -1) triangles. We can regard 

these triangles as holes and heterochromous angles as pigeons. Since 3n 2 On + 
1) >n On + 1) On - 1), the number of heterochromous angles in the 

3-color complete graph K 3,,+1 is twice more than the number of 

triangles. By the Pigeonhole Principle, there must be a triangle with three 

heterochromous angles. We call the triangle a heterochromous triangle. 

We often find the similar problems about the Ramsey problem in 

mathematics contest. We give some more examples to finish this 

chapter. 

Example 7 There are 100 guests in a hall. Everyone of them 

knows at least 67 persons. Prove that among these guests you can find 

4 persons any two of them know each other. (Polish Mathematical 

Competition in 1966) 

Proof We denote the guests by 100 vertices A1 , A 2 , ••• , Awo. Join 

every two vertices and color it in red or blue. The edge joining A; and Aj is 
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colored in red if and only if A. and Aj know each other. We use the 

language of graph theory to re-phrase this problem: In a red-blue two color 

complete graph K tOO' if the number of red edges going out of every vertex is 

at least 67, then K IOU contains a red complete subgraph K 4 • 

Take one vertex AI. The number of red edges induced by it is no 

less than 67, so there must exist a red edge A I A 2 • Since the number of 

red edges induced by A2 is no less than 67, the number of blue edges 

induced by Al and A2 is at most 32 X 2 = 64. They involve 66 vertices 

and there must exist one vertex, for example A3 so that AIA3 and 

A2A3 are red edges. The number of blue edges induced by AI, A 2, A3 

is at most 32 X 3 = 96 and these blue edges involve 99 vertices. There 

must exist one vertex A4 so that AIA4' A 2A 4, A3A4 are red edges. So 

the complete subgraph K4 with vertices AI, A 2 , A 3 , A4 is red. 

Example 8 We use pentagons AlA2A3A4AS and BlB2B3B4BS as 

the top and bottom faces of a prism. Every edge and every line 

segment AiBj' where i, j = 1, 2, ... , 5, are colored in red or blue. 

Every triangle which uses a vertex of the prism as its vertex and a line 

segment which has been colored as its edge is not a monochromatic 

triangle. Prove that the ten edges in the top and bottom faces are 

colored the same color. (The 21th IMO) 

Proof First we prove that the five edges on the top face are 

colored the same color. Otherwise, there are at least two edges in the 

pentagon which are not monochromatic. So there are two adjacent 

edges such as A I A 2 , AlAs which are not monochromatic. Without loss 

of generality, we suppose that AlA2 is red and AlAs is blue. Among 

the edges joining AI and B l , B 2, B 3, B 4 , Bs there are at least 3 

monochromatic edges. Let AIBi . AIBj' AIBk be red edges (i, j, k 

are distinct). Since 6A I BiB j is not monochromatic, BiB j is a blue 

edge. Similarly, A2Bi is also a blue edge. We can also know that A2B j 

is a red edge. Then 6AlA2Bj is a red triangle. It is a contradiction. 

Similarly, we can prove that the five edges on the bottom face are 

also monochromatic. 

If the edges in the top and bottom face are not monochromatic. 
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We suppose that AtA2A3A 4A s is red and BtB2B3B4B s is blue. 

Without loss of generality, let AtB I be a blue edge. By the assumption 

that every triangle is not monochromatic, we can know that Al Bs and 

AIB2 are all red edges. So AzB2 and AsB s are blue edges. Similarly, 

A sB I' A sB4' AzBI , A 2 B 3, . .. are all red edges and A 3B 3' A4B4 are 

blue edges. So A 4BI and A4BZ are blue edges and we can get a blue 

triangle D A4Bt B 2 • It is a contradiction. 

So the ten edges in the top and bottom faces are monochromatic. 

Example 9 There are two international airlines X and Y serving 

10 districts. For any two districts, there is only one company 

providing a direct flight (to and fro). Prove that there must be a 

company which can provide two tour routes so that the two routes do 

not pass through the same districts and each route passes through an 

odd number of districts. 

Proof We denote the 10 districts by 10 vertices Ut , U 2 ' •.. , U IO. 

If the flight between U i and U j is provided by X, then we join U i and 

U j by a red edge (a solid line): If the flight between U i and U j is 

provided by Y, then we join U i and U j by a blue edge (a dotted line). 

Then we can get a 2-color complete graph K 10. In order to prove the 

conclusion, it suffices to prove that there must be two monochromatic 

triangles or polygons having no common edge and an odd number of 

edges in K 10 • 

The 2-color complete graph K 10 contains a monochromatic 

triangle. Let D USU9U1I1 be a monochromatic triangle. By Example 1, 

we can know that the triangles constructed by the vertices Ut, 

U2' • . • , U 7 must contain a monochromatic triangle . Let D U S U 6 U 7 be a 

monochromatic triangle. If the color of DU s U 6 U 7 is the same as that of 

D USU9U tu, the conclusion holds. Then let D U S U 6 U 7 be red and 

D USU9UlO be blue. 

The number of edges joining the vertex sets {u s , U 6' U 7} and {u s , 

U 9' U IO} is 3 x 3 = 9. By the Pigeonhole Principle, there must be five 

monochromatic edges . Let them be red edges . The five edges are 

induced by { u s , U 9 ' UlO} , so there must exist a vertex which is 
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adjacent to two red edges which are U8U6, U g U7' As Fig. 8. 8 shows, 

there must also be another red triangle DU6U7US. 

Consider the 2-color complete graph Ks whose vertices are Ul' 

U2' U3' U4' us. If the Ks contains a monochromatic triangle, 

whatever color the triangle is, together with the red triangle D U6 U 7 Us 

or the blue triangle D U s U9 U 10' K 10 contains two 

monochromatic triangles with common edge and 

the same color. Otherwise, the 2-color complete 

graph K s contains no monochromatic triangle. It 

IS easy to know that K s contains two 

monochromatic pentagons which are one red and 

one blue. We complete the proof. 

".~" 
U9.~~ - - - - - - - -.. :~.UIO 

Fig. 8. 8 

Remark If we replace 10 districts by 9 districts, the conclusion is 

false. An example is given as follows. We divide 9 districts into 3 

groups, i.e. {Ul' Uu U 3 ' Up us} = A, {U6' U7' us} =B, {Uy} = 

C. The flights among the five districts in A are provided by X. The 

flights among the three districts in B are provided by Y. The flights 

between A and B, U 9 and A are provided by Y: The flights between Ug 

and A are provided by X . 

Exercise 8 

1 In the space, there are six points. Join every two of them and 

color the lines in red or blue. Prove that there must be two 

monochromatic triangles. 

2 In the space, there are eight points. Join every two of them 

and color the lines in two colors. Prove that there must exist three 

monochromatic lines which contain no common point. 

3 In the space, there are six points. Any three points are not the 

vertices of an equilateral triangle. Prove that among these triangles, 

there is one triangle whose shortest side is also the longest line of 

another triangle. 
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4 Join nine distinct points on a circle to get 36 lines and color 

them in red or blue. Suppose any triangle with three vertices coming 

from the nine points contains a red line. Prove that there are four 

points and any edge joining two of them is red. 

S Prove that among any 19 persons, there must be 3 persons who 

know each other or 6 persons who do not know each other. 

6 Prove that among any 18 persons, there must be 4 persons who 

know each other or do not know each other. 

7 We divide the natural numbers 1, 2, . . . , N into n groups. 

When N is large enough, there must be a group which contains x, y 

and their difference 1 x - y I. (Schur Theorem) 

8 There are 1978 members in an international corporation. They 

come from 6 countries. We label them as 1, 2, . .. , 1978. Prove that 

there must be at least one member whose number is twice the number 

of his one fellow-country or the sum of two fellow-countrymen. 

9 Prove that in a 2-color complete graph K 7 ' there must be two 

monochromatic triangles with no common edges. 

10 In the space, there are six lines . Among them every three 

lines do not lie on a plane. Prove that there must be three lines 

satisfying one of the following three conditions: (i) Any two of them 

do not lie on a plane. (ii) Any two of them is parallel to each other. 

(iii) They meet at one point. 

11 Find the minimum positive integer n so that any given n 

irrational numbers always contain three irrational numbers among 

which the sum of any two is also an irrational number. 

12 Find the minimum positive integer n so that when the K TI is 

colored by two colors arbitrarily, there must be two monochromatic 

triangles which are colored by one color but contain no common edges. 

13 In a football league, there are 20 football teams. In the first 

round , they are divided into 10 matches. In the second round, they 

are also divided into 10 matches. (Notice that the opponent of every 

team in different rounds can be the same. ) Prove that before the third 

round, you can find 10 teams which have not played with each other. 
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In Chapter 1, we have said that the graph is a tool to describe the 

special relationship of some objects. The graph in the above chapter is 

an undirected graph. The relationship they describe is a symmetrical 

relationship. In daily life, many relationships are not symmetrical 

such as the relationship of knowing each other. When X knows y, it 

does not mean that Y knows X. So is the relationship of winning or 

losing in a match. So we can have a new definition of directed graph. 

We call a graph directed graph if we assign to every edge of the 

graph a direction. We call the edge of a directed graph an arc. If 

there is an arc joining the vertices v i and v j and the arrow of the arc 

points from v i to V j' we denote it by ( v i ' V j ) and call v i the starting 

point and call v j the end point. Generally, we denote the directed 

graph by D = (V , U). Here we denote the vertex set of D by V and 

the arc set of D by U. Fig. 9.1 shows us a directed graph. The vertex 

set is 

and the arc set is 

U = {(v ,' V2)' (V 2' V3) ' ( vs , V2) ' (vo V2), ( V4' V6), 

( VS , V6 )' ( VS , V 4), ( V3 ' v s ), ( V4 ' vs ) } . 

The directed graph in this chapter 

is also a simple directed graph , which 

is a graph without loops (an arc which 

starts and ends at the same point) and 

without multi-arcs (there are more Fig. 9. 1 
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than one arc joining v i and v j ) • 

We say that v i and v j are adjacent if there is an arc (v i' V j) or 

(v)' Vi) in the arc set of the directed graph G. Otherwise, we say 

that v i and v j are not adjacent. We call the number of the arcs whose 

starting points are v i an outdegree of Vi' which is denoted by d + (v i). 

We call the number of the arcs whose end points are v i an indegree of 

v" which is denoted by d- (v i). 

We call a directed graph tournament graph if the graph contains n 

vertices and there is only an arc joining every two vertices. We denote 

the directed graph by K" . 

Theorem 1 Let V1' V2' ... , V n be the vertices of tournament 

Kn. Then 

d +(V1) +d+(V2) + ... + d+(v n ) 

=d - (V1) +d - (V 2) +"'+d-(v n ) 

1 
= 2n(n -1). 

Proof Since every arc of K" induces one in degree and one 

outdegree and there is only one arc joining every two vertices, the sum 

of indegree of every vertices in K n is the same as the sum of outdegree 

of every vertices. 

d +(V1) +d+(V2) + ... +d+( v n ) 

=d - (V1) +d-(V2) + "'+d-(v,,) 

1 
= 2n(n -1). 

Example 1 n players P 1 , P 2 , ••• , P" (n > 1) take part in a 

round robin. Every player plays only one game with any of other n -1 

players. Suppose that there is no tie in the result and we denote the 

number of win and lose of P r by w r and l TO respectively. Prove that 

wf +w~ + ···+w ;, =n +l~ + ··· + l~. 

(The 26th American Putnam Mathematical Competition) 

Solution Draw a tournament K". We denote the person P r by 
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the vertex v r ' If Pi defeats P j' we join v i and v j to get an arc (v i , 

V j) . So W rand lr are the indegree and outdegree of v r respectively. 

By Theorem 1, 

Wl+W2 + ···+Wn =ll+ l 2+···+ l n. 

Note that Wi + l i = n -1 C1 ~ i ~ n), 

WT + w~ + ... +w~ - (iT +l~ + ... + l~) 

= (WT - in +(W~ - lD +··· + (w~ - l~) 

= (WI + ll)(wl -ll) + (W 2 +l2)(W2 - l2) +··· + (w n + In)(w n - In) 

=(n - 1)[(wl +W2+ ···+Wn) - (l1 +l2+··· + ln)J =0. 

So 

wf +W ~ + ... +W~ = If + n + ... + l~. 

In a directed graph D = (v, u), there exists a sequence of distinct 

arcs U I' U 2' .•. , Un . If the starting point of U i is v i and the end 

point of Ui is Vi+1 Ci = 1, 2, ... , n). We call n the length of the 

directed path. VI is the starting point of the path and v n + I is the end 

point. If v I = V n+ 1 , we call the path a circuit. 

Example 2 The MO space city consists of 99 space stations. Any 

two stations are connected by a channel. Among these channels there 

are 99 two-way channels and others are one-way channels. If four 

space stations can be arrived at from one to another, we call the set of 

four space stations a connected four-station group. 

Design a scheme for the space city so that we get the maximum 

number of connected four-station groups. (Find the exact number and 

prove your conclusion.) (The 14th China Mathematical Olympiad) 

Solution We call an unconnecte@ four-station group a bad four-

station group. A bad four-station group has three possible situations: 

(1) Station A has three channels AB , AC, AD which all leave A. 

(2) Station A has three channels which all arrive at A. 

(3) Stations A and B, stations C and D have two-way channels 

but the channels AC, AD all leave A, and BC, BD all leave B. 

We denote all the bad four-station groups in (1) by S and others 
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by T. Let us calculate I S I. 

Since the space city contains C;) - 99 = 99 x 48 one-way 

channels . We denote the number of channels leaving the i - th station 

by S i ' So 

99 

~Si = 99 X 48. 
i = 1 

Now the number of bad four-station group in (1) which contains 

three channels induced by A is (~i). So 

99 S.) (48) I S I = ~ ( I ~ 99 x . 
1~ 1 3 3 

The above inequality holds because (~) = ~ x(x - D(x - 2) for 

x ~ 3 is a convex function . Since the number of all four-station groups 

is (9:), so the number of connected four-station groups is no 

more than 

Then we give an example so that the number of the connected 

four-station groups is (9:) - 99(~8) . Let the number of the channels 

from and to every station Ai be both 48. Every station has two two­

way channels and there are only type S groups of bad four-stations and 

no type T groups of bad four-stations. 

We put 99 stations on the vertices of an inscribed polygon with 99 

sides and assume the longest diagonals of the regular polygon with 99 
sides all two-way channels . So every vertex is adjacent to two two-way 

channels. For station A i , there are one-way channels leaving Ai and 

joining the next 48 stations in the clockwise direction, and one-way 
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channels arriving at Ai and joining the next 48 stations in the counter­

clockwise stations. Then we will prove there are only type S groups of 

bad four-station groups and no T groups of bad four-station groups. 

Suppose {A, B, C, D} is a four-station group. 

(i) If there are two two-way channels in the four-station group, 

clearly they are connected. 

Cii) If there are only one two-way channel AC in the four-station 

group, each of Band D forms a cycle with A, C. Of course, they are 

connected. 

(iii) So if the bad four-station group contains no two-way 

channel, it can only be one of (1) and (2). If it is (2), without loss of 

generality, we suppose that the 3 channels of A all arrive at A and B, 

C, D all come from the next 48 stations of A in the clockwise 

direction . Let D be the farthest station from A. So AD, BD, CD all 

leave from D, which means that all the bad four-station groups are of 

the type S group. 

In summary, there are at most C:) - 99(~8) connected four­

station groups. 

Theorem 2 There exists a vertex in a tournament so that there is a 

path from it to any other vertices. The maximum length of the paths 

is 2. 

Proof Suppose that the vertex with the maximum outdegree of a 

tournament Kn is v\. We denote the end point set of the arcs whose 

starting point is V1 by N+ (v 1). If the conclusion is false, there must be 

a vertex V 2 (v 2 eft v \ ), where v 2 tl: N + (v \ ). For every vertex u E 

N+ (v \) , there is one arc (V2' u) from V2 to u together with the arc 

(V2' v\) . So d+ (v 2) "?:- d+ (v \) + 1, which contradicts the fact that 

degree of v\ is maximum. The proof is complete. 

Example 3 Every athlete who takes part in the single round robin 

must play one game with any other athlete and there is no tie. Prove 

that among these players, you can find such athletes that the persons 

who were defeated by him and the persons who were defeated by the 
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person he defeats can contain all other athletes. (Hungarian 

mathematic contest) 

Use tournament on the round robin, which is Theorem 2. We 

omit the proof. 

Example 4 n (n ~ 3) athletes take part in a single round robin 

and use the result to find good athletes. The requirement that A is 

selected to be a good athlete is that for any other athlete B, either A 

defeats B or there exists C so that C defeats B and A defeats B. If 

only one athlete meets the above requirement, show that he defeats 

any other athletes. 

Solution We denote n athletes by n vertices. If v i defeats v j , we 

draw an arc from v i to v j and get a tournament K n. Without loss of 

generality, we suppose that the outdegree of VI is maximum in the K" , 

according to Theorem 2, VI is a good athlete. What we will prove is 

that VI can arrive at any other vertex by a path whose length is 1, 

which means that the indegree of VI is d- (v I) = O. 

Suppose that the proposition is false. We denote the set of arcs 

with starting point VI by N- (v I) = {v iI' V i2' ••• , Vir}' r ~ 1. 

Consider the K r consisting of ViI' V i2 ' ••• , Vir. We suppose that the 

outdegree of v i l is maximum in K r. By Theorem 2, the length of path 

from v i l to each of v i2' •.• , V ir is no more than 2. Since VI can arrive 

at other vertices except {v i , Vi' ... , Vi' Vi}' then Vi can arrive 
1 2 r 1 1 

at vertices except ViI' V i2 ' ... , V ir through the paths whose length is 

no more than 2. Therefore, in the tournament K r , Vi can arrive at 
I 

any other vertex through a path whose length is no more than 2. 

Hence ViI is also a good athlete, which contradicts the fact that VI is 

the only good athlete. So N- (V I) = 0 or d- (v I) = O. We have 

completed the proof. 

Remark This problem gives a property of the tournament IL: If 
the vertex of Kn with the maximum outdegree is unique, then the 

outdegree of this vertex is n - 1. 

Theorem 3 Tournament K n contains a Hamiltonian path whose 
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length is n - 1. 

Proof Apply induction on the number of vertices n. When n = 2, 

clearly the proposition is true. 

Suppose the proposition is true for n ~ k. When n = k + 1, from 

k + 1 vertices we take a vertex v . Remove v and the arcs adjacent to 

v from Ru 1 . By induction, Rk+1 - v contains a Hamiltonian path VI' 

If there is an arc (v k' v), then VI' V 2 ' .•. , V k' V IS a 

Hamiltonian path. If there is an arc ( v , VI)' then v , VI' V2' ... , V k 

is also a Hamiltonian path. 

Otherwise there exist arc 

(v, V k) and (VI' v). Then there 

must be an i C1 ~ i ~ k - 1) so 

that the arcs (v;, v), (v, Vi + I) VI V 2 v ) 

V 

both exist. Now VI' ... , v;, v, Fig.9.2 

v; + l' .. . , V k is a Hamiltonian 

path as Fig . 9. 2 shows us. 

Example 5 In a match of Chinese chess, every two players should 

playa game. Prove that we can label the players so that every player is 

not defeated by the player whose number follows immediately 

after his . 

Solution Suppose there are n players. We denote n players by n 

vertices VI' V2' ... , v " . When v i is not defeated by v j' we draw an 

arc from v i to V j to get (v i' V j ). Then we get a tournament K". By 

Theorem 3 , K" contains a Hamiltonian path, so we can label them 

according to the order of the path. 

Theorem 4 The tournament K" (n ;?-3) contains a circuit which is 

a triangle, if and only if there are two vertices v and v' satisfying 

Proof Let vertices v and v' satisfy d+ (v) 

prove that K" contains a circuit which is a triangle. 

d+ (v'). We will 

Without loss of generality, we assume that there is an arc ( v , v') 
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and draw arcs from V'to everyone of VI' V2' ... , V k where (k = 

d+ (v)). Then there must be V j C1 ~j ~ k) so that there is an arc from 

Vj to v. Otherwise, d+ (v) ~ k + 1 > d+ (v') and v, v', V j form a 

triangle . We have proved the sufficient condition . 

If the outdegree of every vertex of K n is different, we can prove 

by induction that K n contains no triangular circuit. When n = 3, it is 

easy to see that the outdegree of a triangle is 0, 1, 2 and the triangle 

cannot form a circuit. 

Suppose the proposition is true for n = k. Consider the tournament 

K n + I' If the outdegree of every vertex is different, they are 0, 1, 

2, "', k in order. Supposed+(v ' ) = k. Remove the vertex v' and its 

adjacent arcs. By induction hypothesis, Kk - v' contains no triangular 

circuit. Clearly K k + 1 contains no triangular circuit. We have proved 

the necessary condition. 

Exercise 9 

1 Among n (n > 4) cities, every two cities have a path to join 

them. Prove that we can change these paths to one-way path so that it 

is possible to go from one city to another city through at most one 

other city. 

2 If a tournament K n contains a circuit, then K n contains a 

trianglular circuit. 

3 In a country, N cities are connected by air routes. For any 

route, the airplanes can fly only along one direction. An air route 

satisfies the condition f: Any plane which starts from one city cannot 

return to the same city. Prove that it is possible to design an airline 

system so that every two cities are connected by an air route and the 

system also satisfies condition f. 
4 In a volleyball round robin, if team A defeats team B or team 

A defeats team C and team C defeats team B, we say that A is 
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superior to B and we also call the team superior to any other team the 

champion. According to this regulation, can two teams both win the 

championship? 

5 n players take part in a match in which everyone plays with 

several other players. Suppose that there is no tie in a game . If the 

result that VI defeats V2' V2 defeats V 3 ' ... , V k defeats VI does not 

appear. Prove that there must be a player who wins all games and 

another player who loses all games. 

6 If among n persons v I' V2' .. • , V n every two persons v i and 

v j have one ancestry v k. Everyone can be an ancestry of oneself. 

Prove that the n persons have a common ancestry. 

7 A, B, C, D play table tennis and every two persons should 

play against each other. At last, A defeats D and A, B , C win the 

same number of games. How many games does C win? 

8 n (n :;?o 3) players take part in a round robin. Every pair should 

playa game and there is no tie . There is no player who defeats all 

other players. Prove that among them there must be three persons A , 

B, C so that A defeats B, B defeats C and C defeats A. 

9 There are 100 species of insects. Among every two of them 

there is one species who can eliminate another species. (But A 

eliminates B, B eliminates C, which does not mean that A eliminates 

C . ) Prove that the 100 species of insects can be arranged in an order so 

that any species can perish another species next to it. 



Solutions <1 
--.::.--=::::.:::.,--.:.:, 

Exercise 1 

1 The graph G is shown in Fig. 1. 

2 In a simple graph, every edge is 

adjacent to two distinct vertices and among 

every two vertices there is at most one edge 

joining them. Now there are n vertices, so the 

number of edges is at most G) = n en 2- 1) . Fig. 1 

Since not all simple graphs are complete graphs, then e ~ n en ; 1) . 

3 As shown in Fig. 2, we establish the relationship of the 

vertices: V I +--+ U l ' V2 +--+ U 2 ' V3 +--+ U 3 ' V 4 +--+ U 4' Vs +--+ U s and the 

relationship of the edges: e l+--+e~, e2 +--+ e; , e3 +--+ e~, ... , e8 +--+ e~ . The 

number of the vertices and that of the edges of the two graphs are 

equal. So we can establish a corresponding relationship between the 

vertices and edges of the two graphs . So the two graphs are 

isomorphic. 

e, 

( I ) 

Fig. 2 
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4 Construct a graph as follows. We denote a medicine-chest by a 

vertex. We denote every two medicine-chests v i and v j which contain 

one common medicine by the edges (v i' V j ). By the hypothesis, the 

graph is a complete graph K" and the number of the kinds of the 

medicine is equal to the number of the edges ; n (n - 1). 

5 We denote n professors by n vertices Vt , V2' ... , v" and join 

by an edge if the two corresponding persons know each other. We 

divide the n persons into two groups randomly. There are finite ways 

to divide them. Conside the number of edges joining the vertices of the 

two groups. There must be a division so that S is the largest. Now 

d i '?d; (i = 1, 2, ... , n). Otherwise, ifd t < d~, we transfer VI from 

a group to the other group. The number of S increases by d; -d l > 0, 

which contradicts the fact that S is the largest. 

6 Team A had played 8 matches with 8 teams and did not play 

with the other 9 teams. Suppose the 9 teams had played with each 

other in 8 rounds. Since every team had played 8 games, the 9 teams 

had not played with other teams. But the 9 teams could only play 4 

games, so there must be one team which had played with other teams. 

A contradiction. So among the 9 teams there must be two teams Band 

C which had not played with each other. Then A, B, C had not 

played with each other. 

7 We denote n delegates by n vertices. If two delegates have 

shaken their hands, we join the corresponding vertices and get the 

graph G. If among any four vertices Vt, V2' V3' V4 in G, every vertex 

has its adjacent vertex, we denote them by V/t, v~, v~, v:. By the 

known condition, among VI' V2' V3' V4 there is a vertex VI which is 

not adjacent to the other three vertices V2' V3' V4. SO V'I -=F v 2' V 3 , 

If I 'f· I I h . 
V4. V2 -=F Vj, among our vertices V2' V3' Vt, V2' t ere IS no vertex 

which is adjacent to the other three vertices. SO V '2 = V/t. Similarly, 

v; = v~. Among four vertices Vt , V2' V3' v; , there is no vertex which 

is adjacent to any other vertex. So among any 4 vertices there must be 

one vertex which is not adjacent to the other n - 1 vertices. 
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8 We denote these students by 3n vertices . We divide the 

students from three schools into three vertex set which is denoted by 

X, Y and Z. If u and v are from different schools and they know each 

other, then join the vertices representing them to get a graph G . 

Suppose x EX, we denote the number of vertices which are adjacent 

to x and lie in Y and Z by k and l respectively . Then k + l = n + 1. We 

denote the maximum number between k and l by m (x ). Let x go 

through every in X and the maximum value of m (x) is denoted by 

m x. Similarly, we definite my and m z . We denote the maximum of 

m x, my and m z by m. Without loss of generality, suppose that m = 

m x and Xo E X so that I Y1 I = m. ( I Y1 I is the number of the vertices 

in Y adjacent to Xo. ) The number of vertices in Z adjacent to Xo is n + 
1 - m ~ 1. Suppose Zo E Z is adjacent to xo. If there is Yo E Y1 

adjacent to zo, then 6xoyozo is a triangle in G. If every vertex y in 

Y1 is not adjacent to zo, the number of vertices in Y adjacent to Zo is 

no more than n - m. So the number of vertices in X adjacent to Zo is 

no less than n + 1 - (n - m) = m + 1, which contradicts the fact that 

m is maximum. Then we prove G must contain 6xoyozo . For a 

diagram, see Fig.3. 

9 When n = 1, there are two red squares which are adjacent. 

Clearly, it is a rectangle. Suppose it is true when n ~ k , which means 

we can divide 2k connected squares into k rectangles. When n = k + 1, 

(i) For 2k + 2 squares, if we remove a pair of adjacent red squares 

from the graph, the graph is also connected. By induction, the 

conclusion is true. 

(ii) If we remove a pair of adjacent red squares from the graph, 

the graph becomes several connected 

subgraphs. The number of red squares in 

every subgraph is even. By induction, the 

conclusion is true . 

(iii) If we remove a pair of adjacent red 

squares from the graph, there is a connected 

subgraph in which there are odd red Fig. 3 
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squares: 

When n = 2, there is a graph in the shape of the letter T with two 

rectangles 1 x 3 and 1 x 1 satisfying the requirement. 

When n =F 2, consider the T -shaped graph at the top-left corner of 

all the squares. After removing these two squares, we get at most two 

connected graphs . 

If the number of the red squares of the two connected subgraphs is 

odd after removing the two squares at the top-left corner, then remove 

the two rectangles 1 x 3 and 1 Xl. It is easy to know they are also 

connected and the number of red squares is even. In summary, when 

n = k + 1, the conclusion is true. So the conclusion is true. 

10 If 2000 members know each other, then the number of all the 

members in the delegation is 2000. Therefore, we suppose that two 

members u and v do not know each other. We prove in three steps. 

( i) Any two members other than u and v know each other. 

Suppose that a and b are another the two members. By the hypothesis, 

among the four members a, b, u, v, there must be a person who 

knows another three persons. The person must be a or b, which means 

a and b know each other. 

(ii) If u and v know everyone of the remaining 1998 persons, 

then in the delegation there are 1998 persons who know all the other 

persons. Suppose that a is any member other than u, v. By the 

hypothesis, a knows u, v. Suppose that b is another member. By the 

above proof, a and b know each other. By the fact that b is arbitrary, 

a knows every other member. Also by the fact that a is arbitrary, the 

1998 members in delegation other than u and v know all other 

members. 

(iii) If one of u, v does not know all other 1998 members, then 

there are 1997 members knowing all the members. Suppose, other 

than v, u does not know another member w. Let a be anyone of 1997 

member other than u, v, w. By the hypothesis, among a, u, v, w 

there is only one person a who knows the other three. It means that 

each of u, v, w knows the other 1997 persons of the delegation. 
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In summary, the number of persons who know all members of the 

delegation is at least 1997. 

11 By assumption, everyone has friends. Suppose that k (k ~ m) 

persons are friends . Since they have a common friend, k + 1 persons 

are friends. Similarly, we can deduce that m + 1 persons A l , A 2 , ••• , 

A m+l are friends. Next we will prove that there are no other persons in 

the carriage except Al , A 2 , ••• , A m+1 • If B is a person other than the 

m + 1 persons and he has made friends with at least two of A 1 , 

A 2 , ••• , A m+1 • Suppose Band A 1 , A2 are friends. Then the m 

persons B, A 3 , A 4 , ••• , A m+l have two common friends A 1 , A 2 , 

which contradicts the given condition. So the person B other than A 1 , 

A 2, ... , A m+ l can make friends with at most one of A 1 , A 2 , ••• , 

A m+1 • Without loss of generality , we suppose that A 2 , A 3 , • •• , Am+l 

except A 1 cannot be the friends of B. Of course, the common friend C 

of m passengers B, A 1 , A 2 , •• • , A m+ l is neither A 2 , A 3 , • • • , A,n-l 

nor A 1 • Since m ~ 3 , C makes friends with m - 1 ~ 2 persons among 

A 1 , A 2 , ••• , A m+1 • It contradicts the fact that C makes friends with 

at most one of Al , A 2 , •• • , A m+1 • So in the carriage, there are only 

m + 1 passengers Al , A 2 , • • • , A m+ l each of whom has m friends. 

12 Ks contains C) = 10 edges and C) = 10 triangles. The 

number of triangles which is related to every edge is 3. If the number 

of the edges of the graph is no less than 7, we remove at most 3 edges 

from K s. Hence we can remove at most 3 X 3 = 9 triangles, so there is 

still a triangle. It contradicts the condition, so the graph cannot 

contain 7 or more than 7 edges. 

Exercise 2 

n 

1 Since.z= d ( v;) = 2e, n (; ~ 2e ~ n D. , then (; ~ 2e ~ D.. 
; ~ 1 n 

n 

2 .z= d ( v ; ) = 2 (n + 1), the average degree of the vertices IS 
i = ! 
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2(n + 1) 
=-:..'-'---'-----"'-'-- > 2, hence there is at least one vertex whose degree is no less 

n 

than 3. 

3 We denote the faces of a polyhedron by vertices. We join two 

vertices if and only if the faces which are represented by the vertices 

have a common edge. We obtain a graph G. By assumption, the 

number of the odd-degree vertices is odd. So such polyhedron does not 

exist. 

4 No. Use Theorem 2. 

5 Construct a graph G as follows. We denote 123 persons by 123 

vertices VI , V2' ... , V123. If two persons have discussed the problem, 

we join the corresponding vertices representing them. So the degree of 

every vertex in the graph is no less than 5. If the graph contains no 

vertex whose degree is more than 5, the degree of every vertex in the 

graph is 5. It means that the number of odd vertices in the graph is 

odd, which is possible. Then the graph contains at least one vertex 

whose degree is more than 5. 

6 Construct a graph G as follows. We denote n congressmen by 

n vertices. If two persons do not know each other, we join them in 

the graph G. For every vertex v" deVi) ~ 3. Now divide G into 

two components G I and G 2 • For two vertices in one component, if 

there is an edge joining them in the original graph, we keep the 

edge. For two vertices in the different components, if there is an 

edge joining them in the original graph, the edge will not exist. The 

removed edges form a set E. In the two components, suppose there 

is a vertex whose degree is more than 1. Without loss of generality, 

assume that G I contains a vertex VI , de V I) ~ 2. Then we move the 

vertex to G 2 • Then G I will lose two edges. Since de v I) ~ 3, G2 

increases by at most one edge and then E increases by at least one 

edge. Repeat this process. The number of E is increasing, but the 

total number of edges is finite. So at one point, in the two 

components, there is no vertex whose degree is more than 1. We 

complete the proof. 
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7 The problem can be rephrased as follows. In a graph G with 

2n vertices, the degree of every vertex is no Less than n. Prove that G 

contains a rectangle. If G = K 2n , the conclusion is true. If G oft K 2n , 

there exist vertices VI and '02 which are not adjacent. Since d C v I) + 
d C '02) ~ 2n, by the Pigeonhole Principle, among the remaining 2n - 2 

vertices there must be two vertices '03 ' '04 which are adjacent to both 

VI' '02. Then the 4 vertices form one rectangle. 

8 Construct a graph G as follows. We denote 9 persons by 9 

vertices. The two vertices are adjacent if and only if they have shaken 

their hands. Since d C '09) = 6, there exists v k oft V I , '02' '0 3 which is 

adjacent to '09. Clearly d C 'Ok) ~ 5. Among the other 5 vertices adjacent 

to '09 there is a vertex Vh adjacent to 'Ok. C Otherwise, d C 'Ok) ~ 9 - 5 - 1 = 

3. ) Then V 9 ' Vh' Vk are what we need. 

9 We denote the 14 persons by 14 vertices { VI' V2' .. • , VI4}. 

Two vertices Vi' Vj are adjacent if and only if they have not 

cooperated, then we get graph G . The degree of every vertex in G is 

8 . After playing three sets, we will remove 6 edges. So there exist at 

least two vertices whose degrees are also 8. Let one of them be VI' 

among the 8 vertices adjacent to VI there must be one vertex whose 

degree is no less than 7. We know V2 is adjacent to one vertex V 3 which 

is another vertex adjacent to VI. Then VI' V2' V 3 and a new vertex V 

form K 4 • 

10 Every two vertices are adjacent if the distance between them 

is given. We prove this problem by induction. When n = 4, ~ n(n - 1) + 

4 = 6. Among the 4 vertices, there are 6 distances which are all given. 

The conclusion is true. Suppose n = k Ck ?:: 4) , the conclusion is true. 

When n = k + 1, there are ~ Ck + 1) Ck - 2) +4 edges in the vertex set. 

Let A k +1 be the vertex with the smallest degree in the vertex set. Its 
degree is 
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2[ ~(k + 1)(k -2) +4J 
d (A k + l ) ~ k + 1 

8 
= k-2 + k + 1 

8 
~ k-2+5 < k. 
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So d (A k+l ) ~ k - 1. Then among the remaining k vertices AI' A 2 , 

A 3, ... , Ak there are at least 

~ (k + 1) (k - 2) + 4 - (k + 1) = ~ k (k - 3) + 4 

edges. By induction, the set of k vertices is stable. Also, 

so A k+1 is adjacent to at least three vertices among Al , A 2 , ••• , A k. 

Suppose that A k+1 is adjacent to vertices AI, A 2 , A 3 and thatAk+IA I = 

x, A k+IA 2 = y, A k+IA 3 = z. It is easy to prove A k+1 can be uniquely 

determined. If not, let A~+ I be another vertex. Also A'k+IA I = x, 

A:+IA 2 = y, A' k+IA 3 = z, then AI, A 2 , A 3 are all on the 

perpendicular bisector of Ak+IA:+I . It contradicts the hypothesis that 

there are no three vertices on a common line. Then A k + 1 A 4 , ••• , 

Ak+IA k can be determined. The set {A I , A 2 , ••• , A k+l } is stable. 

The conclusion is true when n = k + 1. In summary, the conclusion is 

true. 

11 We use the unit cube as the vertex. We join the two 

corresponding vertices if and only if there is a common face between 

the two unit cubes and we get a graph G. The number of edges of its 

complementary graph G is what we need. It is easy to know the 

number of edges of G is 3n 2 ( n - 1), the number of edges of K ,,3 is 
1 -

2,n 3 (n 3 -1) and the number of edges of G is 
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The number of the pairs of unit cubes which have no more than 2 

common vertices is ; n 6 - ~ n 3 + 3n 2 at all. 

12 We consider the connected part of the routes which contain 

the capital. It is a connected graph. What we must prove is that this 

connected graph contains city A. If not, one vertex (capital) of the 

graph is adjacent to 21 edges, so every other vertex is all adjacent to 20 

vertices. It means that the graph contains only one odd vertex, which 

is impossible. 

Exercise 3 

1 Since C; 1 X 1 = C; 1 y 1 is equal to the total number of edges, 

then 1 X 1 = 1 Y I . 

2 We will prove the cases when n is odd and when n is even. 

Here we only prove the latter. Suppose the theorem is true for all even 

numbers n ~ 2k. Let G be a graph which contains 2k + 2 vertices and 

no triangle. Remove two adjacent vertices v and v' from G to get G'. 

By induction, G' contains at most [4!2 ] = k 2 edges. Since G contains 

no triangle and any vertex v" cannot be adjacent to v, v' at the same 

time, G contains at most 

edges, where l is the number of the vertices adjacent to v in G'. 

3 Construct a complete bigraph K 10, 10. 

4 Use Theorem 1. 

5 (1) Suppose that n = m k + r (0 ~ r < m). Then by the 

definition of T m. n , em(n) = G) - r(k :l)_(m - r)(~), replace r 
by n - mk and simplify it to get the solution. 

(2) Let the number of the vertices of m parts of a complete 

m-partite graph G be nl' nz, . .. , nm respectively. If G is not 
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isomorphic to T m C n ), then there exists n i - n j > 1. Consider a 

complete m-partite graph G' , the number of vertices of its m parts is nl , 

n 2' . .. , n i - 1, . .. , n j + 1 , . .. , n m • Since 

e CG / ) 

1 +- (n - n - 1)(n + 1) 2 J J 

= eCG) + (n i- n j ) - 1 > eCG) . 

If G' is isomorphic to T m (n ), we complete the proof. Otherwise, 

repeat the above step until we find a graph which is isomorphic 

to T m . n ' 

6 Construct a bigraph G = CX, Y ; E) as follows. We denote 

every student from country X by a vertex in X and every student from 

country Y by a vertex in Y. If a student from X has danced with a 

student from y, then join the vertices corresponding to them. Suppose 

that the degree of x is the largest in X. Since d ( x ) < n, in y, there is 

a vertex y' which is not adjacent to x. Suppose that x ' in X is adjacent 

to y ' . Since except y', there are d ( x ') - 1 vertices adjacent to x' and 

de x /) - 1 ~ dex ) - 1 < dex ), so there must be a vertex y which is 

adjacent to x but not adjacent to x ' . Then we get four vertices x , x ' , 

y, y' corresponding to four persons who satisfy the requirement. 

7 Construct a graph G as follows. We denote 14 persons by 14 

vertices . Two vertices are adjacent if and only if these two 

corresponding persons have not cooperated . By assumption, there are 

C24) = 91 pairs among 14 persons . Everyone has teamed up with the 

14 X 5 other 5 persons, so there are - 2- = 35 pairs. Now they play 3 sets 

and have 6 new pairs . The number of edges of G is 91 - 35 - 6 = 50 , 

but e2 (14) = 49. By Tunln's theorem, G contains K 3 and the travelers 
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corresponding to three vertices can playa set with the new traveler. 

8 SetG = (V, E). There ared(x){n -1 - d(x)} triple group 

{x, y, z}. They do not form a triangle in G or G, and x E V is the 

end of the only edge in G. Every triple group {x, y, z} which does 

not form a triangle in G or G contains one or two edges of G. Suppose 

that (x, y) is one edge of G and (x, z), (y, z) are two edges of G. 

In the sum ~d(x){n -1 -d(x)}, the triple group {x, y, z} has 
rEV 

been counted twice: one is about x, the other is about y. If (x, y), 

(y, z) are the edge of G, (x, z) is the edge of G, in above sum, the 

tuple group {x, y, z} has also been counted twice: one involves x, 

the other involves z. The sum of triangles in G and G is 

G)- ~ ~rEvd(x)(n -1 - d(x» 

1 
= 24n(n -D(n - 5). 

9 Suppose there is no (k + 1) -element set which we need. We 

will prove 

m < -'-( k'-'-----~1)'_(~n'_-----.:..:k'_'_)_+_'_____'_=k ( n ) 
k 2 k - 1 . 

We denote all the red k -subsets by S and all the (k - 1) -subset by 

f3 . For any (k - 1) -subset B, we denote the number of red k -element 

subsets which contain B by a (B). For any A E S, A contains k (k -

1)-element subsets. For any element x E X\A, x together with at 

most k - 1 of k (k - 1) -element subsets form a red k -element subset. 

( Otherwise, there exists (k + 1) -element subset and all its k -element 

subsets are red k -element subsets. ) So 

~ a(B)«n - k)(k-1)+k. 
BcA, IBI=k-l 

So 
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m [ Cn - k)Ck - 1) + k] ~ ~ ~ aCB) 
A E SBC A. IB I ~ k - l 

= ~CaCB»2 
B E {3 

~ m((;{3aCB») 2 

1 
~ - --Ckm)2. 

(k ~ 1) 

[Cn - k)(k - n + k]( n ) 
~ ____ _ ~ __ ~k~-_1~ 

m ----, k 2 

[Cn - k)Ck - n + k]( n ) 
m > _ ____ ~~--_k---1-

k 2 

there must exist a Ck + 1) -element subset of X such that all k-element 

subsets are red k-element subsets. 

10 Since C20 ) = 45, then a complete graph with 10 vertices 

contains 45 edges . The figure in the problem is obtained by removing 5 

edges from the complete graph with 10 vertices. We call the 5 edges 

"Removed Edges" and denote 1 0 vertices by A l' A 2' ... , A 10 . 

Without loss of generality, let A 1 A2 be a "Removed Edge", then 

remove Al and its incident edges. The deduced graph with 9 vertices 

contains at most 4 "Removed Edges". Without loss of generality, let 

A2A3 be a "Removed Edge". Then remove A2 and its incident edges. 

CIf there is no "Removed Edge", remove any vertex . The same in the 

later step.) The deduced graph with 8 vertices contains at most 3 

"Removed Edges". Without loss of generality, let A3A4 be a 

"Removed Edge". Then remove A3 and its incident edges. The 

deduced graph with 7 vertices contains at most 2 "Removed Edges". 
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Without loss of generality, let A4AS be a "Removed Edge". Then 

remove A4 and its incident edges. The deduced graph with 6 vertices 

contains at most 1 "Removed Edge". The deduced graph is a complete 

graph with 6 vertices or the graph which is obtained by removing one 

edge from the complete graph with 6 vertices. Anyway, the graph 

must contain a complete bipartite graph K 3 , 3 . We can generalize this 

problem: If a graph with n vertices and m edges contains no K n, n' We 

can prove that m < C • n 2--;' , where C depends on r. 

11 We denote the positions of 18 police cars by 18 vertices Xl' 

X2' ... , X l S . Suppose 

( 18) [182J By Theorem 3, I E I? 2 - 3 = 45. It means there are at least 

45 pairs of cars which can communicate with each other. If the above 

condition of the graph does not hold, then there does not exist two 

vertices whose degrees are more than 5 and 

I E I ~ ~ (1 X 17 + 4 X 17) < 43, 

a contradiction. 

12 When n = 2, n 2 + 1 = 5. There are 5 line segments among 4 

vertices, which form two triangles . Suppose that proposition is true 

for n = k. When n = k + 1, let us prove that there exists at least one 

triangle . Suppose that AB is a given line segment and denote the 

number of line segments from A and B to other 2k points by a and b. 

( 1) If a + b ? 2k + 1 , there exists a vertex C other than A and B 

so that AC and BC exist. Then there exists a triangle L:,.ABC. 

(2) If a + b ~2k, if we remove A and B, among the remaining 2k 

vertices, there exist at least k 2 + 1 line segments. By induction, there 

exists a triangle. 

Suppose L:,.ABC is a triangle formed by these line segments. We 
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denote the number of line segments from A, Band C to other 2k - 1 

points by a, (3 and y. 

(3) If a + (3 + y ~ 3k - 1, the total number of the triangles 

including one of AB, BC, CA as an edge is at least k . These k 

triangles together with L"ABC give k + 1 triangles. 

(4) If a + (3 + Y ~ 3k - 2, there is at least one number which is no 

more than 2k - 2 among the three numbers a +(3, (3 + y, y + a. Without 

loss of generality, a +(3 ~ 2k - 2. When we remove two vertices A, B, 

among the remaining 2k vertices there exist at least k 2 + 1 line 

segments. By induction, there exist at least k triangles. These k 

triangles together with L"ABC give k + 1 triangles. The proposition is 

true when n = k + 1. We complete the proof by induction. 

Exercise 4 

1 The spanning tree of graph G contains two pendant vertices. 

Remove these two vertices and the graph is still connected. 

2 There are 9 X 9 = 81 vertices whose degrees are 4, so we should 

remove at least [821 ] + 1 = 41 edges so that the degree of every vertex is 

less than 4 . We can remove at most 2 X 11 X 10 - 120 = 100 edges so 

that the graph is still connected. 

3 The proposition is not true. Take K 3 and an isolated vertex 

(the vertex which is not adjacent to any other vertex) to construct a 

graph G. Then G contains 4 vertices and 3 edges, so it is not connected 

and clearly not a tree. 

4 (1) Suppose that T has x pendant vertices. The number of 

vertices of the tree T is n = 3 + 1 + x, the edge number is e = n - 1 = 
11 

X + 3. 2: d (v,) = 3 X 3 + 2 Xl + 1 X x = 11 + x, so 11 + x = 2(x + 
i= l 

3), x = 5. 

(2) Fig. 4 shows us two trees satisfying the requirement but they 

are not isomorphic. 
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Fig. 4 

5 Suppose T contains n vertices and e edges. Then n 

e = n - 1, 

k k 

~ in i = 2e = 2n - 2 = 2 ~ n i - 2. 
i= 1 i= 1 

So 

k 

nl = ~(i - 2)n i+2. 
i = 2 

For r ~ 3, by the above equality, we can obtain 

6 Among d l' d 2' ... , d n' there must be at least two which is 

equal to 1. (Otherwise, t d i ~ 2n - 1). We apply induction on the 
i =l 

number of vertices n . When n = 2, the proposition is true. Suppose 

that the conclusion is true when n = k . When n = k + 1, there exists a 

number 1 among d 1 , d 2 , ••• , d k , d k+ 1 • Without loss of generality, let 

d k + l = 1. It is easy to know among the k + 1 numbers there exists a 

number which is no less than 2, denoted by d k. Consider the k 

numbersd 1 , d 2 , ••• ,dk-l , (d k - 1), 

d 1 + .. ·+dk-l + (d k - 1) = 2(k + 1) - 2 - 1 - 1 = 2k - 2. 

By induction, there exists tree T' whose vertices are VI' ••. , V k , 

k 

~d(Vi) = d 1 + ... +dk - 1 + (d k - 1) = 2k - 2. 
i = 1 

In T', there is an edge which is from Vk to Vk +l' We obtain a tree 
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T, then 

k+1 

~d(v;) = 2k -2 +1 + 1 = 2(k + 1) - 2. 
i = l 

T is what we need. 

7 Construct a graph G, we use the ends of n line segments as the 

vertices of G and the line segments as the edges. By the condition, G is 

connected and contains no loop. So G is a tree where the length of its 

longest chain is 2. So G contains only one vertex which is not a 

pendant vertex. The vertex is the common vertex of n line segments. 

8 Refer to Example 6 in this chapter. 

9 Suppose the conclusion is not true, then there must exist a 

counterexample. Consider the counterexample in which 1 E 1 +1 V 1 is 
the smallest. In this counterexample, 1 E 1 = 1 V 1 + 4. (Otherwise, we 

can remove more edges and still get a counterexample, where 1 E 1 + 
1 V 1 is smaller. A contradiction!) Then 1 E 1 > 1 V I. The graph must 

contain a cycle. The length of the shortest cycle is at least 5. 

(Otherwise, the length of the shortest cycle is no more than 4, then 

we remove this cycle. We still have 1 E 1 ;;: 1 V I. There still exists a 

cycle. The cycle and the above cycle contain a common edge. A 

contradiction! ) 

Furthermore, the degree of every vertex is at least 3. Otherwise, 

if the degree of a vertex is 2, remove this vertex and change the two 

edges adjacent to this vertex to one edge. We still have 1 E 1 = 1 V 1 + 
4 and 1 E 1 + 1 V 1 gets smaller. A contradiction! If the degree of one 

vertex is 1, remove this vertex and its adjacent edges, we still have 

1 E 1 = 1 V 1 +4 and 1 E 1 +1 V 1 is smaller. A contradiction! If there 

exists an isolated vertex, remove it and 1 E I> 1 V 1 + 4 and 1 E 1 + 
1 V 1 is smaller. A contradiction! Take a cycle Co, the length of which 

is at least 5. The cycle contains at least 5 vertices. For every vertex on 

the Co, it is adjacent to at least one edge which is not on the cycle and 

the adjacent vertices are distinct. (Otherwise, there exists a cycle 

whose length is less than 5. ) Then it is easy to see 1 V I ;;: 2 X 5 = 10. 
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On the other hand, 2 1 E 1 = ~d (V) > ~ 3 = 3 1 V I. 1 E 1 = 1 V 1 + 
v EV v EV 

4, so 2 1 V 1 + 8 ;;:, 3 1 VI, 1 V 1 ~ 8. A contradiction! Such 

counterexample does not exist. We have proven the proposition. 

Remark The method of proof in this problem is the proof by 

contradiction. To prove that the proposition is true, we assume that 

the proposition is false. Consider a variable V E 

N. From the smallest counterexample of V we can 

deduce a contradiction and the proof becomes 

easier using this condition. The conclusion of this 

problem is the best. When 1 E 1 = 1 V 1 + 3, we can 

give a counterexample as Fig. 5 shows us. Fig. 5 

10 We denote 21 persons by 21 vertices. There is an edge joining 

two vertices if and only if the two delegates which are represented by 

the two vertices have called each other. By assumption, there exists an 

odd cycle whose length is m. (We call cycle whose length is odd 

cycle. ) 

Let C be the smallest odd cycle in the graph, the length of which 

is 2k + 1. 

If k = 1 , let C be a triangle. It means the three persons have made 

a phone call to each other. 

If k > 1, set C Vl V2 • .• V2k+l Vl and there is no edge joining Vi and 

Vj. (1 ~ i, j ~2k +1, i - j *±1 (mod2k +1). ) Otherwise, suppose 

that Vi' Vj are adjacent and the sum of the length of cycle Vl V2 • •• 

V iV j ••• V2k+l Vl and that of the cycle ViVi+l •.. VjVi is 2k + 3. So among 

them there must be an odd cycle whose length is less than 2k + 1. It 

contradicts the fact that C is the shortest. 

Suppose there is no triangle among the 21 - (2k + 1) = 20 - 2k 

vertices other than Vl' V2' ••• , V2k+l. By Turan's theorem, there are 

at least (10 - k)2 edges joining them. Any vertex among them is not 

adjacent to two vertices which are adjacent to C, so it is adjacent to at 

most k vertices. So the sum of the edges is: 
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2k + 1 + H20 - 2k) + 00 - k)2 

= 100 + 2k + 1 - k 2 

= 102 - (k - 1) 2 

~ 102 - (2 _ 1)2 = 101. 
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So the graph must contain a triangle, which means there exist 

three persons who have called each other. 

11 Suppose there exists such a graph that the degree of every 

vertex is more than 2. But the length of any cycle of the graph is 

divisible by 3. We consider the graph G which has this property and 

the least number of vertices. Clearly , the graph contains the shortest 

circle Z. The non-adjacent vertices on this cycle are not joined by an 

edge. Since the degree of every vertex is more than 2, every vertex on 

the cycle Z is adjacent to one vertex not on the cycle . Let Z pass the 

vertex A 1 , A 2 ' ••. , A 3k . 

Suppose that there exists a path 5 which joins the vertices A m and 

A " and which does not include edges in Z. We consider the cycle Z 1 

and Z z consisting of the two halves of 5 and Z. Since the length of 

each of the two cycle is divisible by 3, it is not difficult to see the 

length of path 5 is divisible by 3. Especially, for the given graph , we 

can know that any vertex X which is not on the circle Z cannot have 

edges incident to two distinct vertices of Z. It means that the edges 

which are induced by the vertices on Z but not on the cycle should be 

incident to distinct vertices, respectively. 

Let us construct a graph G 1 • Collapse all vertices A 1 , A z , ... , 

A 3k on the cycle Z of G into one vertex A and keep all the vertices 

which are not on the cycle and their incident edges. Join the A and the 

vertices on the Z one by one. It is easy to know the degree of A is no 

less than 3k. The number of vertices in G 1 is less than that of G and 

the degree of every vertex is still more than 2. According to above 

conclusion , the length of any cycle in G is divisible by 3. We arrive at 

a contradiction . In view of the above proof, we can know G is the 
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graph satisfying these properties and with the least vertices. 

Then in a graph the degrees of its vertices are all more than 2, 

there must exist a cycle whose length can be divided by 3. Then we 

only need to apply this assertion to our problem. We denote the city by 

a vertex and the path by the edge. 

Exercise 5 

1 When n en ~ 2) is odd, K" is a cycle. When n = 2, K 2 is a 

chain. When m, n are both even, K m ." is a cycle. 

2 Suppose G contains at least 2k odd vertices. Delete one edge to 

get G'. There are three cases: e 1) The number of odd vertices of G' 

decreases by 2, then G' need at least k - 1 strokes to draw. (2) The 

number of odd vertices increases by 2, G' need at least k + 1 strokes to 

draw. (3) The number of odd vertices does not change, G' need at 

least k strokes to draw. 

3 These two graphs are all unicursal, that is, they can be drawn 

in one strock, and start and end at the same vertex. 

4 When n is odd, the graph is unicursal; when n IS even, the 

graph is not unicursal. 

5 Draw G as follows. We denote the persons by vertices. If two 

person have exchanged views, then join the corresponding vertices. 

Take the longest chain 1-'-' Let Vl be an end of 1-'-' then () vertices 

V2' ••• , VS+l adjacent to Vl are all on the chain 1-'-' Otherwise, I-'- can 

still be extended. Go along the I-'- through vertices V2' V3' •. • , VS+l' 

and then return to v 1 . This is a cycle whose length is more than (). 

6 Take a point v; (j = 1, 2, 3, 4) on every 

face. If the two faces have common edges, join the 

two points. Then we get a new graph G * which we 

call the dual graph of G. In the graph G, going from Vj 

a face to another face through the edge e i is 

equivalent to going from one vertex to another 

vertex along an edge in the G *. Therefore, if G Fig. 6 

v; 
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contains a broken line f1 satisfying conditions (1) and (2), then G ' is 

a chain (Q1 and Q2 are not on a face) or a cycle (Q1 and Q 2 are on a 

face), i. e. the graph G ' is unicursal or it can be drawn in one strock. 

But if the four vertices of G * are all odd, the graph G' needs two 

strocks to draw. 

7 Suppose that there are k lines and that one vertex V i 

corresponds to one number ai in the following way. If Vi is red, then 

ai = 1; Vi is blue, thenai =-1, i = 1,2, ... , n. Then 

hence k is odd. 

8 Use the conclusion of Exercise 7 

and refer to Example 5 in Chapter 5. 

9 The given graph contains 16 odd 

vertices B i ' Ci (i = 1, 2, ... , 8). If we 

want to make it a cycle, we should add at 

least 8 edges so that the graph becomes a 

cycle . Fig. 7 shows the cycle after adding 

8 edges BiCi (i = 1,2, ... ,8) so that the 

walk is the shortest. 

Exercise 6 

A ___ 1!" __ <;:0" __ l}1 __ ~! __ _ 
, , 

__ L 

, , 
'- -- :B 
I I I 3 

, " 

I I:C 
- - - -I - - - r- - - I } , ' , , ' , 

C ' ,i=-=-=4::"::"::4i=-'=-=4.::.=+, =--'--:...j. : B 4 

7:: :: ::: 
B7 ~: ___ ~ ____ I ~ ___ : __ .. :C4 

I I I I , , 
~_~~~:-:-__ ~~-_-__ ~~~~~~ _~_,r._~_~_ ' 

Fig. 7 

1 When n ;?: 3, K n is a Hamiltonian graph. When m = n ;?: 2, the 

complete bigraph K m." is a Hamiltonian graph. 

2 The reader can find it on the graph. 

3 A regular icosahedron consists of 20 congruent equilateral 

triangles. At the center of every triangle we mark a vertex. Only if 

two triangles have a common edge, we join the corresponding vertices 

and construct a regular dodecahedron which consists of 12 regular 

pentagons. From the study of Hamiltonian cycles, we can know that 

on the regular dodecahedron we can find a Hamiltonian cycle. Use 

scissors to cut the dodecahedron along the Hamiltonian cycle. It means 
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that cut the regular dodecahedron into two halves, and also cut each 

regular triangle into two halves. The trace does not go through the 

vertices of the regular dodecahedron. 

Fig. 8 

4 Draw a graph G as follows. We denote each 1 x 1 x 1 cube by a 

vertex. We join the corresponding vertices if and only if two cubes 

contain a common face. It is easy to know that G is a bigraph. Let 

G = (X, Y; E). If the corresponding vertex corresponding to the 

small cube at one corner belongs to X, the vertex which represents the 

small cube at the center belongs to Y. Since I X 1= 14, I Y I = 13, G 

contains no Hamiltonian chain. 

S (1) We denote six persons by six vertices V I ' V 2 ' ... , V 6 . If 

v, can cooperate with Vj' v, is adjacent to Vj. By condition, d (v i) ~ 

3, i = 1, 2, ... , 6. According to Theorem 4, G contains a 

Hamiltonian cycle C = v i l V i 2 • •• V i 3 V iI . In the cycle, two adjacent 

vertices represent two persons who can cooperate with each other. 

(2) Put ViI' Vi 2 into one group, Vi 3 ' Vi. into one group, Vis ' Vi6 

into one group. Alternatively put Vi6 ' ViI into one group, Vi 2 ' Vi3 into 

one group, Vi., V is into one group . These are two different ways of 

grouping . 

6 We denote 2n ministers by 2n vertices. If two persons are not 

enemies, join the corresponding vertices to get a graph G. In the 

graph G, for every vertex v, d( v ) ~ (2n - 1) - (n - 1) = n. 

According to the Theorem 4, G contains a Hamiltonian cycle and we 

can arrange vertices according to the order in the cycle. 

7 Draw a graph G as follows. We denote 9 children by 9 vertices 

and if two children know each other we join the corresponding 
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vertices . In graph G, for any two vertices v and VI, d (v) + d (VI) ~ 8. 

According to Theorem 2, G contains a Hamiltonian chain and we can 

arrange the children into one line by the order in the chain. 

8 Draw a graph G as follows. We denote the materials by 

vertices and every dish by an edge. In graph G, the degree of every 

vertex is no less than 4. According to Theorem 4, G contains a 

Hamiltonian cycle. 

9 Suppose that set A contains n elements and we give every 

element a number. Let A = {1, 2, 3, ... , n}. We use a sequence 

whose length is n and consisting of 0 and 1 to denote a subset. The rule 

is that if the element i of A is in this subset, the i-th position of this 

sequence is 1, otherwise the i-th position is O. For example, the empty 

set 0 = 0, 0 , 0, . . . , 0; {1} = 1, 0, 0, . . . , 0; {n} = 0, 0, ... , 1; 

{2, 3} = 0, 1, 1, 0, ... , O. Then there are 2" subsets in A. We denote 

the sequences corresponding to the 2" subsets by vertices and join two 

vertices if and only if the sequences have only one different number at 

the same position. Then we get a graph G. For example, when n = 1, 

G is a line segment as Fig. 9 shows us: When n = 2, G is a square as 

Fig. 10 shows us . Fig. 10 can be drawn using two Fig. 9. That is, add 0 

before one pair of 0, 1 to get 00, 01 and add 1 before another pair of 

0, 1 to get 10, 11. Then put one Fig. 9 on top of another one and join 

them by two vertical edges to get a square. Copy two Fig. 10, put one 

on top of another, add 0 before the number of every vertex of the top 

square and add 1 before the number of every vertex of the bottom 

square. Join the corresponding vertices of the two squares by four 

vertical edges to get a graph G. When n = 3, G is a cube. If n = k , 

assume that the graph G has been drawn. Put G on top of another 

copy. Then add 0 before the number of every vertex of the upper 

graph and add 1 before the number of every vertex of below graph. 

Join the corresponding vertices of the two graphs by vertical edges to 

get a new graph G of n = k + 1. Fig. 11 is the case when n = 3 and Fig . 

12 is the case of n = 4. We call the graph when n = k a cube graph with 

dimensions n. It is easy to prove by induction: the cube graph with 
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dimensions n contains a Hamiltonian cycle en ;?: 2). For n = 1, clearly 

it is true. Since the cube graph with dimension 1 is K 2 which is a 

Hamiltonian chain. For n = 2, it is a square which is a Hamiltonian 

cycle. For n = k, if it is a Hamiltonian graph, consider n = k + 1. 

Delete one corresponding edge from the upper and lower Hamiltonian 

cycle of n = k in G, respectively and then combine the edges joining 

the ends of deleted edges and the upper and lower Hamiltonian cycle 

to get a Hamiltonian cycle when n = k + 1 as the bold lines of Fig. 12 

show us . Put the vertices of G on a cycle according to the order of 

Hamiltonian differs only cycle. Start from any vertex and order all 

subsets clockwise (or counter clockwise) so that every adjacent subset 

differs only in one element. 

o 1 
0>-------..... 0 

Fig. 9 

o 1 Of-~----"=-r 

" 
110 

Fig. 11 

°D 
10 11 

Fig. 10 

1111 

Fig. 12 

10 First, the degree of every vertex is at least 3. Otherwise, 

there exists one vertex A which is incident to at most two edges. 
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Remove one edge, then the remaining vertex A cannot lie on cycle 

which contradicts the condition. So n ~ 3. It is easy to prove that n * 
4, 5, 6. 

If n = 7, remove the vertex whose degree is the largest (clearly, 

the degree is at least 3) to get a cycle whose length is 6. Since the 

vertices adjacent to this vertex may be non-adjacent on the cycle. 

(Otherwise, there will be a cycle whose length is 7.) The removed 

vertex is adjacent to at most three non-adjacent vertices on the cycle. 

So the degree of this vertex is at most 3. 3 X 7 = 21 is odd. In fact, the 

sum of all the degrees is even. A contradiction. 

If n = 8, after removing the vertex whose degree is the largest, we 

get a cycle whose length is 7. The removed vertex is adjacent to at 

most three non-adjacent vertices on the cycle. So the degree of this 

vertex is at most 3. The degree of every vertex is 3. As Fig. 13 ( 1 ) 

shows us, the degrees of A, C, F, 0 are 3. They cannot be incident 

to any edge. Every vertex of B, D, E, G is incident to one edge, 

respectively. If B is adjacent to G, D is adjacent to E (there are two 

edges). It is impossible. If B is adjacent to D, E is adjacent to G and 

the graph contains a cycle whose length is 8. A contradiction. If B is 

adjacent to E, D is adjacent to G and the graph contains a cycle whose 

length is also 8. A contradiction. 

If n = 9, since 3 X 9 = 27 is not even, it is impossible that the 

degree of every vertex is 3. There exists one vertex whose degree is at 

least 4. We remove the vertex whose degree is the largest to get a cycle 

whose length is 8. So the removed vertex is adjacent to at most four 

non-adjacent vertices on the cycle. The largest degree is 4 and the 

smallest is 3. As Fig. 13 (2) shows us, B is at least incident to one 

edge. Clearly we cannot join more edges between B and A, C. If B is 

adjacent to D, the graph contains a cycle whose length is 9. A 

contradiction. Similarly, B cannot be adjacent to H. If B is adjacent 

to F, the graph contains a cycle whose length is also 9. A 

contradiction. So B can only be adjacent to E or G. By symmetry, let 

B be adjacent to E. Similar to the above argument, we can know H is 
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adjacent to C. (If H is adjacent to E, the degree of E is 5. A 

contradiction. ) F is adjacent to A, and D is adjacent to G. We cannot 

join any two vertices by more edges and after removing A, the graph 

must contain a cycle whose length is 8. In fact, if the graph contains a 

cycle whose length is 8, BE, BC, HG, HC, FE, FG must lie on the 

cycle. The six edges form a cycle whose length is 6. A contradiction. 

By the above discussion, the n satisfying the condition is at least 10. 

The example when n = 10 is Fig. 13(3), we call it the Peterson graph. 

A 

F C 

E D 

(I) 

A 

G{---,,+---4C 

E 

(2) 

Fig. 13 

A, A, 

(3) 

11 If there are 5 persons, let the original order of seats be 

ABCDEA. Change it to ADBECA. If there are more than five 

persons, join the two vertices only when they are not seated together. 

Get a graph G. Since the degree of every vertex is 1 V(G) 1- 3. The 

sum of the degree of any two vertices is 2n - 6 where n is the number 

of vertices. Also n > 5, 2n - 6 ~ n. By Theorem 3, G contains a 

Hamiltonian cycle and we can arrange the seats by the order of the 

cycle. 

Exercise 7 

1 Suppose that G is connected, otherwise consider one connected 

component. If the degree of every vertex is no less than 6, 611 ~ 2e. It 

means that 11 ~ ;. Since f ~ 2; , then 

e 2e 
2 = 11 - e + f ~ 3" - e + 3" = o. 
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A contradiction. 

2 Suppose the degree of every vertex is more than 4, then 2e 

:8dC'O;) ~ 5'O, i.e. '0 < ;e. Sincee <3'0 -6, thene < ~e -6. It 
[=1 

means that e ~ 30. A contradiction. 

3 By Euler's Formula, f = 2 + e -v = 8. Since there are ~ = 3 

edges on every face in average. Since there are at least three edges on 

every face, there are 3 edges on every face. 

4 Suppose G and G are both planar graphs. The number of 

vertices in G and G is v and the number of edges is e and e', 

respectively. Thene +e' = 1 'OC'o -1). Adding the inequalities e < 

3'0 -6, ande' <3'0 - 6, we get ~ 'OC'o - 1) = e + e' <6'0 - 12, '0 2 -

13'0 + 24 < 0, v < 11. It contradicts the hypothesis. 

5 Consider the dual graph. C See the sixth problem of Exercise 

5. ) Since K 5 is not a planar graph, then f < 4. 

6 There are G) edges in a convex polyhedron with n vertices 

and every face contains at least 3 edges. So the number of the faces of 

2 (n) , the polyhedron is no more than 3 2 . By Euler s Formula, 

Simplify it to get n 2 - 7n + 12 < 0, where n can take only 3 or 4. We 

complete the proof. 

7 See Question 1 of Exercise 7. 

8 We denote the vertices of a polyhedron by the vertices of a 

graph and the edges by the edges of the graph. Then we get a 

connected planar graph. Then v ~ 4, f ~ 4. By Euler's Formula e = 

v + f - 2 ~ 6. It means that there is no polyhedron whose edge 

number is less than 6. If there is a graph with e = 7, then 3f < 2 X 7, 
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f = 4. But a polyhedron with four faces can only contain 6 edges. So 

there is no polyhedron with 7 edges. Consider k ;;;: 4. The pyramid 

whose base is a polygon with k edges is a polyhedron with 2k edges. 

Cut a corner from the pyramid whose base is a polygon with k - 1 edges 

to get a polyhedron with 2k + 1 edges. In conclusion, n ;;;: 6, n =F 7, 

there is a polyhedron with n edges. 

9 Suppose a convex polyhedron contains x vertices and the lOn 

faces contain C 1 , Cz , ••• , ClOn vertices and a1' az, ••• , a10n edges, 

respectively. The number of the edges of the convex polyhedron is 

1 10n 

"2 ~a;. By Euler's Theorem, 
1=1 

1 10n 

10n +x = "2 ~a; +2. 
i = l 

1 10n 

Since x ~ :3 ~ a;, then 
i=1 

1 10n 1 10n 

"2 ~ a; + 2 - 1 On ~:3 ~ a;. 

or 

1011 

~a; ~ 60n -12. 
i=1 

If among lOn faces there are no n faces whose edge numbers are 

equal, 

lOn 

~a; ;;;: C3 + 4+···+12)(n-1) + 13 XlO 
i=l 

= 75n +55 

> 60n -12, 

a contradiction. So there are at least n faces whose edge numbers are 

equal. 

10 In the graph there are only two-side polygons and hexagons 

and the number of each kind is 3. If the graph contains a Hamiltonian 
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cycle, by Theorem 4, 4(j~ - f~) = O. That is f~ = f~, but f~ + f~ = 3. 

It is impossible. 

11 By Theorem 4, 2 (f~ - f'~) + 3 (j~ - f'~) = 0, so f~ - f'~ is a 

multiple of 3. It means among the 5 quadrilaterals there are 4 

quadrilaterals outside the cycle, and another inside, or 4 quadrilaterals 

inside. If this Hamiltonian cycle goes through both e and e', the two 

quadrilaterals on the two sides of e are inside the Hamiltonian cycle 

and outside the cycle, respectively. So are the two quadrilaterals on 

the two sides of e'. There are at least two quadrilaterals inside the 

cycle and two others outside. A contradiction. 

12 Draw a graph G = (V, E), where V 

{Xt, X2' ••• , XII}' In the graph G, two vertices 

Xi' Xj are adjacent if and only if dCx" Xj) = 1. 

Suppose that G contains two distinct edges AB, 

CD which intersect at vertex ° as Fig. 14 shows us. 

Since d (A, B) = 1, d C C, D) = 1, without loss of 
Fig. 14 

generality, we suppose that dCO, A) < ~ , dCO, C) < ~ and the 

angle between AB and CD is e, d CA, C) = {d 2 CO, A) + d 2 (0, C) -

2d(0, A) xdCO, C)cose}-±. By the above condition only whene = 

1[, dCO, A) = ~, d(O, C) = ~, then dCA, C) = 1. But now A 

coincides with D and B coincides with C, it means that AB and DC 

are the same edge. It contradicts the hypothesis that they are two 

distinct edges. Other than this case, we have d CA, C) < 1. It 

contradicts the hypothesis that the distance of any two vertices is no 

less than 1. In summary, G is a planar graph and the edge number e of 

G is no more than 3n - 6. C The reader can compare it with the 

conclusion of Example 7 in Chapter 2 . ) 

Exercise 8 

1 By Example 1, there must exist a monochromatic triangle . 
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Without loss of generality, let L AIA2A3 be red. For the three edges 

of L A4A SA6' there are two cases: (1) The three edges of L A4ASA6 

are all red. We have completed the proof. (2) There is one blue edge 

in LA4ASA6' say, A4AS. For AIA4' A 2A 4 , A 3A4' if there are two 

red edges among them, there must exist a red triangle. If there are 

two blue edges, say, AIA4 and A 2A 4. Now if there is one blue edge 

among AlAs and A 2A s ' there must exist a blue triangle. If AlAs and 

A2AS are all red, LAIA2AS is a red triangle. We complete the proof. 

2 If there are no three line segments such 

that they are monochromatic and contain no 

common vertices. As Fig. 15 shows us, without loss 

of generality, let AIA2 be red. By hypothesis, 

~6 _____ ~ 5 
'1\ " 

/,' : \ /: 
I \ I I 

,;"..----;-...:.-' +' ..;..' ----:71 A 4 

three line segments A 3A4' AsAs , A 6A 7 cannot be A21..::::..---T~-'-';-~A 3 

all blue. Without loss of generality, let A 3A4 be 

red. Since AIA2 and A3A4 are red, the lines 

joining every two of the four points As, A 6 , A 7 , 

A, A, 

Fig. IS 

A s are all blue. Similarly, the lines joining every two of the four 

points A I ' A 2 , A 3 , A4 are all red. Without loss of generality, let 

AIA6 be blue, then A 3AS must be red. Whatever color A4As is, it 

contradicts the hypothesis. 

3 We color the shortest edge of every triangle red and others 

blue. Since r2 = 6, there must be a monochromatic triangle which is 

red and whose longest edge is the shortest edge of another triangle. 

4 Take one vertex A of the two-color complete graph K 9 . If A 

is incident to four blue edges AA I , AA 2 , AA3 , AA 4 , the complete 

subgraph K4 whose vertices are AI, A 2 , A 3, A4 in K9 contains no blue 

edge. If A is incident to six red edges AA I , AA2 , ••• , AA 6 , the 

complete subgraph whose vertices are A I , A 2 , • •• , A6 in K 9 contains 

a monochromatic triangle LAiAjAk C1 ~ i, j, k ~ 6). Since K9 

contains no blue triangle, LAiAjAk is a red triangle and the complete 

subgraph K4 whose vertices are A, A i ' Aj , Ak is red. If every vertex 

of K 9 is incident to 5 red edges, then the number of red edges in K 9 is 
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5 X 9 
2 It is impossible . 

5 By Theorem 3, 

rC3, 6) ~ rC3, 5) +r(2, 6) - 1 = 14 + 6 - 1 = 19. 

6 By Theorem 3, r ( 4, 4) ~ r ( 4, 3) + r C3, 4) = 9 + 9 = 18. 

7 Consider the n -color complete graph K r ,, ' The method of 

coloring is that color ( x , y) in the i -th color if and only if I x - y I is 
in the i-th group. By Theorem 2, K r " must contain a monochromatic 

triangle. Suppose that the three edges of the triangle is all colored in 

thej-th color, then among 1,2, . .. , r", there are three natural 

numbers a > b > c such that x = a - c , y = a - b, z = x - yare all 

in the j -th group. 

8 By Theorem 2, r 6 ~ [6! eJ + 1 = 1958 < 1978. By Schur's 

Theorem, the proposition is true. 

9 In Al , A 2, . . . , A 7 , among the triangles constructed from the 

first six vertices there must be two monochromatic triangles which 

have no common edge . If there is a common edge , let the two triangle 

be DA1A2A3 and D A1A2A4' Now remove Al and add A 7 , then there 

exist two monochromatic triangles. Between the two triangles, there 

must be a triangle different from A 2A3 A4' There is no common edge 

between this triangle and D A1A2A3 or D A1A2A4' 

10 We denote the six lines by six vertices. If two lines lie on two 

different faces, color the edge joining the corresponding vertices red. 

If the lines lie on one face, color the edge joining the corresponding 

vertices blue. We obtain a two-color complete graph K 6 ' So there 

must exist a monochromatic triangle. If it is a red triangle, any two of 

the lines which the vertices correspond to lie on different faces. If it is 

a blue triangle, the three lines which the vertices correspond to lie on 

one face . Since any three lines cannot lie on one face, the three faces 

which the three lines lie in intersect each other in the three lines. Then 

we know the three lines either are parallel to each other or intersect at 

one point. 
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11 Take a set consisting of four irrational numbers {j2, - j2 , 

J3, - J3}. Take any three numbers from the set and there must be: 

either j2 + ( - j2) = 0 is a rational number when j2, - j2 are chosen; 

orJ3 + (- J3) = 0 is a rational number when J3, - J3 are chosen. 

When n = 4, the conclusion is not true. So if the n satisfies the 

requirement of the problem, n ~ 5. Next, we prove that among any 

five given numbers, we may find three such that the sum of any two 

irrational numbers is still an irrational number. Suppose that {x, y, 

z, u, v} is a set of any given five irrational numbers. We denote the 

five irrational numbers by five vertices. If the sum of two numbers is 

an irrational number, join the corresponding vertices by a red edge. If 

the sum of two numbers is a rational number, join the corresponding 

vertices by a blue edge. Then we get a two-color complete graph K 5 . 

First we prove that the two-color complete graph K 5 contains no blue 

triangle . Otherwise, suppose that there is a blue triangle DXYZ which 

means that x + y, Y + z, Z + x are all rational numbers. Then 

1 
x = 2[ (x + Y) + (z + x) - (Y + z)] 

is also a rational number, which contradicts the fact that x is an 

irrational number. Next, prove that the two-color complete graph K 5 

contains no blue pentagon. Otherwise, suppose that there is a blue 

pentagon xyzuv which means that x + y, y + z, Z + u, u + v, v + x 

are rational numbers. Then 

1 
x = 2[(x + y) + (z + u) + (v +x) - (y + z) - (u + v) ] 

is still a rational number, which contradicts the fact that x is an 

irrational number. The two-color complete graph K 5 contains neither 

a blue triangle nor a blue pentagon. By the vice versa after Fig. 8. 3, 

there must exist a red triangle. Suppose that DXYz is a red triangle, 

then x + y, y + z, Z + x are all irrational numbers. 

12 As Fig. 16(1) shows us, color the K 7 in two colors and denote 
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a solid line by a red edge and a dotted line by a blue edge. There are 4 

red triangles: ,6,AJA4A6' ,6,A2A4A6' ,6,A3A4A6' ,6,A7A4A6 and 4 

blue triangles ,6,A JA2A 3' ,6,A2A3A 7' ,6,AJA3A 7' ,6,AJA2A7. It is 

easy to see that any two monochromatic triangles with the same color 

contain a common edge. So n ~ 8. 

Next, we prove when n = 8, the proposition is true. We prove by 

contradiction. 

First we prove a lemma: If the proposition is not true, there must 

be a red triangle and a blue triangle which contain one common 

vertex. First, K s which is colored in 2 colors must contain a 

monochromatic triangle. Without loss of generality, let it be a blue 

triangle ,6,A JA2A3. Now among A3A4AsA6A7A S' there must exist a 

monochromatic triangle which is not blue. If this red triangle contains 

A 3, the lemma is true. Otherwise, suppose that ,6,A4AsA 6 is a red 

triangle. There are 9 edges joining ,6,AJA2A3 and ,6,A4A sA6 among 

which there are at least five monochromatic edges. Without loss of 

generality, let it be red. Then A J , Az , A3 are incident to at least 5 red 

edges. Among them there must be one vertex which is incident to at 

least two red edges. This triangle consisting of this vertex and 

,6,AJA2A 3 contains one common vertex. So the lemma must be true. 

Next, we prove the proposition: Suppose the proposition is not true. 

By the lemma, let ,6,AJA 2A3 be a blue triangle and ,6,A 3A4A s be a red 

triangle. Consider the edges joining AJA4A6A7AS. Among them there 

is no monochromatic triangle . So K 5 consists of a blue cycle of 5 

vertices and a red cycle of 5 vertices (by the remark after Fig. 8.3). In 

Fig. 16(2), represent red edges by solid lines and blue edges by dotted 

lines. Without loss of generality, let AJA4A6A7As be a blue cycle of 5 

vertices and AJA7A4ASA 6 be a red cycle of 5 vertices. Next, we 

discuss the color of A3A7 . If A 3A7 is blue, then A 3AS' A 3A6 must be 

red. (Otherwise, ,6,A 3A7 As or ,6,A 3A 6A 7 is blue, which contradicts 

,6,AJAzA3.) Now ,6,A3A6As is red, which contradicts ,6,A3A4A S! If 

A 3A 7 is red, we discuss the color of A 3A S. 
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A, 

(I) (2) 

Fig. 16 

If A 3A S is blue, A2A4 must be red, AlAs must be blue and A 2A7 
must be red. So, L:"A 2A4A7 is a blue triangle, which contradicts 

L:"A3A4AS ' If A3AS is red, AsA7 must be blue and AsAs must be blue. 

So L:"AsA 7A8 is blue, which contradicts L:"A 1 A 2A3! In summary, 

when n = 8, the proposition is true. So the smallest natural number 

is 8. 

13 We denote 20 teams by 20 vertices. Join the vertices of the 

teams which have played matches in the first round by red edges and 

the vertices of the teams which have played matches in the second 

round by blue edges. Then every vertex is incident to a red edge and a 

blue edges . The graph must consist of several even cycles. In every 

even cycle, we can choose half of the vertices among which any two 

vertices are not adjacent. Then we choose 10 teams which have not 

played with each other. We complete the proof . 

Exercise 9 

1 (1) When n = 5, Fig. 17 is what we need . When n = 6, Fig. 18 

is what we need. 

Fig. 17 Fig. 18 
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(2) Suppose when n = k, there exists a directed graph satisfying 

the requirement. When n = k + 2, first using the vertices VI' V 2 , •• • , 

V k , we draw a directed graph with k vertices satisfying the 

requirement. For another two vertices V k + l , V k + 2 , suppose that VI , 

V 2 , . . . , V k all point to V k+ 1 and that V k+2 points to VI , V 2 , . .. , V k . 

Suppose that V k+ 1 points to V k+2 . Then V k+ 1 gets to VI , V 2 , ... through 

V k +2• (Clearly, V k+2 can get to VI' V 2 , ... , V k .) VI' V 2 , ... , V k can 

get to V k+2 through V k + 1 • (Clearly , VI , V 2 , • • • , V k can get to V k+ 1 .) 

So this graph with k + 2 vertices still satisfy the requirement. 

By (1) and (2), we know for any 4 < n EN, there exists a scheme 

of changing the path among n cities satisfying the requirement. 

2 Suppose G contains a circuit (VI' V 2' .. . , V k ). In V 2' 

V 3 ' •• • , V k- I , take the first vertex V i so that the arc ( V i+ 1 , V I) exists . 

Then there exists an arc ( V I' Vi )' so (V I' Vi' V i+ l) is a triangular 

circuit. 

3 We will prove that if an air route satisfies the condition f and 

there is no flight between two cities A and B, then we can use airline 

A--B or B--A so that the air route still satisfies the condition. If not, 

the new route does not satisfy the condition f. Then after opening the 

routeA--B, there exists a closed path B--CI-- .. ·--C,,--A--B. 

Similarly, after opening the route B --A, there exists a closed path 

A--DI-- .. ·--Dm--B--A. But before opening route between A and 

B, there exists a route A -- DI -- .. ·--Dm --B--C I -- .. ·--C" --A. 

(Maybe there are some vertices C i and D j which are overlapped . It 

means that the former air route does not satisfy the condition f, 
because it is possible to fly from A and return to A. A contradiction. ) 

4 Refer to Example 4. 

5 We denote n players by n vertices . If Vi defeats V j ' we can 

draw an arc from Vi to Vj to get a directed graph D. If there is no 

circuit in D, there must exist a vertex v whose indegree is O. The 

vertex represents the person who wins all the games. Similarly, we can 

prove there is a person who loses all the game. 

6 Suppose among v I' V 2' •• • , v n , the vertex v p has the most 
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number of offsprings, then v p is the common ancestor of the n 

persons . Otherwise, we assume that V p is not the ancestor of V q ' and 

then the common ancestor v r of v p and v q is not v p' and the offsprings 

of v r are more than those of v p by one. A contradiction. 

7 B has won two games . 

8 One round rohin corresponds to one tournament. By assumption, 

there is no vertex whose outdegree is n - 1. By the Pigeonhole 

Principle, there exists at least two vertices whose outdegrees are the 

same. By Theorem 4, we have completed the proof. 

9 Use Theorem 3. 
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Infinite graph, 3 

Isomorphic graph, 2 

Konigsberg, 51 

Leaf vertex, 41 

Length , 40 , 103 

Loop, 3 

Maximum degree, 13 
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Minimum degree, 13 

Odd, 13 

Ore, 68 

Outdegree, 102 

Parallel edges, 3 

Path, 40 

Pendant vertex , 41 

Peterson graph, 132 

Planar graph, 75 

Ramsey number, 90 

Graph Theory 

Regular graph, 13 

Schur Theorem, 95 

Simple graph, 3 

Starting point, 101 

Subgraph, 2 

Tournament, 102 

Tree, 41 

Triangle, 25 

Turan's Theorem, 28 

Vertex, 1 
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