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2
[} Divisibility _

Numbers involved in this book are integers, and letters used in
this book stand for integers without further specification.

Given numbers a and b, with b # 0, if there is an integer ¢, such
thata = bc, then we say & divides a, and write & |a. In this case we
also say & is a factor of a, or a is a multiple of b. We use the notation
b1a when b does not divide ¢ (i.e., no such ¢ exists).

Several simple properties of divisibility could be obtained by the
definition of divisibility (proofs of the properties are left to readers).

(1) If &|c, and c|a, then b|a, that is, divisibility is transitive.

(2) If bla, and &|c, thend | (a +¢), that is, the set of multiples
of an integer is closed under addition and subtraction operations.

By using this property repeatedly, we have, if b|a and &|c, then
b | (au +cv), for any integers » and v. In general, ifa;, az, ..., a,
are multiples of 5, thend | (a; +a> ++* +a,).

(3) If bla, thena =0or|a |>|b|. Thus, if 5|a and a|b, then
la|=181.

Clearly, for any two integers a and &, a is not always divisible by
b. But we have the following result, which is called the division
algorithm. It is the most important result in elementary number
theory.

(4) (The division algorithm) Let a and b be integers, and & > 0.
Then there is a unique pair of integers ¢ and », such that

a =bqg +rand 0 <r <b.

The integer ¢ is called the (incomplete) quotient when a is
divided by &, r called the remainder. Note that the values of » has & kinds
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of possibilities: 0, 1, ..., & —1. If r = 0, then a is divisible by 5.
It is easy to see that the quotient ¢ in the division algorithm is in

fact [%] (the greatest integer not exceeding % ), and the heart of the

division algorithm is the inequality about the remainder . 0 <<r <{b.
We will go back to this point later on.

The basic method of proving & |a is to factorize a into the product
of b and another integer. Usually, in some basic problems this kind of
factorization can be obtained by taking some special value in algebraic
factorization equations. The following two factorization formulae are
very useful in proving this kind of problems.

(5) if n is a positive integer, then

" —y* =(x —y)(@" ' +x" 2y + e Fay t +ym ),
(6) If n is a positive odd number, then
" +y" =(x +y) (@™t —x" 2y + oo —xy®2 +y" ),

Example 1 Prove that 10---01 is divisible by 1001.

200
Proof By factorization formula (6), we have

10-:01 = 10 +1 = (109 +1
200

= (10° + D[(10°)% — (10°)% + -+ —10> +1].

Therefore, 10*° + 1(= 1001) divides 10---01.

200
Example 2 Letm >n >0, show that 2% +1) | 27 —1),
Proof Takez =27 , y =1in factorization (5), and substitute =
by 2™, we get

nt1 nt1

—DLE@HTTT 4 42

2n+1

27" —1 = (22 +1].

Thus,

2n+1

@ -0 —-.

But
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nt1

22 —1 =¥ — 1D +1).

Hence,

nt+1

Q7+ Q7 —1.

Further, by property (1) we have (27 +1) | (22 —1).

Remark Sometimes it is difficult to prove b | a directly when
dealing with divisibility problems. Therefore, we can attempt to
choose an “intermediate number” ¢ and prove & |c and c |a first, then
use the property (1) of divisibility to deduce the conclusion.

Example 3 For a positive integer n, write S (n) to denote the
sum of digits appearing in the expression of n in base 10. Show that
9|n if and only if 9|S(n).

Proof Writen = a; X10* ++- +a; X10 +a, (where 0 <a; <9,
anda, #0), then S(n) = ay +a; +++ +a;. We have

n—Sm) =a; (108 —1) + - +a,(10 — 1. 1.1

For 1 <i <k, from factorization (5) we get9 | (10° —1). So every
term of the %4 terms in the right-hand side of equation (1. 1) is a multiple of
9, thus property (2) implies that their sum is also a multiple of 9, that
is, 9| (n —S(n)). Hence, the result can be obtained easily.

Remark 1 The divisibility property (2) provides an elementary
method to prove b | (a; +a, +++* +a,). We can try to prove a stronger
statement (which is usually easier to prove): b divides every e, (i =1,
2, ... 1)

Of course this stronger statement does not always hold true. But
even if it does not hold true, the above method is also useful. We can
rewrite the suma, +a, +++* +a, intoc, +c¢, ++++ +¢, by regrouping the
numbers, then we need to prove b|c; (G =1, 2, ..., k). Readers will
find out that in order to solve some special problems, sometimes we
can express a as a sum of certain numbers, and then apply the above
method to prove it.

Remark 2 From the proof of Example 3 we actually obtain a
stronger conclusion, that is, the difference between n and S(n) is
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always a multiple of 9. So n and S(n) have the same remainder when
divided by 9 (so we say n is congruent to S(n) mod (9). Please refer
to Chapter 6 for details).

Remark 3 In some cases from the propertics of digits basc 10 of a
positive integer we can judge whether or not this integer is divisible by
another integer. This kind of results sometimes are called “the digit
character of divisibility”. The digit characters of an integer divisible
by 2, 5 and 10 are well-known. In Example 3 we present the digit
character of an integer divisible by 9. For this result there are many
applications. In addition, in Exercise 1.3 the digit character of an
integer divisible by 11 is given. This result is useful too.

Example 4 Lctk =1 be odd. Prove that for any positive integer
n, 1* +2% 4+« +n* is not divisible by n + 2.

Proof When n = 1 the statement is obviously true. Forn = 2,
denote the sum by A, then

2A =2+ (2" +n*) + (G +(n —D*) + o +(n* +29).

Since £ is a positive odd number, from formula (6) we know that
for every: =2, i* + (n +2 —1)* is divisible by

i+n+2—1i) =n-+2.

Thus 2A has remainder 2 when divided by n +2, which implies that A
is not divisible by » + 2 (note thatn +2 > 2).

Remark In the proof we use the “pairing method” which is a
common method to transform the expression of a sum.

Example S Let m and n be positive integers with m > 2. Prove
that 2" —11(2" + 1.

Proof At first, when n < m it is easy to prove that the result is
true. In fact, when m = n the result is trivial. When n < m

from inequalities
2+l << 2" 41 <2 -1,

we can get the result (note that m > 2 and refer to the divisibility
property (3)).
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Secondly, we can reduce the case » > m to the special situation
above: by the division algorithm, n =mqg +r, 0 <r <m, andq >0.
Since

2 +1=0Q™ -2 +27 +1,

we know (2™ —1) | (2™ —1) by factorization (5). But0 <r <m, from
the discussion above we get (2" —1)1(2" +1) (note that whenr =0 the
result is trivial) . Hence, when n > m we also have (2» —1)1(2" +1).
The proof is complete.

Exercises
1.1 Let n and 2 be positive integers, then among numbers

n

k
1.2 11 girls and = boys go to pick mushrooms. All the children

1, 2, ..., n there are exactly [ ] numbers which are divisible by %.

pick n? 4+ 9n — 2 mushrooms in total, and every child picks the equal
number of mushrooms. Are there more girls or more boys among these
children?

1.3 Let n be a positive number, and n can be expressed as
ay raiao (where 0 <a; <9, a, #0). Set

Tn) =ay —ag ++ +(—1*a,

(the alternating sum of the digits of » beginning with the units digit of
n). Show that 11 divides n — T(n), which implies that the digit
character of an integer divisible by 11 is: 11 divides # if and only if 11
divides T'(n).

1.4 Supposc that there arc » integers which have the following
property. the difference between the product of any» —1 integers and
the remaining one is divisible by ». Prove that the sum of the square of
these » numbers is also divisible by 7.

1.5 Leta, b, ¢, d be integers withad —bc >1. Prove that there
is at least one among a, b, ¢, d which is not divisible by ad —bc.



2 Greatest Common Divisors and
| Least Common Multiples

Greatest common divisor is an important concept.

Let a; b be not both zero. An integer which can divide both a and
b (for instance, 1) is called a common divisor of a and &. Sincea, &
are not both zero, property (3) of Chapter 1 implies that there exist
only a finite number of common divisors of a, &. The greatest one
among them is called the greatest common divisor of a, &, and
denoted by ged (a, &). Clearly, the greatest common divisor is a
positive integer.

If ged (a, b) =1 (that is, common divisors of a, b are only +=1),
we say that a and & are relatively prime. Readers can find in the
sequel that this case is particularly important.

For more than two integers (not all zero) a, &, ..., ¢, We can
define their greatest common divisor gcd(a, &, ..., ¢) similarly. If
ged(as by ..., ¢c) =1, thena, b, ..., c are called relatively prime.

Attention . if this is the case, usually we cannot deduce thata, b, ...,
¢ are relatively prime pairwise (that is, any two of them are relatively
prime). On the other hand, if a, b, ..., ¢ are relatively prime
pairwise, then clearly, ged (a, by ... ¢) = 1.

By definition of greatest common divisor, we have some simple
properties as follows.

If we change signs of a and &, the value of ged(a, &) does not
change. That is, ged(+a, +=56) = ged(a, b).

The expression ged (a, &) is symmetric for ¢ and &, that is,
ged(a, &) = ged(b, a).

ged(a, b) as a function of variable & is periodic, a is its period,
that is, ged(a, b +az) = ged(a, &), for any integer x.
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The result (1) below is fundamental for getting more propertics
about greatest common divisors.

(1) Let a and & be integers not both zero. Then there cxist
integers = and y such that

ar +by = ged(a, b).

We remark that if x+ = z, and y = y, are a pair of integers
satisfying the above equation, then the equation

alxy +bu) +b6(y, —au) = ged(a, &) (u is any integer)

implies that such pairs of integers x and y are infinitely many.
Further, if ab > 0, we can choose one pair such that x is positive
(negative) and y is negative (positive).

From result (1) we can easily get the following result (2).

(2) A necessary and sufficient condition that two integers a and &
are relatively prime is: there exist integers = and y, such that

ax +by =1,

Usually, this is called Bézout’s identity.

In fact, the necessary condition is a special case of (1). On the
other hand, suppose there exist integers x and vy such that the above
equation holds. Let gcd(a, b) =d. Thend|a and d|b, so d |ax and
d|by. Thusd | (ax +by), it meansd | 1. Therefored = 1.

By (1) and (2) we obtain the following basic results easily.

(3) Ifm|a and m b, thenm | ged(a, &), it means that every common
divisor of @ and # is a factor of their greatest common divisor.

(4) If m >0, then ged(Gmna , mb) = mged(a, b).

a b
d’ d
integers which are not relatively prime we can get a pair of relatively
prime integers naturally.

(6) If ged(a, m) =1and ged(b, m) =1, thenged(ab, m) =1. It
means that the set of integers which is relatively prime with a fixed

(5) If ged(as &) =d, then ( )= 1. Hence, from any two

integer is closed under multiplication. From this fact we know that if
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ged(a, b) =1, then for any & >0, ged(a*, &) = 1. Thus, ged(a*, &) =1,
for any ! >0,

(7) Suppose b|ac. If ged(d, ¢) =1, then b|a.

(8) Suppose that the product of positive integers a and b is a £-th
power of an integer (¢ =2). If ged(a, b) =1, then a and & are all k-
th power of integers. In general, suppose that the product of positive

integers a, &, ..., c is a k-th power of an integer, andifa, &, ..., ¢
are relatively prime pairwise, thena, b, ..., ¢ are all £-th power of
integers.

Properties (6), (7) and (8) show the importance of relatively
prime. They have many applications.

Now we discuss least common multiples briefly.

Let ¢ and & be integers not both zero, an integer which is a
multiple of both @ and & is called a common multiple of a, &#. Clearly,
there are infinitely many common multiples of 2« and 4, the least
positive number among them is called the least common multiple of «
and b, denoted by [a, #]. For more than two non-zero integers a,
b, ..., c, we can define their least common multiple [a, &, ..., ¢
similarly.

Here arc some main properties of least common multiples.

(9) Any common multiple of « and & is a multiple of [a, &].

(10) For any two integers a and &, their greatest common divisor
and their least common multiple satisfy the following identity

ged(a, b)[a, b =| ab |.

However note that for the case of more than two integers, we
cannot get a similar result (readers can give some examples by
themselves). On the other hand, we have the following conclusion.

(11) If a, b, ..., c are relatively prime pairwise, then

[ﬂg bi P C:I =|ab"'c I.

From this and (9) we know that if a |d, 6|d, ...» ¢|d, and a,
b, ..., c are relatively prime pairwise, then ab---c|d.
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The concept of relatively prime is very important in number
theory, and is the key or basis of many problems.

In mathematical competition, we have to prove that two integers
are relatively prime (or determine their greatest common divisor) in
some problems. From examples below we show some fundamental
methods in dealing with such problems.

Example 1 For any integer n, prove that the fraction 31: -_::;' is

irreducible.

Proof We have to prove that 21n + 4 and 14n + 3 are relatively
prime. It is clear that these two integers satisfy the following identity
(i.e., Bézout’s identity)

3(14n +3) —2Q1n +4) = 1.

Hence, we obtain the conclusion required.

In general, it is not easy to get Bézout’s identity for relatively
prime integers a and &, therefore we often use the following
alternative way: to create an auxiliary equation which is similar to
Bézout’s identity

ax +by =r,

where r is an appropriate integer. If ged(a, &) = d, then from the
above equation we get d |r. The so-called appropriate » means: from
d|r we can derive d = 1 through further proof, or alternatively the
number of divisors of r is relatively small, and we can get the result by
exclusion method.

In addition, the auxiliary equation above is equivalent to
a| by —r)ord | (ax —r), sometimes, these can be derived more
easily by divisibility.

Example 2 Let »n be a positive integer. Prove that

ged(n! +1, (n +1D! +1) =1.
Proof We have the following equation
(nl +Dr+1D - +D]+1) =a. 2.1
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Set
d =gced(n! +1, (n +11 +1),

then from (2.1) we have d | n.

Further, d |n implies that & |n!, and combine withd | (n! +1) we
know 4 |1, thusd = 1.

Example3 SetF, = 22 +1, & = 0. Prove that if m # n, then
ged(F,,., F,) =1.

Proof By symmetry, we can assume that m > n. The key of the
proof is to use the fact F, | (F,, —2) (cf. Example 2 of Chapter 1), i.e.,
there is an integer = such that

F, +zF, =2.

Putd = gcd(F,., F,), from the above equation we getd |2, sod =1
or 2. But F, is clearly odd, thusd = 1.

Remark F,(k = 0) is called Fermat number. Example 3 shows
that Fermat numbers are relatively prime pairwise. This is an
interesting elementary property for Fermat numbers.

The conclusion in Example 4 below has many uses, it is worth to
remember.

Example4 leta >1, m, n > 0, prove that

ged(a™ —1, g" —1) = g®t=" —1,

Proof Put D = ged(a™ — 1, a" —1). We can get the equation
D = g=¥%™ " —1 by proving (a*™™ —1) | Dand D | (g®=™" —1),
This is a common manner of proving that two numbers are equal in
number theory.

Since ged(m, n) | m and ged(m, n) | n, by decomposition formula
(5) in Chapter 1 we have

(@a®mm —1) | a™ — 1)
and
(a®imm — 1) | (a® —1).

Thus, property (3) implies that ®™ » — 1 divides ged(a™ — 1, a” — 1),
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that is, (@®™™ —1) | D.

In order to prove D | (a®™ ™ —1), we setd = ged(m, n). Since
m, n > 0, we can choose u, v > 0 such that (cf. the Remark in
property (1))

mu —nv =d. 2.2)

Since D | (@™ —1), D | (@™ —1). In the same way, D | (a™ —1).
Thus, D | (a™ —a™). Now due to (2.2) we have

D | a™(a? —1). (2.3)

On the other hand, sincea >1andD | (™ —1), soged(D, a) =
1, and ged(D, a™) = 1. Hence, by (2.3) and property (7) we have
D | (a¥ —1). Therefore, D | (a®m» —1),

Combining with the two aspects of the results proved we have D =
aaﬂ'—'(m, A __ 1.

Example 5 Letm, n >0, mn | (m? +n?), thenm = n,

Proof Put ged(m, n) =d, thenm = md, n = n,d, where
ged(mq, ny) = 1. Thus, the given condition is reduced to m,n, | (m} +
n?), which implies thatm, | (m? +n?). Hence, m|n?. Butged(m,,
ny) = 1, thus ged(m,, n?) = 1. Combining with m, | n2, we have
m, = 1. Similarly, n, = 1. Therefore, m = n.

Remark 1 For two given integers not all zero, we often make use
of their greatest common divisor, and apply property (5) to get two
relatively prime integers. Hence make further deduction by using the
fact of being relatively prime (cf. properties (6) and (7)). For this
example, mn is quadratic, and m* + n” is a quadratic homogeneous
expression. Essentially, the effect of these procedures is to reduce the
problem to a special case when m and n are relatively prime.

Remark 2 In some problems, the given condition (or the result
just obtained) ¢ |a is not applicable. We can try to choose a suitable
divisor of ¢, and from ¢ |a we get & |a (a weaker conclusion). Then
we expect that the latter may provide suitable information for further
proof. In Example 5, from the factm n, | mi +n?) we havem, | n?,
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which implics m, = 1.
Example 6 Suppose that the greatest common divisor of the
positive integers a, & and ¢ is 1, and

ab

& =i,

Prove thata —& is a perfect square.

Proof Set ged(a, #) = d, then a = da,, b = db,, where
ged(aqs b)) = 1. Since ged(a, b, ¢) =1, ged(d, ¢c) = 1.

Now, the identity in the problem is equivalent to

dﬂ1b1 = caq _ij-r (24)

hence, a; divides cb,. Since ged(a;, ;) =1, we havea; | c. Similarly,
by | c. Again from ged(a,, b,) = 1 we get a6, |c (cf. properties (9)
and (10)).

Let ¢ = a1b,k, where % is a positive integer. On one hand, it is
clear that 2 divides ¢. On the other hand, combining with (2.4), we
haved =k(a, —b,),s0k|d. Thus, % | gcd(c, d) (cf. property (3)).
But gcd(c, d) =1, s0k = 1.

Therefore d =a, —b,, we havea —b =d(a, —b,) =d*. It shows
that a — & is a perfect square.

Remark By using primes, we have a more direct proof for this
problem (cf. Exercise 3.5).

Example 7 Let k& be a positive odd number. Prove that1 +2+--+n
divides 1¥ + 2% 4+ +n*,

Proof In view of

_nn+1)

142+ +n 5

this problem is equivalent to proving that n(n + 1) divides 2 (1* +
2% 4+« + n*), Since » and n + 1 are relatively prime, this is also
equivalent to proving that

n | 201% 4+ 2% 4 v +5*)
and



Greatest Common Divisors and Least Common Multiples 13

(n-~+1) | 2018 +28Aemet-nt),
In fact, since £ is odd, by factorization (6) in Chapter 1 we have

2(1F +2* + e +at)
[+ @ -] +[2 + G —2* ]+ +[(n —1D* +1*] +2n*

is a multiple of ». Similarly,
2(1* +2¢ 4+ +nt) = [1* +nt]+[2* + (n — D]+ +[n* +14],

which is a multiple of » + 1.

Remark When you deal with a problem about divisibility,
sometimes it is not easy to prove & |a directly. If & has a factorization
b =b,b,, where ged(b,, b,) =1, then we can divide the statement b |a
into two equivalent statements &, |a and &, |a. The later is easier to
prove. In Example 7 we have used this method. In Example 6 we do
the same when we prove a6, | c.

More generally, in order to prove &|a, we can factor & into a product
of some pairwise relatively prime integers by, b2, ..., b,, and the
statement is equivalent to b, | a, fori =1, 2, ..., n (cf. property (11),
and compare the idea in Remark 1 following Example 3 of Chapter 1). For
standard application of this method, refer to Example 5 of Chapter 3.

Exercises

2.1 Letn be an integer. Prove that ged(12n +5, 92 +4) = 1.

2.2 Let m and n be positive integers with m odd. Prove that
ged(2™ —1, 2" +1) =1,

2.3 Letged(a, &) = 1. Prove that ged(a® + 52, ab) = 1.

2.4 If the £-th power of a rational number is an integer (¢ =1),
then this rational number must be an integer. More generally, show
that rational roots of a polynomial of integer coefficients with leading
coefficient + 1 are integers.

2.5 Letm, n and k be positive integers with [m +k&, m] =[n +k, n]
Prove thatm = n.



3 Prime Numbers and Unique
Factorization Theorem

For every integer n great than 1 there are two different positive
factors: 1 and n. If n has only these two positive factors (n is said to
have no proper factors), we call » a prime number (or a prime). If n
has proper factors, that is, n can be expressed as a * & (where a and &
are two integers all great than 1), then » is said to be composite.
Thus, positive integers can be divided into three classes: the first class
which contains only number 1, the second one is the class of primes,
and the third one is the class of composites.

Primes play a very important role in positive integers. Usually,
we denote a prime by letter p. By definition, it is easy to get the
following basic conclusions:

(1) For every integer great than 1 there exists at least one prime
factor.

This is true because for every integer great than 1 there are
positive divisors great than 1, the least one among them must not have
proper factor, therefore it is prime.

(2) Let p be a prime, and »n any integer. Then p divides n, or p
and = are relatively prime.

In fact, the great common divisor ged(p, n) of p and n divides
P+ so the definition of primes gives ged(p, n) =1, orged(p, n) = p,
i.e., p and n are relatively prime, or p |n.

The most powerful property of primes is the following.

(3) Let p be a prime, a and b integers. If p |ab, then p divides a
orb.

In fact, if p does not divide a and &, then by property (2), $ and
a are relatively prime, p and & are relatively prime too. Thus, p and
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ab are relatively prime (see property (6) in Chapter 2), this
contradicts the given condition p |ab.

By (3), if a prime p divides a* for some integern =1, then p|a.

One of the oldest results was proved by Euclid (in Book IX of his
Elements) :

(4) There are infinitely many primes.

We prove it by contradiction. Suppose that there are only finitely
many primes, say pi, pzs ..., px. Consider the number N =
p1p2+px +1. Since N >1, N has a prime factor p. But py, P2y ...,
P& are only primes, so p is one of p, (1 <i <k), thus, p divides N —
p1p2rpr» it follows that p divides 1, which is impossible. So there
must be infinitely many primes. (Note that p, p,***p, +1 may not be a
prime. )

The statement (4) can also be deduced from Example 3 in Chapter 2,
Let F, = 2% +1 (k >0), then F; > 1, so F; has prime factors. Since
we have proved that terms of the infinite sequence {F,} (¢ = 0) are
pairwise relatively prime, prime factors in every F, are different from
those in other terms. Hence there must be infinitely many primes.

Now we turn to consider the most fundamental result in
elementary number theory, that is, the unique factorization theorem
of positive integers, or the fundamental Theorem of Arithmetic. It
explains why prime numbers are so important in the set of positive
integers.

(5) (The unique factorization theorem) Every positive integer
great than 1 can be factorized into a product of finitely many primes,
and this factorization is unique, apart from permutations of the
factors.

In other words, let » > 1, then n can be expressed as n =
Piparpis where p, (1 <i < k) are all primes. Further, if there are
another such factorization

n=pipatpe = qig2tqy

then we have ¢ = [, and p:, ps, ..., pi is a permutation of ¢,
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gas «0. s 1.
If we put the same prime factors in prime factorization of =

together, we know every positive integer > 1 can be uniquely
expressed as

n = piipit-pit,

where p1s P2+ ... pu are different primes, a1s a2y ... ap are
positive integers. It is called the standard factorization of n.

If the standard factorization of = is given, then from the unique
factorization theorem we can determine all positive divisors of =

(6) All positive divisors of n are pf1 p§2 - pir, where 8; are any
non-negative integers with0 <p; <a:, for: =1, ..., k.

By (6), it is easy to see if 7 (n) denotes the number of positive
divisors of n, ¢(n) the sum of positive divisors of n, then we have

(n) = (a1 +Dlaz +1)(a; +1),
and

sy = LTSN PR pp
P —1 pa—1 i —1 "

Although there are infinitely many prime numbers, their

distribution in natural numbers is extremely irregular (cf. Exercise
1.3). Given a big prime, determining whether it is prime, is usually
extremely difficult, and giving its standard factorization is even more
difficult. The following property (7) is very interesting, because the
standard factorization of n! is given for anyn > 1.

(7) For any positive integer m and prime p, the symbol p° | m
means p° |m, but p*"{m, that is, p* is the power of p occurring in the
standard factorization of m.

If n >1and p is prime, and p% | n!, then

o= B[2] (- [2][2]+).

where [z ] denotes the greatest integer i << x. Note that when p’ >#,
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[}%] = 0, so in the above sum there are only finitely many non-zero

terms.

Proving that some special numbers are not prime (or giving the
necessary condition that it is prime) is a basic problem in elementary
number theory. It often occurs in mathematical competition. A main
method dealing with this kind of problems is using ( various)
factorizations, and finding a proper divisor of the number concerned.
Let us give some examples.

Example 1  Show that among the infinite sequence 10 001,
100 010 001, ..., there is no prime number.

Proof Leta, = 10001:--10001 (z = 2, the number of “1” is n),
then

1 —

= 4 ] s dln=1)
A 1+10" +10° + - +10 10 —1°

In order to factor the number on the right side of the above equation
into a product of two (greater than 1) integers, we consider two cases.
The case when »n is even. Letn = 2%, then

_10% —1 _10% —1  10° —1

% T 30"—1 " 10°—1 " 10" =1’

. 100 =1, .
Itlseasytoknowthatlm_1lsanmtegergreaterthan1,andfork =2,
10% — 14 also an i han 1. Soax(k =2, 3 Il
103_1lsas0an1nt£gcrgreatertan . Soan(k =2,3,...)arca

composite, and a, = 10 001 = 13 X 137 is composite.
The case when »n is odd. Letn = 2% + 1, then

1A 1 D 1 2D g
1 T T —1 | 1P —1 = 10° +1

which is a product of two integers both greater than 1. So ax-; are all
composite. Therefore, all a, are composite.

Remark In the proof of Example 1, the special factorization of
the number is realized by using decompositions of algebraic expressions
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(cf. factorizations (5) and (6)), which is the same as in the following
Example 2.

Example 2 Prove that for any integern >1, n* +4" is not prime.

Proof If n iseven, thenn* +4" is greater than 2, and divisible by
2, thus not prime. But for odd number =, it is easy to know that»* +
4" does not have any (greater than 1) fixed divisor. So we have to deal
with it by a different way.

Let odd numbern =2k +1, 2 =1, then

nt L4 =t f4edF =gt 4. (20
=n*+4n?« (2})2 +4+ (2})* —4n? . (2})
=2 +22%)2 —(Q2ene2t)?
= {n? 28y %0552 — 3y W),

The first factor of the right side in the above equation is clearly
not equal to 1, and the second one is (n — 2*)* + 2* which does not
equal 1 (fork =1), too. Thusn* + 4" is composite for all n > 1.

Example 2 looks nothing out of the ordinary, but when you do it
by yourself it may not be so smooth. The key of this solution is, when
n is odd, we can regard 4" as a monomial 4y*, and by using
factorization of algebraic expression

z* +4y* = (2 +29% +2x9)(2* +2y* —2zy),

we can get a suitable factorization of the number.

Example 3 Suppose that positive integers a, b, ¢ and d satisfy
ab = cd. Prove thata +& +¢ +d is not prime.

Proof One  For this problem it is not suitable to perform
factorization of an algebraic expression to deduce some factorization
required. Our first solution is by using factorizations of numbers we
can find out a proper divisor of @ +8&6 +c¢ +4d.

a d m
Fromab = cd, we can let il where m and n are

relatively prime positive integers. % = % means the rational number
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= equals irreducible fraction —. Hence, there is a positive integer u,
€ n

such that ‘
a =mu, c = nu. (3.1)

Similarly, there is a positive integer v, such that
b =nv, d =mu. (3.2)

Therefore,

a+b4ec+d =0n+n)ut+v)

is a product of two integers all greater than 1, and it is not prime.
Remark If positive integers a, &, ¢ and d satisfy ab = c¢d, then
a, b, c and d can be factored into the forms (3.1) and (3.2). This

result is very useful in some problems.

Proof Two Fromab = cd we have b = Ca—d. Hence

Cd+c+d ~ lacbe)a +d).

a a

a+b+tct+d =a+

is also an integer.

Since z +& +¢ +is an integer, Lﬂ__'_"_f_lfa_":ii_)

If it is prime, we denote it by . Then from

(a +c)la +d) =ap 3.3

we know p divides (a +c¢)(a +d), thus the prime p dividesa +¢ or
a +d. Let us assume that p | (a +c¢), thena +c = p. Combining with
(3.3), we havea +d < a, but this is impossible (ford = 1).
The method in Proof Two is using the properties of primes (cf.
(3)) and contradiction, this is quite different from methods before. |
Example 4  Prove that if positive integers a and & satisfy |
2a® +a =3b* +b, thena —b and 2a +2b + 1 are perfect squares.

Proof The given equation is equivalent to

| o b2 425 413 = B2 (3.4

The key of the proof is to prove thata — & and 2a + 26 + 1 are
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relatively prime. Let
d = gcd(a '—b, 2& ‘i‘?.b +1)-

Ifd > 1, then there is a prime divisor p of d. From (3.4) we getp | &%
But p is prime, thus p [6. Now p | (22 +2b -+ 1) implies that p |1,
which is impossible,. Hence, d = 1, and from (3. 4) we know positive
integers e —& and 2a +2b +1 are all perfect squares (cf. (8) in Chapter 2).

Remark We need to prove that a certain positive integer is 1 in
many problems concerning number theory (for example, proving
that the greatest common divisor of some integers is 1) . Property
(1) supplies us with a description in a number theory way whether an
integer equals 1. Hence, we usually assume that there is a prime
divisor for a given number, and do further proof by using the
“sharp” property (3), then give a contradiction. Example 4 is a
such case,

Example 5 Let n, ¢ and b be integers, and a # b. Prove that

as b

n‘ o bl a2

Proof Iet p be a psime, and p* || n. We want to show that
b aaﬂ :zn, which gives the required conclusion (cf. the Remark
below).

Sett =q —b. If pit, thenged(p<, ) =1. Sincen | (a® —b"), we

have p* | (a» —p"). Buta" —6" =1 - & _b", thus p* ﬂi.
If p|¢, then using the binomial theorem, we get
a" :bﬂ = (b tht),: *bn Lk E (?_‘L)bn_‘.f.iul. (35)
i=1 ‘1

Let p# |1 (: = 1), then2® < p# <, thusp <i — 1. Therefore, the

power of p containing in
(n g l)ti—l
|

(n)ti_l = ;o
i i
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is at least
a—p+l—1) =a,

and every term on the right side of (3.5) is divisible by p*. So

Vi a—;b—,thatis, P —

= *Z,. (cf. Remark 1 following Example 3

in Chapter 1).

Remark In order to prove bla, we can factor & into the standard
formb = pit p3z---pg* , thus reduce the problem to proving p: |a (1 =1,
2, ..., k) (cf. property (11) in Chapter 2). The benefit to do it this
way is that we can apply the sharp property of primes. The proof of
Example 5 shows it clearly.

Example 6 Let m and n be non-zero integers. Prove that

(2m)!1(2n)!
mlint(m +n)!

Proof We just need to prove that for every prime p, the power
of p occurring in the standard factorization of the denominator I

is an integer.

min!(m +n)! is not greater than that of p occurring in the standard
factorization of the numerator (2m)! (2n)!. By formula in (7) we

know this is equivalent to proving

o«

] () ol (b Pl i s R }
|

=1

In fact, we can prove the following stronger result: For any real

i numbers = and vy, we have
! . [2z]+[2y]1 = (=] +[y] +[z +3]. (3.7) [
:
|

To prove (3.7), we note that for any integer & and any real
number a, [k +a] = [a] +# holds. From this, it is easy to know that
: if z or y changes an integer quantity, then two sides in the inequality
‘ i ] ‘ (3.7) change the same quantity. Therefore, it is sufficient to prove
the formula (3.7) for the case when 0 <z <1land0 <y <<1. Thusit

‘ ] reduces to prove the inequality

= . [22] +[2y] = [= +51.

-
s
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Note that now 0 < [x +y] < 1. If [x + y] = 0, then the result
clearly holds. If [z +y] =1, thenxz +y =1, and at least one of = and

y is greater or equal to é , Saysx _23%. Hence [2z] +([2y ] =[2z] =1,

it means (3.7) holds. We complete the proof.

Exercises

3.1 Prove that for any given positive integer n > 1, there exist n
consecutive composite numbers.

3.2 Prove that there are infinitely many primes with the form
4k — 1, also with the form 6k —1 (% is a positive integer).

3.3 Prove that there are infinitely many odds m, such that 8™ +9%m?
is composite.

3.4 Assume that integers a, b, ¢ and d satisfy

a>=>b>c>d >0
and
a’* +ac —c* =86* +bd —d°.

Prove that ab + c¢d is not prime.
3.5 Prove the result in Example 6 of Chapter 2 by using the
mcthod in Example 4 of this Chapter.
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Indeterminate equations are equations in which the number of
unknowns are greater than that of equations, and the range of
unknowns are restricted (e.g., integers, positive integers, positive
rational numbers, etc.). Indeterminate equation(s) is an important topic in
number theory. They also occur in mathematical competitions.

In elementary mathematics, three main methods we often use in
dealing with indeterminate equations are factorization, congruence,
and estimation (of inequalities) , among them factorization is the most
important method.

Roughly speaking, the main function of factorization method is
through “factorization” we can factor the original equations into some
other equations which can be solved easily. Here, “factorization”
includes two aspects of the way: firstly, it is a factorization for
algebraic expressions. Secondly, it supplies some suitable decompositions by
using some properties of integers (unique factorization theorem,
relatively prime properties) .

Of course, there is no fixed procedure to follow for factorization
method. Sometimes factorization is very difficult or there are too
many ways of factorization to choose. Sometimes, further proof is
difficult. Examples in this chapter shows all these cases.

We often combine the factorization method with other ways,
please refer to examples of this chapter and following chapters.

Example 1 If a positive integer, after adding 100, becomes a
perfect square, and after adding 168, becomes another perfect square.
Find this number.

Solution Let = be this number. According to the assumptions,
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there arc positive integers v and z, such

z +100 = »?,
z +168 = 2.

Eliminate = from the above two equations, we get
z? —y?* =68,

Factorize the left side of the equation above, write the right side
in the standard factorization form, and we have

(z —y)(z +y) =22 X17. 4.1)

Since = — v and z + y are all positive integers, and z —y <<z +y, thus
by (4. 1) and the unique factorization theorem (see property (5) in
Chapter 3) we have

g—aya=u]y [z —y =2, z—y =22,

i (4.2)
2ty =22x%x17; lz+y=2X17; lz+y =17

Solve these systems of linear equations with two unknowns, we gety =
16, =z = 18. Therefore, x = 156.

Example 2 Find all integer solutions of the following indeterminate
equation:

xd _|_y4 +z4 — zxzyz _|_2y222 +222I2 _|_24.

Solution The key step (also the main difficulty of this problem)
is to find out whether the equation can be factored into

(z+y+tz)Xzt+y—=2)(y+z—x)z+x—y)
=—"03%3 (4.3)

Since four divisors of the left side of the above equation are all
integers, similar to Example 1, and by the unique factorization
theorem, we can factor (4.3) into some (four unknowns linear)
equations to solve. Although it works, it is more troublesome.

We use the following approach (based on (4.3)): since prime 2
divides the right side of (4.3), among the four divisors in the left side
of (4,3) there is at least one divisor which is divisible by 2. On the
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other hand, sums of any two of these four numbers are all even, so
they have the same parity. Thus they are all even, which implies that
the left side of (4.3) is divisible by 2*, but the right side of (4.3) is
not a multiple of 2*. Hence there is no solution for the original
equation.

Incidentally, if in the solution of Example 1 we use the same way
as Example 2, we can simplify the procedure slightly; since z — y and
z +y have same parity, we just need to solve the second equation
listed in (4.2).

About the second half of the proof of Example 2, if we consider it
from the congruence (discussed in Chapter 6) point of view, it is
clearer: firstly, consider (4.3) by modular 2, and then by modular 2*.
We will discuss specially the congruence method to solve indeterminate
equations in Chapter 9.

Example 3 Prove that the product of two consecutive positive
integers is neither a perfect square nor a perfect cube.

Proof  Argue by contradiction. Suppose there are positive
integers = and y, such that

alx + 1) =g,

Multiple two sides of the equation by 4, and by rearrangement we
get (2x +1)* = 4y* +1, which can be factored into

Qzx+14+2v)Q2x +1—-2y) =1.
Since two divisors of the left side are all positive integers, we have

2z +1+2y =1,
2z +1—2y =1.

This gives solution x = y = 0, a contradiction. We complete the proof
of the first statement.
However, for the equation

z(x +1) = 3%,

the above factorization method does not work ecasily. We apply
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another factorization (based on the propertics of numbers). If the
given equation has positive integer solutions x and v, since z and x +
1 arc relatively prime, and their product is a perfect cube, then x and
x +1 are all perfect cubes. Thus

z=u,x+1 =2y =uv,
where u and v are positive integers. It means v® —u® =1, so
(v —u)(v? +uv +u?) =1,

but this is impossible. It is easy to see that by a similar argument we
can prove that the product of any two consecutive positive integers is
not k-th power of some integer (for some & = 2).
Discriminating whether divisors in a product are relatively prime
is very important. Please see the following Example 4 and Example 5.
Example 4 Prove that the equation

y+yt =z 4z +2°
has no integer solutions with = # 0.

Proof Assume that the equation has integer solution with x # 0,
factor the equation into

(y —zXy+z+1) =z (4.4)

At first, we prove gcd(y —z, y +x +1) = 1. If it is not true,
then there is a prime p which is a common divisorof y —x and y +x +
1. By (4.4), p|=x*, so p divides x. Combining with p | (y —z), we
know p |y. But p | (x + 3y + 1), thus p |1, which is impossible.
Therefore, the two divisors in the left side of (4.4) are relatively
prime. But the right side of (4.4) is a perfect cube, thus there are
integers a and b, such that

y—xz =a’, y+z+1=08, x =ab.
Eliminate = and v, and we have
b —a® = 2ab +1. (4.5)

Now we prove that equation (4.5) has no integer solutions, which
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induces a contradiction. We factor (4.5) into
(b —a)(b® +ab +a°) = 2ab +1. (4.6)

Note that z =ab and z #0, thusab #0. If ab >0, then from (4.6) we
get b —a >>0. Since a and b are integers, b —a = 1. Thus, the left side
of (4.6) = b* + ab + a® > 3ab > the right side. If ab < 0, then
| & —a | =2, so the absolute value of the left side of (4.6) = 2(a? +
b —|ab|) >2|ab |, but the absolute value of the right side <2 | ab |.
Therefore, (4.6) is false. It means there is no integer solution with
x 7 0 for the equation in the problem.

In the proof of equation (4.6) we have used inequality to estimate
(the absolute value of the left side is always great than that of the right
side). This method is known as estimation method. The estimation
method (in number theory) is always based on integers. We can use
various properties of integers and produce some suitable inequalities.
For instance, in the above proof we apply one of the most elementary
property of integers, that is, if integer x >0, thenz = 1.

Of course, using estimation method is not restricted to
indeterminate equations. In many problems concerning number theory
we can use this method. There are a lot of such examples in this book.

Example 5 Let £ be a given positive integer, # = 2. Prove that

(1) the product of three consecutive integers is not a 2-th power
of some integers;

(2) the product of four consecutive integers is not a k-th power of
some integers, too.

Proof (1) Assume that there are integers x = 2 and v, such that

(x —Dzxlx +1) =y, 4.7

Note that the three divisors x — 1, x and = + 1 in the left side of the
above equation are not always relatively prime pairwise, thus we cannot get
the result that they are all £-th power of some integers. One method to
overcome this difficulty is to rearrange equation (4.7) into

(x? =1z =y (4.8)
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Since = and z? — 1 are relatively prime, from (4. 8) we obtain that
there are positive integers a and &, such that

r=at, x*—1 =58, ab = vy,

rrhllS!

—
Il

a* —b* = (@) —b*

(1‘22 _b)(ﬂ.u_z +ﬂu_4b +--. +azbi_? +bk—1)-

Sincex =2, soa =2, Also, k =2, thus the second divisor in the above
equation is great than 1, a contradiction.
(2) Suppose that there are positive integers = and y, such that

(x —Dzx(x +1)(x +2) = y*, (4.9)

The four divisors in the left side of the above equation are not always
relatively prime pairwise, we classify it into two cases to determine
whether they are relatively prime.

(i) z is odd. In this case, ged(x, x +2) = 1. Since two consecutive
integers are relatively prime, thus x and x — 1 are relatively prime, so
are x and x +1. Therefore, = and (x —1)(z +1)(x +2) are relatively
prime. Due to(4.9), there are positive integers a and &, such that

xz =a*, (z — Dz +1(z +2) =b~
We will prove that if x =2 and & = 3, then
(z—1D(x+Dx+2) =2 +22* —x —2

lies between the %-th powers of two consecutive integers, thus it
cannot be a £-th power of some integer. In fact,
(@) =23 <z¥+2zx* —x—2<z* +kx? +1
=a* +ka®* +1 <a®* +ka®**? +1
< (a? 4+ 1)* (by the binomial theorem).

(i1) x is even. Similar to (1), we knowzx +1and (x —1)x(x +2)
are relatively prime. Thus, there are positive integers a and &,
such that



Indeterminate Equations (I) 29

z+1=a*, (z —Dzxlx +2) = b~

We will prove that if £ = 3, then (x — 1)z (x +2) lies between the k-th
powers of two consecutive integers.
On the one hand, it is easy to know

(z —Daxlz+2) < (x —D(x+1)2 <(x+1)* = (a*).
On the other hand, when 2 = 3 we have
(x —Dxlx +2) >z,

except for x = 2; but when = = 2 the statement is clearly true. Thus
when k£ = 3 the result holds.
For & =4, we have

(z —Dzx(zx+2) =a* —2)(@* —1D@a* +1)
=g* —2a% —g* +2
=>a* —pa*
= ({a* —1) +1)* —ka®
> (a® — 1D +E(a® — 1D —kg®
= (a® — 1),

To sec the last step is true, we note that since x is even, thus a is odd
anda = 3.
Whena = 3 it is clearly true. Whena =5, since 2 = 4, we have

(@® =Dt =(a — 1)1 (%> +a +1)*! > (@ —1)a?*V > a2,
Combine with (i) and (ii) and we prove that if 2 = 3 the product
of four consecutive positive integers is not a k-th power of some

integer. When k& = 2 the proof for the result is very easy, and we leave
it to the readers.

Exercises
4.1 Prove that the product of four consccutive positive integers
is not a perfect square.
4.2 Find all integers which can be expressed as the difference of
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two squares of some integers.
4.3 Find all integer solutions for the indeterminate equation
x+y+=z =23,
x4y 423 =3,



elected Lectures on

From the previous chapters we can find out a notable feature in
number {heory, that is, flexible and diverse, particularly for problems
in number theory in Mathematics Olympiad. In this chapter we choose

more such examples.
ged(m, n) (m
m

)is an
n

Example 1 Supposem zZn = 1, prove that
integer.
T m . m : N
Proof When r = m, the value of = ( ) is ( ) which is an
m \n n
integer. Whenx =n, it is
S s < legey
m n\n—1 n—1
which is also an integer. By Bézout’s identity, there are integers » and

v, such that

ged(m, n) = mu +nv.

Hence,
s () () o (7

1s an integer.

Example 2  Assume that « and & are two different positive
integers, and ab(a + &) is a multiple of a® + ab + &*. Prove that
la—b|> Vab.

Proof From the given conditions and the identity

ompetition Problems (1) . sVH¥
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ala® +ab +6%) —ab(a +5) =a?,
we know (a? +ab +b2) | 42, Similarly, (a2 +ab +5?) | 57, S0
(a® +ab +b%) [ ged(a?, b?).
Thus

(a® +ab +bp?) | ged(a, )3, (5.1)

Setd =ged(a, b), a =aid, b =b,d, then (5.1) is equivalent to
(af +ﬂlb1 +bf) i d Thus; d }a%‘ ‘!-a‘b; +b%: andd >G.1b;. Siﬂce
@ #b, integersa, #b,. Hence | a, — 5, |>1, and we get

V=g =¥ g, —b |2 =43 >dra by =gb,

thatis, e —& | > Yab.

In the proof of Example 2, firstly, from the properties of integers
such as divisibility we get divisibility relation (5. 1), then use the
inequality (property (3) in Chapter 1). This is a basic way to deal
with inequality problems of integers and to solve problems of number
theory using the estimation method. The following two examples are
all done in this way.

Example 3 Choose arbitrarily several different integers between
two adjacent perfect squares n? and (n + 1)?, prove that the products
of any two of the integers are not equal pairwise.

Proof Assume that integers a, b, ¢ and d satisfy

n'z e < {n +1)2,

Clearly, we just need to prove that ad s 6c. We shall prove by

contradiction. Assume that the above numbers a, &, ¢ and 4 satisfy

ad = bc. Then by proof one of Example 3 in Chapter 3 we know,
there are positive integers p, g, u and v, such that
a =pu,b=gqgu,c=puv,d = qu.

Byt >aandc >a we getg >pand v > u. Since p, g, uand v

are integers, ¢ >p +1, andv >« +1. Thus (note thata = pu > n?)

d=qu>=(p+1)(u+1) =pu+(p+u)+1
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>n? +2/pu +1 >n?4+2n+1=&+1)2,

a contradiction.
Example 4 Find all positive integer solutions of the indeterminate

equation

(n—1D! =n*—1. (5.2)

Solution Whenn = 2, from (5.2) we get (n, ) = (2, 1). If n > 2,
the left side of (5.2) is even, so the right side is also even, thus n is
odd. Whenn =3 or 5, we solve (5.2) and get solutions (n, &) = (3, 1),
(5. 2). - ' '

In the following discussion we assume n > 5 and = is odd. In this

i
2
is, (n —1) | (n —2)!. Hence, (n —1)? | (n — 1)1, that is to say,

G — 102 | L™ 1), (5.3

case Lisan integer and” ;1 < =8y so e 11_;_1 (n —2)1, that

On the other hand, by the binomial theorem, we have
abef =l —1F 1 —1
R L () [C R DL R (R [T DER S TC T V)
(5.4
From (5.3) and (5.4) we get (n —1)? | k(n —1), thatis, (n —1) | k.

Sok =n — 1.
Thus

nt—1>=2a" —1>G-DL
It means that when n > 5 equation (5. 2) has no positive integer
solutions. Thus, all positive integer solutions of (5.2) are (n, k) =

2, 1,03, 1), (5:.2).
Example 5 Find all integer solutions of the equation

2 +zy +zy? +y =82 +xy ¥+ 1.

Solution One The left side of the original equation is a cubic

polynomial function of = and y. For integers z and y, the absolute
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values of the cubic polynomial are usually greater than those of
quadratic polynomials. So maybe we can use the estimation method to

solve the equation. We factorize the equation into

(2 + 3z +y —8) = 8{za 1), (5.5)

Ifx+y—8>=6, thenz +3y = 14. Thus

oy +9 = __(:2’: 5

5 >4,

Now the left side of (5.5)
=Z6(z% + y2) = 4(? +y2) +2(2 F%) E
=28zy +2(2? + 42) > 8(zy +1),
$0 in this case the equation has no integer solutions.
Ifz+y—8<—4, thenz +y <4, in this case the left side of (5.5)
S F9 ) -4 X2 |2y [ 8xy << 8(zy +1).
This time the equation has no integer solutions, too. Therefore, the
integer solutions of the equation (z, y) satisfy
Sdsaby B

On the other hand, the left side of (5.5) is even, which implies
that = and y have the same parity. Thusx +y —8 is even, itis -2, 0,
2 or 4. Combining with (5.5) and by checking we can easily get all
solutions (z, y) = (2, 8), (8, 2).

Solution Two Setu =z +y, v = zy. Then the original equation
can be rewritten as

u(u? —2v) =82 —v+1), (5.6)
or equivalently,

©® —2uy = 8y? —8y +8,

which implies that  is even. Letu = 27, Then

2w? —vw = 8w? —2y +2. 570

We solve it and get

.. . B O O O O O O O R
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s ISR
L e O e (5.8)
w — 2 ; w —2

Hence, w — 2 is a divisor of 18, that is, one Gf £ 1 =0 =3, SE 6,
+9, +18. For every possible value of w, combining with (5. 8) we
can determine the value of v, and get the corresponding integer
solutions (z, y) which are only (2, 8) and (8, 2). (Note that after
finding a pair of values of w and v the condition that x and y are
integers is equivalent to thatw® — v is a perfect square. )

Remark The two sides of the original equation are all symmetric
polynomials with two variables z and y which can be expressed as
polynomials of u =z +y andv = zy (cf. (5.6)). The feature of this
expression is that the derived equation (5.7) is a linear equation of v,
and we can solve for v (as an expression of w).

In Example 6 below, we make use of certain expression of
numbers.

Example 6 Find positive integer(s) n such that it is divisible by
all positive integers which are less than or equal to V.

Solution Firstly, we prove that every positive integer n can be

uniquely expressed in the form
n=¢qg +r, 0<r <2q. (5.9

This is because any positive integer n must be between two adjective

perfect squares, that is, there is positive integer g, such that
g* <n .<(q +-1)2, :
Setr =n —q*, thenr =0, and
r<(g+1)?—qg* =2¢+1.

So the integer r << 2q, thus n has an expression of the form (5.9).
On the other hand, if n can be expressed in the form (5.9), then

¢ <n <(g+1)% Soq =[], it means that ¢ is uniquely determined

by n. Thus r is also determined.
It is not difficult to solve Example 6 by making use of (5.9).
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From the given condition g = [vn] divides n,

combining with (5. 9)
we know g |7, sor =0, ¢ or 2q, that is,

n has the forms
n =q% ¢ +q, ¢* +2¢.

Now whenn =1, 2, 3, the given condition is clearly satisfied. Let
n >3, theng = [/n] > 2. So from the given condition we have
(g —1) [ n Ifn =q2, from

¢’ =q(qg —1) +¢ and ged(g —1, ¢) =1,

wehaveqg —1 =1, orig =2, Henpe'n = 4,

Similarly, if n = g + ¢, then g =2y 3 Thusn =6, 12, It

n =g*+2q, theng =2 or 4, andn = 8, 24. Therefore, all possible
valies of » are 1,2, 3, 4. &, 8, 12 and 24. By checking, they all
satisfy the required condition.

Example 7 Prove that among any 5! numbers
from 3,7,

Proof

chosen randomly
-» 100 there are two numbers which are relatively prime.
When someone points out the key step in solving the
problem you will find it very simple. From 1, 2, ..
two consecutive numbers in the sequential order,
pairs

.» 100 we choose
and put them into 50

. 2F, (341,50 199. 100%

Then any 51 numbers chosen randomly must contain one of the pairs
above. Since the two mimbers are consecutive, of course they are
relatively prime.
Example 8 Prove that there exist 1000 consecutive positive
integers, such that there are exactly 10 primes among them.
Proof The basis of this proof is Exercise 3. 1. From the result in

the exercise we know there are 1000 consecutive positive integers
a,a-+1, ..., a+999, (5.10)

among them no number is prime.

Now we do the following operation to the numbers in (5:10)-
deleting the far right number a + 999 and adding a —1 on the far left.
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Clearly, in the resulting sequence
Ay W vasin G 298

there is at most one prime. Repeat this operation, until we reach 1,
2, ..., 1000. We note that the number of primes among (consecutive
1000) positive numbers obtained after an operation is the same,
increases by one, or decreases by one, comparing with the number of
primes among these numbers before the operation. Clearly, there are
more than 10 primes among the finally obtained numbers 1, 2, ...,
1000. Hence among these operations above there must exist -one
operation after which there are exactly 10 primes among the 1000
consecutive numbers obtained.

Example 7 and Example 8 are all so-called “existence problems”,
it means that to prove that “something” possesses “some property”,
and in the proof we actually do not construct the required property,
but using a logical arsument we can show that it exists. In Example 7
we apply the well-known “pigeonhole principle”, and in Example 8 we
apply the following principle, which is sometimes called “discrete
nullsatz”;

Let f(x) be a function defined on a (positive) integer set, and its
values are also integers. If | f(n) — f(n +1) | <1 for all n, and there
are integers a and &, such that f(a)f() < 0, then there exists an
integer ¢ between a and b, such that f(c) =0. (In Example 8 we can
take g (n) the number of primes among the consecutive 1000 positive

integers starting with n, and f(n) = g(n) —10. )

Another effective method other than existence proof is

constructive method, i. e., actually constructing the required
property. Constructive method is an important method, it has various
forms. Inm number theory many problems have to be proved by
constructive method. In what follows, we give some examples.
Example 9 For a positive integer, if every power of a prime
divisor in its unique prime factorization is great than 1, we call the

integer a power number. Prove that there exist infinitely many
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different positive integers, such that they and sums of any finite
number of different integers in them are not power numbers.
Proof ILet2 =p, <p, <-- <p, < --beall primes. Then

P1s Pidas PIP3Pss ooy DI D2 s ... (5:11)

are required numbers. 7

To verify this statement, we denote by a, the n-th number in the
above sequence. At first, every a, is not a power number. For any 7,
$1...,n (1 <r <5 <=+ <n), by (5.11) we have p, |a,, but p2ta,,

a 5
a—" . Hence, in

and p,

a
o

r

a, +a, ++ +a, =a (% 4o het bl
the second divisor is relatively prime with p,. Thus the prime . just
occurs once in the unique prime factorization of a, +a, + --- +a,, and
a, +a, + - +a, is not a power number. On the other hand. since
primes are infinitely many, the numbers in (5. 11) are also infinitely
many.

Example 10 Prove that there are infinitely many positive
numbers n such thatn | (2" +1).

Proof One Let us consider the first values of 7, among numbers
less than 10 there are omly » = 3°, 3!', 3% which satisfy the
requirement. We expect alln = 3*(k = Q) satisfy the requirement.

Proving it is a simple exercise by induction. The first step is
clearly true. Suppose that for £ > 0 we have 3* | (2° +1), it means

2 =1 +3%, for some integer u.
Then
9P R = ey (for some integer v),
s03*1 | (2*" +1), which implies that n = 3*" satisfy the requirement

too. By induction, we finish the proof.
Proof Two This is a different constructive method. The key is to

i
,
L




Selected Lectures on Competition Problems (1) 39

note that ifn | (2" +1), thenm | (2™ +1) form =2" +1.

In fact, as2" +11is odd, if 2" +1 = nk for some integer £, then %
is odd. Thus

2 = L @R @ e

is a multiple of m = 2" +1.

By this result, we can recursively get infinitely many required
numbers: 1, 3, 9, 513, .. ..

Solutions by the above two methods are not completely the same,
but they are all multiples of 3, except for the number 1. This is not
accidental. In fact, by Example 1 in Chapter 8 every required integer

n (> 1) is divisible by 3.
Example 11 Prove that there are infinitely many positive integers

such thatn | (28 +2).

Proof This problem seems to be so similar to Example 10, but
actually it is more difficult. We still use conmstructive method
inductively, and the key is to strengthen the inductive assumption. In

the following we show that if n satisfies

2 Loy m O =200 (e T2 E2T 00 (5.12)
then forﬁ = 2" +2, we have

Silms m [ (2 H2 Gri—1) | (2° =F1). (5.13)

Since 2° +2 =2(2""' +1) is a product of 2 and an odd number and
2in, the integer £ in 2" +2 = nk is odd, thus

o= 1 =2 40 = (2 +1
is a multiple of 2" +1 =m — 1.
Similarly, from 2" +1 = (n —1){ we know [ is odd, so
2412 =g 1y =@ + 1)
is a multiple of

2025 1) =" 2 —m,

Clearly, m = 2" +2is even. Thus the above assertion be proved.
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Now since n = 2 satisfies (5. 12), by (5.13) we can construct
recursively infinitely many required numbers, such as 2, 6, 665 &2z,

We note that in (5.12) 2|7 is necessary, that is, the numbers
satisfying the requirement of this problem are all even. Since if there
Isan odd » > 1 such that » [ (2* +2), then n | (2% + 1), which
contradicts the conclusion in Example 3 of Chapter 8.

Exercises
W - -
m +n —1
5.1 Letged(m, n) = 1. Prove that m | ( )
n

5.2 Prove that a positive integer n can be expressed as the sum
of some (at least two) consecutive positive integers if and only if n is
not a power of 2.

5.3 Prove that €Very positive integer n can be expressed in the
form of a« — b, where a and & are positive integers, such that the
numbers of distinct prime divisors of a and b are the same.

5.4 Prove that the equation x! « y! = 21 hag infinitely many
Positive integer solutions z, vand z withz <y < 2,

5.5 Prove that for every n = 2 there are n distinct positive
VHEEEEIS @iy @5, + ..y 4y s Sich that Cai —a;) | (a: +a,;)(1 <1, gl
i) .- :

T —
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Congruence

Congruence is an important concept in number theory. It has a
wide range of applications. _
Let n be a positive integer. If integers a and & satisfy n | (a —8),

then they are said to be congruent modulo », and written
a =6 (mod n).

If n{(a —b), then a and b are said to be not congruent modulo n,

and written
a Zb (mod n).

By the division algorithm, a and & are congruent modulo n if and
only if @ and & give the same remainder when they are divided by n.
For a fixed modulo ®*n, congruence modulo n has the same
characteristics as equality.
(D (Reflexivity) a =a (mod 7).
(2) (Symmetry) If a =& (mod n), thenb =a (mod n).
(3) (Transitivity) Ifa =6 (modn), andé =c (mod n) , thena =
c (mod n).
(4) (Addition of congruences) Ifa =6 (modn), andc =d (mod n),
thena +¢c =56 +=d (mod n).
(5) (Multiplication of congruences) Ifa =& (mod n), and¢ =
d (mod n), then ac = bd (mod n).
It is easy to see that by applying (4) and (5) repeatedly, we can
get operation formulas of addition and multiplication for more than
two congruences (with same modulo). In particular, from (5) we can

casily get, if a =& (mod n), £ and ¢ are integers with 2 > 0, then
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a*c = b*c (mod n).

Note that, in general, the elimination law is not true for
congruence, that is, fromac = bc (mod n) we cannot always geta =
& (mod n). However, we have the following result.

(6) If ac = bc (mod n), thena = b (mod which

7
e e
implies that if gcd (¢, n) =1, thena =& (mod n), that is, when ¢ and
n are relatively prime, we can eliminate ¢ in the two sides of
congruence and do not change its modulo (this once again
demonstrates the importance of the relatively prime property).

Now we list some simple but useful properties concerning modulo.

(7> Ifa =& (mod n) and d |n, thena =5 (mod 4).

(8) Ifa =b (mod n) andd #0, thenda = db (mod dn).

(9 Ifa=b(modn;),i=1,2,..., %, thena =5 (mod [n,,
ma2s ...y n3]). In particular, if nys ny, ..., n, are relatively prime
pairwise, thena =& (mod 7,7, n,).

From the above properties (1), (2) and (3), an integer set can be
classified via modulo n. More precisely, if @ and & are cong}uent
modulo n, then they belongs to the same class, otherwise they belong to
different classes. Every such class is called a congruent class modulo 7.

By the division algorithm, any integer is congruent exactly to one
of the numbers 0, 1, ..., » — 1 modulo n, and the » numbers 0,
1, ..., n — 1 are not congruent to each other modulo ». Therefore
there are totally n different classes modulo n, they are

M. ={z|weZ, e=imed )l i =0, 1.

For instance, there are two congruent classes modulo 2, which are
the class of even numbers and the class of odd mumbers. Numbers in
these two classes have the forms 2% and 2k +1, respectively (where %
is any integer) .

In every class among the = congruence classes we choose
arbitrarily one number as representative. The set of these » numbers is
called a complete system of residues modulo =, briefly called a

I (|
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complete system modulo ». In other words, set of n numbers ¢y,
€2s ... Cn is called a complete system modulo » if and only if any two
of them are not congruent to each other modulo n. For example, 0,
1, ..., n—11is a complete system of residues modulo n. It is called the
minimal complete system of residues modulo n.

It is easy to see that if i and »n are relatively prime, then any
number in the congruence class M. is relatively prime with n. This
kind of congruence class is called a reduced congruence class modulo
n. We denote the number of the reduced congruence classes modulo =
by @(n), and is called the Euler function. It is an important function
in number theory. Clearly, ¢(1) = 1, and for n > 1, ¢ (n) is the
number of elements among 1, 2, ..., n — 1 which is relatively prime
with n. For example, if p is a prime, thenp(p) =p —1.

Choose arbitrarily a number in every ¢ (n) reduced congruence
class modulo n as a representative, these ¢(n) numbers form a reduced
residue system modulo n, or in short a reduced system modulo n. Thus
@(n) numbers 71, 72y ... Tom are called a reduced system modulo n
if they are not congruent mutually and all.relatively prime with n.
@(n) positive integers which are less than » and relatively prime with
n are called the minimal positive reduced system modulo 7.

The following result, producing a new complete (or reduced)

. syétém modulo n from a complete (or reduced) system modulo n, has

many applications.
(10) Let gcd(a, n) =1, b be any integer.

If ¢ci, ¢c25 ... ¢, is a complete system modulo n, ac; + &,
ac; +b&, ..., ac, +b is also a complete system modulo 7.

If 717 725 ... s T is a reduced system modulo n, then ary,
arss ... @y 18 also a reduced system modulo 7.

From the first statement in (10) we deduce

(11) Let gcd(a, n) = 1 and & be any integer. Then there are
integers =, such that ax = & (mod n), and all such z’s form a
congruence class modulo n.

In particular, there are x such that ax = 1 (mod n). Such z is
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called an inverse of ¢ modulo n, and is denoted by 2’ or o™ (mod n).
They form a congruence class modulo 7, therefore there is a’l
satisfying 1 <Ca ™! < n.

We know that there are n possible values for the remainders of ap
integer modulo n. But for squares, cubes of integers, their numbers of
remainders modulo » may be significantly reduced. This fact is a basic
point in solving many problems by congruence method. The foHowing
simple conclusion has a wide range of applications.

(12) Perfect squares are congruent to 0 or 1 modulo 4, congruent
to 0, 1, or 4 modulo 8, congruent to 0 or 1 modulo 3, congruent tg
or £1 modulo 5.

Perfect cubes are congruent to 0 or + 1 modulo 9.

The 4th powers of integers are congruent to 0 or 1 modulo 16.
Now we have a number of examples to illustrate the roje of
- congruence in problem solving.

Example 1 Let a, 4, ¢ and d be positive integers. Prove that
a® — g% s divisible by 240,

Proof Since 240 = 2* %3 % 5, we want to prove that g %* —gtetd
is divisible by 3, 5 and 16, thus the result follows (cf. the Remark in |
Example 5, Chapter 3). ¢

Firstly, we prove 3 | (a%™ — g%ty By (12) we have a* =0, 1
(mod 3), and a® =a* =0, 1 (mod 3). Thus

a®tt — glerd a?(a* —a*) =0 (mod 3).

Similarly, froma? =0, +1 (mod 5) we geta* =0, 1 (mod 5), so
a® =a* =0, 1 (mod 5). Thus %" —a** = (mod 5).

Finally, froma* =0, 1 (mod 16) we know g% =a* =0, 1 (mod 3
16). Thusa** — 4% =0 (mod 16). This completes the proof. ‘

Example 1 is a routine problem. However, the following Example | !
2 peeds some little techniques.

Example 2 Leta, 6 and ¢ be integers such thatg 44 +¢ =0, Set f |
d =a"P L pF | 0% o that |d| is not prime. o ;

Proof There are many methods to solve this problem. We use
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congruence to prove that 4 has a nontrivial fixed divisor.

First, for any integer u, the numbers »'” and » have the same
parity, i.e., ' =u (mod 2). Sod =a +b +¢ =0 (mod 2). Thus
2d.

On the other hand, it is easy to verify (for the cases 3|« and 3{u)
u® =u (mod 3), (6. 1)

which implies that
wl =g e 1 =y e w6 =gy .y =7

L

=u® =u’

=u?® =u (mod 3).

Hence, d =a +b+c =0 (mod 3). Therefore 6|4, and 4 is not prime.
Remark The congruence (6.1) in the solution is a special case of

famous Fermat’s Little Theorem. Please refer to the next chapter.
Example 3 Assume that integers z, y and z satisfy

(z—y)(y —z)(z—x) =z +y +=z (6.2}

Prove that z + y +z is divisible by 27.

Proof From (6.2) we will deduce that =, y and z are mutually congruent
modulo 3, thus27 | (x —y)(y —z)(z —z). Thatis, 27 | (z +y +=2).

We prove by contradiction. First, we assume that there are just
two of the numbers x, y and z are congruent modulo 3. We can
assume x =y (mod 3), butz Z z (mod 3). In this case3 | (z —y) but
3{(z +y +z). Thus, the left side of (6. 2) =0 (mod 3), but the right
side == 0 (mod 3), a contradiction. Thus this case does not occur.

Next, assume that each two of =, y and = are not congruent
modulo 3. In this case, it is easy to verify 3 | (z + y + z), but
31 (x —y)(y —=z)(z —z). Hence the remainders in the two sides of
(6.2) are different modulo 3, a contradiction. Thus this case 1s also
impossible.

Therefore, our assertion above is true. The proof is complete.

Remark The solution in Example 3 embodies a fundamental

principle in dealing with problems of number theory using congruence:

if an intégerA = 0, then the remainder of A divided by any positive
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integer n (n > 1) is also 0. Hence if we can find some n > 1 such that
A is not congruent to 0 modulo 7, then A is not 0. Usually we use thijg
principle to obtain a necessary condition via congruence, to deduce the
result (as Example 3), or to prepare for a further proof. There are
more such examples in what follows.

The following is an old problem.

Example 4 Letn > 1. Prove that 11---1is not a perfect square,

A
n

Proof We prove by contradiction. Assume that there is some n > 1
and an integer x such that :

Tles-] =i, (6.3)

n

By (6.3), z is odd (In fact, (6.3) modulo 2, and note that z?
(mod 2)). Furthermore, z =1 (mod 4), since 2t . But

=z

Hl-oe] —1 = 11+-+10

n n—1
is divisible by 2, not by 4. That means the left side of (6.3) #1(mod 4),
a contradiction!

The key in dealing with such problems is the choice of modulo 7.
But concerning how to choose modulo there is no simple rule. It
depends on the specific question. In Example 4, we first calculate
(6.3) by modulo 2. Though we cannot solve the problem, we get some
useful Information, and thereafter calculate it by modulo 4, and
deduce a contradiction.

Example 5 Using digits 1, 2, 3, 4, 5, 6 and 7 we can get 7-digit
numbers and every digit is used only once in every such 7-digit
number. Prove that there is none of these numbers which is a multiple
of another one.

Proof Suppose that there are such two 7-digit numbers a and & (a #5)
such that

a = bc, (6. 4)

where ¢ is an integer great than 1. Since the sum of digits in a or & is

Al

B R B B BB E B EEEEE R R R E B E B BB BN B S b s o o e e
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1+24+3+4+4+54+6+7=1(mod 9),a =b =1 (mod 9) (cf. Remark
2 in Example 3, Chapter 1). Now by modulo 9 for (6.4), we getc =1
(mod 9). Bute >>1, soc¢ =10, ande = 105 > 107. A contradiction,
since g is a 7-digit number.

Example 6 Assume that the sequence {x,} is1, 3, 5, 11, ... and
meets the following recursive relation

Tosi — L Ty i =2 (6.5)
The sequence {y,} is 7, 17, 55, 161, ... and meets the following
recursive relation

Wap—sdal cEBy s m =0, (6.6)

Prove that these two sequences have no common terms.
Proof Consider modulo 8. First, we prove that the sequence
{x,} modulo § is a periodic sequence

1y 35 8.3, 5t (6.7
Since x; =3, x; =5 (mod 8). If we have -
Z.4 =3, T, =5 fmod 8).,
then by recursive equation (6.5), we have

g =t +2.I,,~1 =549 X3 E3 (mod 8):
Lz = Zon +2x, =3+2 X5 =5«€mod 8).

-

This proves inductively our assertion.
Similarly, by (6.6) we can show that the sequence {y, } modulo 8
is a periodic sequence

il S R (e (6.8)

From (6.6) and (6.7) we find that the two sequences z,, 3, ...
and vi, ¥z, ... modulo 8 have no terms with the same vahie.
Furthermore, since {y,} is increasing, v,, y,, ... cannot be the same
asxz, = 1, which implies that {x,} and {y,} have no terms with the
same value.

Remark After modulo 8 linearly recursive sequences (6.5) and
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(6. 6) become periodic sequences. This happens not by chance. In
fact, for a given ol > 1, 0f {20 6 205 45 a3 integer sequence
determined by the recursive equation

ik =f(-I,,+.§—1a ceny Tpeys SC,-,),

where f is a polynomial with Integer coefficients and % unknowns, and
the initial values z,, z,, ..., z; are given integers. Then after some
terms, {z,} modulo m is a periodic sequence.

In order to prove this assertion, we denote by Z; the remainder of
z; divided by (0 < Z; <m). Consider the ordered k-tulpes

An :<-fn) £n+13 Sl i Enﬂ-])(ﬂ =1, 2: .--).

Since every z; has at most m different values, there are at most m*
different A.. Hence amongm* + 1 k-tuples Ayt Ass L0 A x, theve
arc two of them which are exactly the same. Let us say A, = A; (i <),
baels,

B — B AP T sk =

Combine with the recursive formula of {z.) and basic properties of
congruence, and we deduce that the above equation still holds when
t =k, i.e.,Z,4 =Z;u. Thuswe can prove inductively, for any: >0,

Ziw = Z;u, which means that staring from the i-th term {z,} will

- occur Periodically with evé V=T P Ms 353 Block.

Example 7 Let p be a given positive Integer. Determine the
minimum positive value of (2p)* — (2p —1)", where m and » are any
positive integers.

Solution The required minimum positive value is

ol —0p ¢ —ds 1.
For proving it we first note that, by
(2p)* = (4p —2)p +2»
and

(Gp — 1=y —=2)(p 1)+ {p~1),

‘we can easily get 3

7
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2p)*” —Q2p —1)" =(2p) —(2p —1) =1 (mod 4p —2).
(6.9)

Furthermore, we have to prove that there are no positive integers
m and n such that (2p)*™ — (2p —1)" = 1. If not, then

L@2p)™ =1)(2H)T + 1) = C2p —=1)7,

The two divisors of the left side of the above equation are clearly
relatively prime, but the right side is the n-th power of some positive
integer. So

@2p)™ tl =a, (6.10)

where a is a positive integer, anda | (2p —1). Make equation (6.10)
modulo a, then the left side is

2p~-1+D"+1=1+1=2 (mod a),

which implies that 2 = 0 (mod a). But clearly a is an odd integer
greater than 1, a contradiction.
Combining with (6.9) we know if

Cpifi=2n — 10 =0
then
@p e =@p —1)F =p =1,

and when m = 1 and n = 2 the equal sign holds. This proves our
conclusion.

Example 8 By connecting the vertices of a regular n-gon we get a
closed n-line. Prove that if n is even then among the connecting lines
there are two parallel lines; if n is odd then it is impossible that there
are only two parallel lines among the connecting lines.

Proof It is not suitable to solve this geometric problem by
geometric methods. It concerns a complete system of residues. We
mark these vertices anti-clockwise with numbers 0, 1, ..., n — 1.

Assume that the closed n-line isay —a; -+ —>a,, >a, = ag;, where

Qgs @i -+« 5 @a-y 1528 permutation of 0. 15 ..ovm—1.
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At first, since all a; are the vertices of the regular n-gon we get

e e
a4 ;4+q /,"a,'a,-ﬂ\—“—)a,-ﬂai = da;«qa;

=a; e a; +a,'+-( (mOd 7).
When 7 is even, 21 (n — 1), thus the sum of numbsers in any complete
system of residues =0 +1 -+ +(n — 1) = E-(HT_Q Z 0 (mod »).

But, on the other hand, we always have

n=1 n-1 n-1 n-1
2((1; +¢1.'+1} = Eﬂ; +2¢1f+1 ‘:2‘2@{ =2XM
i=0 i=0 i=0 i=o 2
=n(n —1) =0 (mod n). (6. 11)
Henbe.acta (0 0. 1, o 1) cannot form a complete system

of residues modulo 7, i.e. » there must exist ¢ and;j (0<7, j <n =l
such that

a; —i—am =y +GJ’+1 (mod TZ).

Thus there is a pair of sides @i [ a;a;..

When = is odd, if there is only one pair of sides @itins [ aja;ag,
then among » numbers 4, R a8y s o i e et is one
residue class r occurring twice. So it is short of one residue class s,
thus (in this case 2 | (n — 1)

-
n=1

2 tans) =0t 1Pty ) i
=0

- Ani—1)

=r —s5 (mod n),

TR =25

Combining with (6.11) we have r = s (mod ), a contradiction! This
means that when » is odd it is impossible that there is only one pair of
parallel sides.

Example 9 Letn >3 be an odd number. Prove that after taking
out arbitrarily one element from n-clementset S — {0, 1, 1 e 1}

We can always classify the rest of the elements into two groups, every

Fo

i o s i
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!

2

groups are congruent modulo 7.

group consists of numbers, and the sums of the numbers in two

Proof The first key in proof is for any z € S, = # 0, the set
S\iz] ecan be obtained from T = {1, 2, ..., # — 1} by the

transformation
T +x (modn) ={a +z (modn), a € T}.

This reduces the problem to prove the special situation: T =
S\{0} can be classified into two groups, such that every group consists

of 2 ; . numbers, and sums of elements in each group are congruent

modulo n.
We divide into two cases. Whenn = 4% +1 (¢ = 1), note that in
2k pairs of numbers

{11 4k}! {21 4k _1}! ves {Zk, 2k +1},

sums of every pair are 0 modulo n, thus choose any % pairs of numbers

as a set, the rest k pairs as another set, they satisfy the requirement.
Whenn =4k +3 (& = 1), we first choose 1, 2, 4k as a set, 3,

4k +1, 4k + 2 as another set. Then from the rest 2k — 2 pairs

of numbers
{4, 4k —1¥, ..., 2B+ 1, 28 L2}

choose k — 1 pairs, respectively, and put them into the above two sets.

The resulting sets are required sets.

- Exercises
6.1 The vertices of a cube are labelled + 1 or — 1. Each face is as
signed a number which is equal to the product of the numbers on vertices of
the face. Prove that the sum of 14 assigned numbers is not 0.
6.2 Find all positive integers n such that the integers base 10
consisting of n — 1 “1”s and one 7 are all prime.
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6.3 Let p beaprime,a =2, m =1, a” =1 (mod Dz alli =y
(mod p*). Prove thata™ =1 (mod p?).

6.4 Letm be a positive integer. Prove that among the first 7,2
terms of the sequence defined by

Ly = io =1; T2 =I;.+1+I;,(k =11 2, )

there is a term which is divisible by m.

"j l‘ -I .] ..l .L.Jw.l. :ui.‘ -..J ."g‘lll;jl.ﬂ.lj]‘.] R T N TR e T



Fermat’s little theorem, Euler’s theorem and the Chinese

remainder theorem, which are famous theorems of number theory,
play an important role in elementary number theory.

(1) Fermat’s little theorem. Let p be a prime, a any integer which
is relatively prime to p. Then

a*' =1 (mod p).

Fermat’s little theorem possesses a variation which sometimes is
more useful. '

For any integer a, a®? = a (mod p). (When p {a these two
statements are equivalent; when p |a, the later clearly holds.)

By induction it is not difficult to give a proof of Fermat’s little
theorem. It is easy to see that we need only to prove the statement for
a=0,1,..., p—1. Whena = 0 the conclusion is clearly true. Ifa? =

a (mod p) is true, then since p | (p) (=, 2 e e
i
(a +1)7 =a"+(p)a”_l+---—i—( P )a =l
1 e
=@’ +1=a+1 (mod p),

it means that if we replace a by a +1 the statement is also true.
(2) Euler’s theorem. Let m > 1 be an integer, a an integer
relatively prime to m, @(m) the Fuler function (cf. Chapter 6), then

a?™ =1 (mod m).

We can prove Euler’s theorem as follows. Put 715 725 - .. » Tom) @

reduced system modulo m. Since ged(a, m) = 1, aryy arzs ...»
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ar o is also a reduced system modulo 7 (cf. Chapter 6). Since two
complete (reduced) systems modulo 7 are the same up to 4
permutation (under modulo =), in particular, we have

?’17'2"'7’¢(m) =ar,; - ar!"'arp(m) P a?(m)rlrz.-.rpcm) (mod m).

Since ged (7:, m) = 1, we have ged (rir2* 7o » m) =1, thus from the
above equation we can delete r, "Totm » and have a®™ =1 (mod m).

Remark 1 Whenm = pisa prime, since p(p) = p — 1, from
Euler’s theorem we can get Fermat’s little theorem.

P31 -=pi# , then the Euler function ¢(m) is determined by the following
formula (the proof is omitted) .

Remark 2 If the standard factorization of m Is given: m =

e(m) = p27 (py — D pa™ (py — 1) pp! Uy =1

{1 )0 (1),

(3) The Chinese remainder theorem, Let my, ma, ..., m; be k
pairwise relatively prime positive integers, M =m m,-m,, M, :?%/If
B =02, i B B any integers. Then the system

of congruences

z =bi(modm,), ..., z =b,(mod m,)

has a unique solution
=M Mb +M;M,b, +- +M;M,b, (mod M),
where M are any integers such that
M:M; =1(modm;) ( =1, 2, ..., k).

To verify the above conclusion is an easy task, we leave it to
readers (note that for any i we have m, |M, and m, |M; for any j #
). The main power of the Chinese remainder theorem is that it claims
that there must exist a solution for the mentioned system of
congruences when the modulo are pairwise relatively prime, and the
precise form of the solution is usually not important.

B OEOE N N B B
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The above-mentioned theorems of number theory are powerful
tools in problem solving. They are used usually together with other
methods. We will find it so latter. Now we only introduce some
examples in which we directly apply these theorems.

Example 1 Let p be a given prime. Prove that in sequence {2" —
n}(n = 1) there are infinitely many terms which are divisible by p.

Proof When p = 2 the statement is clearly true. If p > 2, then
due to Fermat’s little theorem, 2¢71 =1 (mod p), so for any positive

integer m, we have
2 =1 (mod p). (7.1
Putm =—1 (mod p), then by (7.1) we get
e —m(p —1) =1+m =0 (mod p).

Hence, ifn = (kp —1)(p —1), then 2" —n is divisible by p (for
any positive integer &), thus in the sequence there are infinitely many
terms which are divisible by p.

Example 2 Prove that in sequence 1, 31, 331, 3331, ... there
are infinitely many composite numbers.

Proof Since 31 is a prime, by Fermat’s little theorem, 107 —
(mod 31). Thus for any positive integer 2 we have 10°* =1 (mod 31D,

Hence

%(1030* iy et 31).

This means that the number consisting of 30k many 3’s is divisible by
31. Multiply this number by 100 and then add 31, the resulting number
is also divisible by 31, i.e., the 30k + 2-th term in the sequence is
divisible by 31, so it is not prime. Thus in the above sequence there are
infinitely many composite numbers.

Example 3 Show that for any given positive number n, there are
n consecutive positive integers such that every such positive integer has

a square divisor greater than 1.

Proof Since there are infinitely many primes, we can take out n
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different primes p,, p,, ..., ?-. Consider the following systep,

of congruences

= (mOdp?)j'f-:ly 27...,”. (7,2)

Since pi, pi, ..., p? are pairwise relatively prime, by the

Chinese remainder theorem we know that the above syst
congruences has a positive integral solution.
integers = +1, = +2, . .

em of
Thus = consecutive
- » x +n are divisible by squares Dy Dy

L

P respectively.

~If we do not use primes directly, we can also adopt the following

variation. Since Fermat’s numbers F, =22 41 @& = 0) are pairwise

relatively prime (cf. Example 3 in Chapter 2), after replacing p? in
7.2 by ¥7 (i =15 25 .y #), the corresponding system of
congruences has also a solution, which deduces the same result.

Remark The solution of Example 3 shows a basic function of the
Chinese remainder theorem. It reduces the problem of “finding out »
consccutive integers possessing some property” into “finding out »
pairwise relatively prime numbers possessing some property”, and the
latter is easier to solve.

The following Example 4 contains some interesting skills.

Example 4  For any given positive integer n, there are n
comsecutive positive integers such that all such numbers are not power
numbers (for the definition of power number, refer to Example 9 in
Chapter 592

Proof We will prove that there exist n consecutive positive
integers, among them every number has at least one prime divisor
which occurs just once in its unique prime factorization, thus it is not a
power number. For this we choose n different Primes p, , =ty
P»» and consider the system of congruences

-3

IE—i+p=(mOdp‘2),i:1’ 2:.-.9?’!. (73)

Sioce pt, pi, ..., p? are pairwise relatively prime, by the Chinese
remainder theorem the above system of congruences possesses a

[
t
i
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positive integral solution. Since x +i = p; (mod p2?) for 1 < i i
p: | (= +1). But by (7.3) we know p¥{(z +1), i.e., p, occurs just
once in the unique prime factorization of = +1, thus none of x + 1,
z+2,..., x+nisa power number.

Example 5 For a given positive integer n, let f (n) be the
minimal positive integer such that >, " k is divisible by n. Prove that
f(n) =2n —11f and only if n is a power of 2.

Proof The first part of the problem is quite easy. Ifn = 2”‘ s then
on the one hand,

2n-1

% —dnasdn

e ekl . DT
5 (2 1) =2

k=1

is divisible by 27 = n. On the other hand, if » < 2n —2, then
Ek rér + rért1)

is not divisible by 27 since one of » andr +1 is odd and the other one is
not great than (2n —2) +1 = 2™ —1, thus is not divisible by 27",
Combining these two parts, we know f(2™) =21 — 1.

Now assume that » is not a power of 2, i.e., n =2"a, wherea >
1is odd. We want to show that there exists a positive integer » << 2n — 1,
such that 2™ | r anda | (r +1), thus

E’E r(r+1)

is divisible by 2"a = n, so f{n) < 2n —1.

To prove the above assertion we consider
=0 (mod 2*'), z =—1 (mod a). (7.4)

Since ged (27", a) = 1, by the Chinese remainder theorem there
is a solution z, for the system of congruences (7.4) and all its solutions
are x = xy (mod 2™'a), i.e., = = z, (mod 2n). Hence we can
determine a solution r satisfying (7.4) and 0 <r <C 2n. Furthermore,
by the second congruence in (7.4) we know r # 2n. However from the
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first congruence we get r % 2n — 1. So r < 2n — 1. This shows the }
existence of r meeting the requirement.

Example 6 Let n and & be given integers, n > 0and k(n —1) be :
even. Prove that there are x and y such that ged(z, n) = ged(y, n) =1 i e
andz +vy =% (mod n). D | ‘

Proof We first show that when n is a power of prime p° the

conclusion is true. Actually, we can prove that there are = and y such
that pfzy andz +y = k as follows:

If p = 2 then the condition shows that % is even. In this case we : |
can takex =1, andy =%k —1; if p > 2 then one of pairsz =1, y = '
bk —lorx =2, y =k —2meets the requirement.

In general case, let n = pf1p%2---p2 be the unique standard
factorization of n. We have proved above that for every p; there are : !
integers x; and y; such that p;{x;y; and z: +y; =% G =1, 2, ...,

r). But by the Chinese remainder theorem the following system

of congruences ,
z =z(mod p3t)G = 1,2, ... 1) (7.5) ! .
has a sclution z, and the system of congruences i
y=y;{mod p%)G =1,2, ..., r) (7.6)

has a solution y. Now it is not difficult to verify that solutions = and y ,
meet the requirements of the problem for p:fz:y:, so p;tzy G =1, =
2, ..., 1), thus gcd(zy, n) = 1. By (7.5) and (7.6), we have :

z4y =z 4y =k (mod p8)G =1, 2, ..., 7).

Sox +y =#k (modn). i P
Remark The proof of Example 6 shows the basic role of the t

Chinese remainder theorem: we can reduce a problem about an E P

arbitrary positive integer n to a problem about the power of prime n, * !
i

and the latter one is usually easier to solve.
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Exercises
; a1
7.1 Letn be an odd prime, andn =———. Prove that 2" =1

(mod n).

7.2 Let = be a given positive integer. Prove that there are n
consecutive positive integers such that each of them is not a power of a
prime.

7.3 Let m and n be positive integers possessing the following

property: the equation

gcd(11k —1, m) = ged(112 —1, n)

holds for all positive integers k. Prove thatm = 11"n for some integer r.




rder and its Application

Letn > 1 and a be integers with ged (a, #n) = 1. Then there 18
r (1 <7 <n —1)such thata” =1 (mod n).

In fact, since n numbers a®, a', ..., " are all relatively prime
to n, after modulo n they have at most » — 1 different remainders, so
among them there are two numbers which are congruent modulo 7.
That is, there are 0 <<i <j <n —1, such thata’ =a’ (mod n), 'and
a’ * =1 (mod n). Thusr =; —1i meets the requirement.

The minimal positive integer r satisfyinga” = 1 (mod n) is called
the order of a modulo n. By the discussion above we know 1 <r <n —
L. The following (1) shows that the order of @ modulo » possesses a
very sharp property.

(1) Assume that ged (a, n) = 1 and the order of @ modulo = is r.
If there is a positive integer N such thata™ =1 (mod n), then »|N.

This is true, because we can assume N =rg +% (0 <<k <r), then

1=a" =) +a* =a*(mod n).

As0 <<k <r, by the above equation and the definition of » we have
E =0. Thusr|N.

By property (1) together with the FEuler’s theorem ((2) in
Chapter 7) we have:

(2) Assume ged (a, n) =1, then the order of a modulo » divides
@{n). In particular, if n is a prime p, then the order of ¢ modulo p
divides p —1.

In many problems finding out the order of a modulo n is often
very important. By using the order of a modulo n and property (1),

from indexes of some powers of integers we can obtain some
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divisibility relations, this is a basic method deducing divisibility
relations. On the other hand, determination of the order of « modulo
n is usually very difficult. We can do it only in some special cases. For
a specific a and n, by calculating the remainders of a, a2, ... modulo
n one by one we can determine the order of a modulo n. If we apply
(2), this procedure can be simplified slightly.

Order is a powerful tool in solving many problems. We give some
examples below.

Example 1 Assumen >1, andn | (2" +1), show that 3|n.

"Proof Clearly n is odd. Let p be the minimum prime divisor of
n. We will prove p = 3, which implies 3|n.

Let r be the order of 2 modulo p. By 2" =—1 (mod n) we have

2% =1 (mod p). (8.:1)
As p =3, by Fermat’s little theorem, we get
2°7' =1 (mod p). (8.2)

(8.1), (8.2) and the properties of order imply » |{2n and~ | (» —1), so
rlged (2n, p —1). It is easy to prove ged (2n, p — 1) = 2. This is
because from 217 one has 2|ged (2n, p —1), and 224ged (2n, p —1).
On the other hand, if there is an odd prime g such that ¢ |ged (2n, p —1),
theng | (» —1) and g|n, but the former shows g < p, this contradicts
the fact that p is the minimal prime divisor of #. So ged (2n, p —1) =2,
thus» = 2, and p = 3. :

The key idea of Example 1 is to consider (the minimum) prime
divisor p of n, and modulo p to deduce the result.

Example 2 Letn > 1. Provenf(2® —1).

Proof One We prove it by contradiction. Suppose that there is
n > 1 such thatn | (2" —1). For any prime divisor p of n, one has p = 3.
Assume that the order of 2 modulo p is r, then clearly » > 1. From
2" =1 (mod n) one has

2» =1 (mod p). (8.3)

By Fermat’s little theorem we get
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2* =1 (mold p). (8. 4)

Hence 7|7 andr | (» —1). Thus rlged (n, p —1). In particular, we
take p being the minimum prime divisor of n, then ged (n, p=1) =
1. This is because if there is a prime g such that ¢ |ged (n, p —1), then
g | (p —1) and ¢ |n. But the former means g < p, this contradicts the
choice of p. Hence ged (n, p —1) =1 Sor =1, a contradiction.

Remark 1 The key of this solution is the consideration of prime
divisors of 7. Asn > 1 is equivalent to » having a prime divisor, we
proceed from 2" = 1 (mod ») to congruence (8.3), although the
assumption is weakened, it still depictsn > 1,

Congruence modulo a prime number usually gives more suitable
properties {or results). For the purpose of this problem, the benefit of
doing this is to obtain congruence (8.4). Example 1 and the following
Example 3 are such cases.

Remark 2 Congruences (8.3) and (8.4) hold for any prime
divisor p of n. Hence at the beginning of Proof One we consider P as
a parameter to be determined, and deduce r | ged(p — 1, n), and
supply the chance of choosing p to produce a contradiction.

Keeping the parameters unchanged provides us with more choices
and maintain some flexibility. This is a basic method.

Remark 3 By Example 10 in Chapter 5 there are infinitely many
n satisfying the condition in Example 1, # is exactly the opposite
conclusion of Example 2. Readers can check carefully what difference
in proof deduces such different conclusions.

Remark 4 By the way, if we do not use orders we can also solve
Example 2. Let p be the minimum prime divisor of n, thus ged ( =1,
n) = 1. But according to (8.3) and (8.4), one has p | ged(2? —1,
2" —1), so Example 4 in Chapter 2 deduces P | (2= t" 1) hence
211, we get a contradiction.

Example 1 can be proved similarly.

Proof Two This solution does not need to consider prime divisors
of n. If there isn > 1 such that » | ged(2" —1), then n is odd. Let r be

'J £ | . . 2 | | .
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the order of 2 modulo n. Then by 2* = 1 (mod n), we have r|{n. But
2" =1 (mod n) . Therefore 2" =1 (mod », i.&. P

o faretgy (8.5)

Since the order r satisfies 1 <<r < n, and clearly » # 1 (otherwise we
deducen = 1), thus 1 <7 < n. By (8.5) we repeat the above
argument, and get infinitely many integers»,(: =1, 2, . .. J such that
ro | 2% —1andn > v > rz >+ > 1, which is impossible.

In this proof we can use a simpler expression: taken > 1 to be the
minimum integer such that» | (2* —1), the above argument produces
an integer r, such thatr | (2" —1) and 1 <r <n, and it contradicts the
choice of n.

Remark The method in Proof Two is the so-called infinitely
decreasing method. Its basic idea is: by contradiction assume that
there is a solution, we try to create another positive integer soiutlon,
and the new solution is “strictly smaller” than the original ome, i.e.,
strictly decreasing. If the above process can be done an infinite
number of times, then as strictly decreasing positive integer sequence
has only finite terms, it leads to a contradiction.

Example 3 Letn > 1, 2{n. Then for any integer 7, nf(m*" + 1),

Proof Assume that there is an odd » great than 1 such that = |

(m"™ 4-1), then ged (m, n) =1. Let P be any prime divisor of n, 7 is
the order of m modulo p (note that pim). Alsoletn —1 = 2%, & =1,
2{z¢, then we have

m?* =1 (mod ) (8. 6)

Thusm? ™ =1 (mod D)5 s00r | 2y,

The key point is to prove 2" | r. Suppose that the result is not
true. Then bym” =1 (mod p) one gets m?* =1 (mod ), together
with (8.6) we have p = 2, a contradiction. Therefore 2**! |

Now ged (p, m) = 1impliesm*™ =1 (mod p), thusr | (=1
02 | (p—1),i.e., p =1 (mod2*" ). As p is any prime divisor of

n, we can factorize n and getn =1 (mod 2*" ), i.e., 2*" | (m —1).
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- But this contradicts the above assumption 2* || (n — 1),
Example 4 et » be an odd prime. Prove that any positiye

2% +1

divisor of o

is congruent to 1 modulo 4p.

2p
Proof It is sufficient to prove that any prime divisor of Z : _:“11
satisfies ¢ =1 (mod 4p). First, we note that

p* +1
pr+1

— po» —pe D 4, —p? +1. ‘ 8.7

Hence ¢ # p. Let » be the order of ? modulo g. As

2% =—1 (mod )5 ? (8.8)

50 p** =1 (mod q), therefore rl4p. Thus» =1, 2, 4, 05 2p or 4p.
Ifr =1, 2, p, 2p, then p? =1 (mod ), together with (8.8) we
have g = 2. This is impossible. If r = 4, then g is a prime, which
impliesg | (p* —1) orq | (% + 1). The former is proved to be
impossible. If the latter holds, i.e. » p* =—1 (mod g). We consider
(8.7) modulo g. Of course the left side modulo g is 0. But the right
side = (—1)*71 —(—1)?2 oo —(—1) 41 =7 (mod ¢). Hence p =
¢» which is impossible. Thusr % 4. Hence r = 4p. :
Finally, as ged(p, ¢) = 1, by Fermat’s little theorem p¢' = 1
(med ¢). Thusr | (¢ —1),i.e.,4p | (g —1), henceg =1 (mod 4p).
In the above solution, the key point is to determine the order of P
modulo ¢. The following Example 5 is an interesting result about
orders, its proof has also a certain degree of universality.
Example 5 (1) Let p be an odd prime, g =1, and pfa. Assume
that » is the order of a modulo P and k, satisfies p% || (a7 — 1),
Denote the order of a modulo p* by :, then

Tohr

{?’y ifk":-].,...,kn,
o RS C

(2) Assume that a is 0odd, a = 1 (mod 4), a # 1, k, satisfies
2% |l (a —1). Denote the order of a modulo 2* by 4;, then

_.E
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J L SR
SR S ey
(3) Assume that @ is 0dd, @ =—1 (mod 4), a %— 1, &, satisfies

2% || (a +1). Denote the order of a modulo 2* by Z;, then
i ifk =1,
Iy =<2, MEE=rs = h il
vl BORE L 8 T
Proof (1) When1 <k <k, a* =1 (mod p*) impliesa™ =1
(mod »). According to the definition of » we have r|r,. On the other
hand, a” = 1 (mod p*) implies " = 1 (mod p*). Thus from the
definition of 7, we get r; |». Thus =i e = SR
Now let 2 > k,. At first, we prove that for every: =0, 1,
p'* || (@® —1), that is,
a® =1+ ph*u,, ged(u;, p) = 1. (8.9)
It can be proved by induction. Wheni — 0, according to the definition
of k, we have that (8.9) is true. Assume that (8.9) is true for A )
then by the binomial theorem,

a? " = (1 +phtiyJr = 14 phtity, o (i)ﬁz‘“”"u? +oe

=14 R (uy + (};)P*G*“lu? +0)

— st
where pfu;.., (note that we need the condition p = 3 ), thus 7(8. 9 s
true for all: = 0.
By using (8.9), fork =k, we will prover, = rp*o by induction.
When % = £, the above argument has proved the result. If & > &,
assume that r,-; = rp* % i5 true. On one hand, in (8.9) we take

i =k —kythena? ™ =1 (mod p*), thusr; | »p*™. On the other
hand, froma™ =1 (mod p*) we haveq™ =1 (mod p*™ ), s0riy | 74,
thus ry =rp*™ orrp**™. But in (8.9) puti =k —By —1, weapet
# | (mod p*), sor, = rpt,

7 "Pi ~kp—1
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(2) When1 <k <k, the result is clearly true. When k >%,, note
thata =1 (mod 4), a # 1 implies &y, = 2. According to the above
information by induction about: =0, 1, . .. , it 1s easy to prove

a? =1+42%%y,, 2tu,. (8.10)
By (8.10), with the same proof as (1) it is not difficult to get

Ly =28 % (b = ko).

(3) Bya =—1(mod 4), it is easy to prove that the result is true
whenk =1, 2, ..., &y +1. By induction, fori =1, 2, ..., we have
a? =1+2kh%y,, 2y, (8.11)

By the same proof as (1) we can getl, = 2% (fork >k, +1).

Remark 1 Leta and» >0 be two given pairwise relatively prime
integers, and not +1. Assume thatn = 22pir---pit (p; are odd primes,
a 20 ) is the standard factorization of 7. If the order of a modulo 2¢
is determined, then by Example 5 one can determine the order of a
modulo p$# and the order of ¢ modulo 2° , too. Furthermore,
according to the result in Exercise 8.2, the order of a modulo » can be
obtained. Hence, in order to determine the order of a modulo an
integer n, eventually it is reduced to determining the order of o
modulo an odd prime p. Generally speaking, the latter is a very
difficult problem, but for small ¢ and b we can calculate it by hand.

Remark 2 Assume that p is an odd prime, a %41, pla, r is the
order of @ modulo p, and k, satisfies p* || (a" — 1), Then from the
proof of (8.9) in Example 5, for any positive integer m relatively
prime to p we have

a™ =14 phtiy!, gedln . p) —dpdi =014 .,

According to this result and notice that p and r must be relatively
prime, we can easily get the result below.
(1) Assume that a positive integer n satisfies r | n and p' I n, then

ot
T

=
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Morcover, assume that a is odd, a #+1, &, satisfies 2% || (a® — 1),
m is any odd positive number, then
8T R 2Ryl B ) a

Thus we find that the following holds.

a1

a® =
The above forms of (8.9), (8.10) and (8.11) in Example 5

sometimes are more convenient to use.

(2) Let n be a positive integer, 2! || n. If{ >1, then 2"‘]

Remark 3 Let p be an odd prime, @ and & integers, p1{ab, then
there is a positive integer r, such that

a” =b"(mod p). (8.12)

This is because there is &, such that bb, =1 (mod p), and also there is
a positive integer r satisfying (ab,)” = 1 (mod p), which deduces
(8.12). Moreover, it is easy to see that the minimun positive integer r
such that (8.12) holds is equal to the order of ab, modulo 2. Hence,. if
a positive integer n satisfiesa” = 6" (mod p), then r|n.

(1) and (2) in Remark 2 has the following generalization. Its
proof is similar.

(1) Assumea #=+b4, and = is a positive integer. If | n, p* || n,

an _bﬂ
thﬁnpl i a’ 76’"
(2) Assume that a and 6 are odd numbers, a #+4, n is a positive
a® _bn
integer, 2' | n. If{ > 1, then 2/ = e

- Example 6 Suppose that a and » are integers, none of them
equals +1, and ged(a, n) = 1. Prove that there are at most finitely
many % such that n* | (a* —1).

Proof Asn =1, n has prime divisors. Firstly we assume that »
has an odd prime divisor p, then pfa. Let » be the order of a modulo
p. Since a ¥+ 1, there is a positive integer k, such that p* || (a” —1).

If there are infinitely many % such that n* | (a* —1), so there are

infinitely many £ > k,, such that
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a* =1 (mod p*). (8.13)

But according to Example 5, the order of ¢ modulo p*isrp* ™, Hence
by (8.13) we have rp*™ |k, thusk > rp*™ >=3*", and the number
of such £ is clearly finite, a contradiction.

If n does not have odd prime divisors, then n is a power of 2.
Firstly note that if odd & satisfies n* | (a* —1), then

a* —1 =la—D@*" "+ +a+1) (8.14)

Is divisible by 2*. But the second divisor in (8. 14) is the sum of an odd
number of odd integers, s02* | (¢« —1). Asaq = 1, there is at most g
finite number of such 4.

Assume that there are infinitely many even numbers £ = 2/ such
thatn* [ (a* — 1), then

(a®*)' =1 (mod 2%). (8.15)

Define ko satisfying 2% || (a® ~ 1), then £, > 3. By Example 5, when
[ > ko the order of a> modulo 2* jg 2! % Hence if L >k,, by (8.15) we
have 2™ | [, thus/ > 2. But there are at most finite number of such

!/, a contradiction!

Exercises

8.1 Prove that for any Fermat’s number F, = 2% +1 (B =0) its
divisors=1 (mod 2%*!"),

8.2 (1) Let m and n be relatively prime positive integers, m,
n > 1, a an integer relatively prime to 7n. Assume that dy, d; are the
orders of @ modulo m and »n, respectively, then the order of a modulo
mn is [dy, d .

(2) Find the order of 3 modulo 10°.

8.3 Prove that for any integer 2 > 0, there is a positive integer
n, such that2* | (37 +5).
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Congruence is a powerful tool in solving indeterminate equations.

We usually apply congruence to prove that indeterminate equations
have no integer solutions, or deduce some necessary conditions the
solutions satisfy. These proofs are often versatile. They occur
frequently in mathematical competition. In this chapter we will choose
some examples in this area to show the applications of congruence.
Example 1 Ifn =4 (mod 9), prove that the determinate equation

2ty 42 =g €9.1)
has no integer solutions (x, y, z).
Proof If equation (9.1) has integer solutions, then (9.1) modulo

9 has also integer solutions. It is well-known that a perfect cube
modulo 9 is congruent to one of 0, 1, — 1, Hence

I’S +}’3 +23 EG; 15 2! 3, 69 7, 8 (mod 9).

But o — 4 (mod 9), so (9:1) modulo 9 has no solution. This
contradicts the above argument. Therefore, equation (9. 1) has no
integer solutions.

In dealing with indeterminate equations using congruence method,
the key point is to choose a suitable modulo. Example 1 is a relatively
easy problem as modulo 9 has occurred in the problem. In comparison,
the following Example 2 is somewhat difficult.

Example 2 Find all nonnegative integer solutions (z1, ..., xy)
(the order of integers in the solutions is immaterial) of the following

equation

zi +xi +--- +xi, = 1599,
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Solution Applying modulo 16 we can prove that the equatiop has
no integer solutions, because the power of an integer modulo 1g is
congruent to 0 or 1, all possible values of =+ +z3 +++ 4+ x4, modulo 16
are0, 1, 2, ..., 14, not 15. But 1599 = 15 (mod 16). Thus the
equation has no such solutions. The result is proved.

The reason of choosing 16 is that there are 14 terms on the left
side of the equation and choosing the number of residue classes =151
relatively hopeful to get a contradiction (here we use congruence
method to prove that there is no integer solutions for the equation) .
However 15 = 3 X 5, and according to Chinese remainder theorem
modulo 15 is equivalent to modulo 3 and modulo 5, it does not work.

Example 3 Prove that the following numbers cannot be expressed
In terms of the sum of the cubes of some consecutive integers.

(1) 385%;

(2) 366Y,

Proof By using

P42 4o 3 = (%ﬂi)z

7

it is easy to obtain that the sum of cubes of some consecutive integers
can be expressed in the form

(m_ﬁn_ﬂz)z e (M)z (9.2)

2 2
It can be divided into two cases: the integers are all positive, and there
are both positive and negative integers. We have to prove that for
integers in (1) or (2), there do not exist m and n such that it can be
expressed in the form (9. 2). Although using decomposition method,
in principle, the problem can be solved, however, it is considerably
hard. Using congruence is quite straightforward.
At first, according to integer = modulo 9 we can classify them and

2
test them one by one. We easily have that (-’LI;_F_Q) modulo 9 is

congruent to 0 or —1. Hence the numbers of the form (9.1) modulo 9
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are 0, 1, —1. On the other hand, by Euler’s theorem
385% =385 x (385")¢ =385 =7 (mod %),

proving the above statement.

However, as 366" =0 (mod 9), for the number 366", modulo 9
does not work.

Now we choose modulo 7. It is easy to verify that for integer z,

2
(x——ﬁ—("c; D) modulo 7 is congruent to 0, 1, —1. Thus the numbers of
the form (9.2) modulo 7 can omly be 0, +1, +2, But
3667 =27 =2 %24 =4 (mod 7).

Hence, our assertion is true.

For equations having integer solutions it is not easy to solve them
by congruence. We need to use congruence together with other
methods (such as estimation, factorization, etc.). Let us give some
examples.

Example 4 Find all powers of 2, such that after deleting its first
digit (in decimal system expression) the new number is also a power of 2.

Solution The problem is to find al] positive integer solutions (»,

k, m, a) of the equation

oF =28 Lo X107, (9.33
wherea =1, 2, ..., 9 Rewrite formula (9.3) as '
2 = (9. 4)

First, we provem =1. Since ifm =1, then the right side of (9. 4)
1s divisible by 52, s05% | (2" — 1) Moreover, it is easy to find that
the order of 2 modulo 5 is 20 (note that the order divides ¢ (25) = 20,
and 2'° =—1 (mod 25)) . Hence 20 divides » —k, thus 2 —1 divides the
left side of (9.4). But2® — 1 = (2°)* — 1 has divisor 25 — 1 = 31,
However, 31 does not divide the right side of (9.3), a contradiction!

Thereforem = 1.
Now we need only to check among 2-digit numbers which power

—“!

——
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of 2 is a required solution, and these are only 32 and 64.
Example 5 Find all positive integersx >1, y >landz > 1, such
that

1421 4 eee 4 21 = 55 - (9.5

Solution The key step is to prove that z > 8 implies z = 2, Since
the left side of (9.5) is divisible by 3, 3|y*, hence 3|y. Thus the right
side of (9.5) is divisible by 3*. On the other hand,

L} +21 4=~ L8] = 46233

Is divisible by 32, but is not divisible by 3°. However, whenn =9, we
have 3°|n1. So whenz =8, the left side of (9.5) is divisible by 32 but
not by 3°. Thus so does the tight sideof (9.5); 1o = =3

Furthermore, we prove that when x = 8 equation (9. 5) has no
solutions. When = > 8 the left side of (9.5) =11 +£21 131 44| —3
(mod 5). We have proved that in this case z = 2, 50 the right side of
(9.5) y* =0, +1 (mod 5), thus the above statement holds.

Finally, when z < 8, by checking it is easy to find that the
solution of (9.5) isz = Yy =3, 5 =9

In Example 4 and Example 5, by comparing indexes of powers of
some prime occurring in the two sides of an equation, we deduce the
results. This kind of method in congruence is called the method of
comparing the powers of prime. In the following Example 6 we apply
this method.

Example 6 Prove that the indeterminate equation

it d)= — iy (9. 6)

has no positive integer solutions.

Proof For the following proof, we first deduce some simple
conclusions from equation (9.6).

Clearly n > 1, and z is odd, otherwise, equation (9.6) modulo 4
will lead to a contradiction. Furthermore, 7 is 0dd, too, because if
2{n, thenz"isa square of an odd, so the right side of (9. 6) =1 +2 —
3 (mod 4), but the left side=1 (mod 4), it is impossible. Thus 2{7.
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Assume that x +1 = 2°z,, where z, is odd, a > 0 (as z is odd).
Rewrite equation (9.6) as follows i

(ot 022 =] = ] €9: 7y
The left side of (9.7) has the divisor
(x+2)F =1 =Qn 12 =1 =220 (2 ),
so 2% divides the left side of (9.7). But on the other hand, asn —1 >0
is even, by the binomial theorem we have
z" +1 = 2(2x) — D" +1 =x « 1 +1 = 2% (mod 2°*),
Since 2{z,, the right of (9.7) z* +1 2 0(mod 2°*'), a contradiction!
Example 7 Prove that all positive integer solutions of the equation
8150 = 1.7* (9. 8)
arer =y =z = 2, =
Proof First, by congruence we prove that y and z are all even.
Equation (9.8) modulo 4 is

(=1)="1 (mod4),
thus v is even. Equation (9.8) modulo 16 is
& (=10t =1 Craad 167

that is, 8% =0 (mod 16), sox =2,
Note that 17°=1, 15’=1 (mod 32), thus if = is odd, then from
2|y and = = 2 together with (9.8) we have

1 =17 (mod 32),

it is impossible. Therefore z is even.
Lety =2y, z = 2z, then Equation (9.8) can be factorized into

{75 —15%) €175 H15%1) =8, 9.9

It is easy to see that the greatest common divisor of the two divisors of
the left side of (9.9) is 2, but the right side of (9.9) is a power of 2,
so we get
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A7 e —=A5% =5 (9.10)
17 S e e )

Equation (9.10) modulo 32 deduces that z; and y, must be odg
(otherwise, the left side of (9.10)=0, — 14, 16 (mod J250 Adding
(9.10) and (9.11), we have

LjEn =il 9952 (0.4

If x >3, then the right side of (9.12)=1 (mod 32). But as 2, is odd,
the left side=17 (mod 32), it is impossible. Thus = — 2. By this
together with (9.12) we havez, =1,i.e.,z =2 Thusy, =1,i.e.,
¥y =2, Thereforex =y =z =2,

This solution is a classic example of using congruence together
with factorization. Using congruence we can deduce that y and z are
all even. This is a preparation for the following factorization of
equations. :

The following Example 8 is more difficult. Here we introduce two
solutions. In the first one we base on congruence together with
factorization, which is quite simple. In the second one we use the
method of comparing the powers of prime. Although it is trouble-
some, it is typical.

Example 8 Prove that the indeterminate equation
o1 g =1, 2; ys 2.1 (9. 13)

has only one positive infeger solutionz =2, y =2, andz = 3,
Proof One First, equation (9.13) modulo = + 1 gets

—(—1)*=1(mod = +1),
thus = is odd. Factorize (9.13) into
(x+1)7 =2 — 272 4o 2 11,

which implies that x is even. Since if x is odd, then the right side of
the above equation is the sum of = terms of odd numbers, which is

odd. But the left side is even, a contradiction. Similarly, rewrite
(9.13) as

B B B B BB B i i e e e
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(2 +1P7 +(z+ 172 b (2 +1) +1 = 27,

thus y is even, too.
Now let z = 2z; and y = 2y,, then (9.13) can be factorized into

(lz +D* =Dz +1) +1) = z=. 9. 14)

As z is even, the greatest common divisor of (z +1)* — 1 and (o ol
1) +1is 2, and clearly x | (z +1)* —1. By this together with (9.14)

we deduce
o+ 10— =07, el el

Hence 2°7' > 2z%, s0x, =1, thatis, x = 2. Thusy =2andz = 3.
Proof Two We divide the proof into two steps. At first, we want
to prove that x does not have odd prime divisors. We prove it by
- contradiction. Assume that there is an odd prime, such that p |z, says
x = p°x;, wherea =1 and ptx,. By the binomial theorem, we can
rewrite (9.13) as :

Ty F 2 (f)zi e (9::5)
i=2

Thus z? | zy, i.e., =|y. Hence p|y. Lety = py,, ptv,, thenb =
a. We will deduce a contradiction by comparing the powers of p on
the two sides of (9.13). " ;
For2 <i <y, let p* ||, then in
&

(?})x‘ =l(y ﬁl):c{ =ﬁf‘yl (?:11)(P1I1)€=

T 1

the power of p is atleastd =& +ai —c. Ifc =0, thend >a b if
¢ > 0. Therefor from p >3 we get p° > ¢ + 1. As p° | i, we have
P° i<z, Henee, 7 > ¢+l thus

d>b+a+cla—1) =a+b.

(J_J)I"(Zéiéy),
1

Therefore we always haved = a +& + 1, thus p=**!

and
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()

i=2 \1

Fh+1
J »*

Also p°** || zy, hence the power of p on the left side of (9. 15) isa + b, R
On the other hand, as p* || =, p% llz*, i.e., the power of p on i
the right side of (9.15) is az. But from the original equation (9. 13
We getz >y, also p° | v, s0y = p*, thus
az >ay 2ap® Z2ab+1) >4 +5.
Hence the powers of ? on the two sides is not the same, this is
impossible. Thereforé in z there Is no odd prime divisor. That Is, x is
a power of 2.

Assume = = 2'(k >1). From the above proof we have z |y, thus
¥ is even, say y = 2y; . Equation (9.13) can be factorized into

€2 £ D8 — 1IC0F | {n Sl

Since the greatest common divisor of the two divisors on the left is 2,
but the right side is a power of 2, thus we must have

Q'+ —1 =3, T 1) 41 = k=1

Hence k = y, s Lthatiser =5 =3 e =

Exercises
9.1 Prove that the indeterminate equation

x® +3xy = i)

has no integer solution.
9.2 Find all positive integers m and 7, such that | 12~ —5* | = 7.
9.3 Find all primes D> such that 22 + 37 is 3 k-th power of an
integer (where 2 >2).
9.4 Prove that the indeterminate equation

5

has a unique positive integer solution z = y =1,
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Selected Lectures on
sompetition Problems (11)
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e

Some problems of number theory in mathematical competition are
difficult to handle. Solving them needs comprehensive and flexible use
of knowledge and methods in the above chapters. In this chapter we
introduce some of such problems.

Example 1 Assume that » is a positive integer. Prove that the equation

nl =u* —u?

has at most a finite number of positive integer solutions (n, =, y).
Proof We can assume » > 1. The statement is equivalent to
proving that the equation

al =afilat —1) (10. 1)

has at most a finite number of positive integer solutions (n, r, 5).
First, we note that for a given n, equation (10.1) has at most a
finite number of solutions (r, s). In the following we prove that when
n is sufficiently large, equation (10.1) has no solution, thus proving
the above conclusion. ‘
Fix a prime p with p{u. We can assume that (10.1) has solution
n > p (otherwise nothing has to be proved), and p= || n!. Then

a =
L

: [ﬁ];[ﬂmm, (10.2)

1

where a is a (positive) constant depending only on p.

Assume that the order of « modulo p is d and p* || («? —1), then
from Example 5 in Chapter 8, if @ > ko the order of » modulo p° is
dp "¢ . Asu and p are all fixed numbers, thus %, and d are all fixed

numbers. If for sufficiently large n (10. 1) has solutions, then by
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(10.2) we haveq > £,. But (10.1) implies
wl =il (mOd pa)7

thus by the properties of orders we getdp=™ | s . In particular, 5 >
dp™h . Hence,

B e S s (10. 3)

But when 7 is sufficiently large, it is easy to see that the right side of
(10.3) =n"—1. So (10.3) impliesu* —1 >n!, and e (u® —1) =l
Hence when n is sufficiently large (10. 1) has no positive integer
solutions (r, s). This completes the proof.

Remark 1 The proof of the second half is similar to the proof of
Example 6 in Chapter 8. However, the problem there is more direct,
and the problem here is more difficult. The key. of this problem is
calculating (10. 1) by modulo ?°, and deducing that s is very largé by
using properties of order modulo £°. Thus (10. 1) does not hold when
n is sufficiently large. The purpose we choose o such that p= || n1 is to
make o is very large (as 7 is very large) (cf. equation (10.2)).

Remark 2 If one has some knowledge of orders (involving
mfinite quantity), then after the result s =dp°™ is deduced, one can
casily find that (10.1) is not true. Put b = 4% . then the inequality
b*™ —1>n" —1 discussed above becomes

P >nlogyn.

When n is very large the left side is an exponential function of n (with
base greater than 1), therefore larger than the right side which is a
product of a linear function and a logarithmic function. (If setting
P =1 Eg(Where:d > 1), and by using the binomial theorem one
expands (1 + )" , then the above statement is clearly true. )
2" +1
7 2
Solution It is easy to guess thatn = 3 is a unique solution. Let us
prove it.

Example 2 Find all integers n > 1, such that

are integers.

We divide the proof into several steps. The first step is to consider

I TR

B I I T T TR T T
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the minimal prime divisor # of 7, and fromn | (2" +1) we can deduce
2 =3 (cf. Example 1 in Chapter 8). Hence we can assume

n=3c,m=>=1, 3fc. (10. 4

In the second step, we provem = 1. Byn? | (2* + 1) we have
= ol 3*), thus

2297 — | (mod 32m), (10. 5)

If m = 2, then according to Example 5 in Chapter 8 we get that the
order of 2 modulo 3% is 2x3*1. S0 (10.5) implies 2 X 3™ | 2 x 37¢,
i.e., 3"|c. Thus3|c Casm >2), which contradicts 3f¢ in (10.4).
Som =1.

In the third step, we prove ¢ = 1 in (10. 4). This can be done
similarly as the first step, i.e., Example 1 in Chapter 8.

If ¢ > 1, let q be the least prime divisor of ¢, then

2% =—1 (med g), (10. 6)

Let r be the order of 2 modulo g, by (10.6) we have 26 =1 (mod g).
Further we also have 2¢ =1 (mod ¢), so 7 | 6¢ and r | (g —1), thus
r|ged(6c, g —1). According to the choice of g we have ged(g — 1,
¢) =1,s07[6. Also, 2" =1 (mod q) implies ¢ = 3 or 7. It is easy to
see that ¢ = 3 is impossible, and by (10.6), g = 7 is impossible, too.
Thusc =1, andn = 3.

Note that if we prove firstc =11in (10.4), then it would not work
well. Here the order of proof is very important. Besides, the identity
m = 1in the second step can also be proved by comparing the powers
of primes as follows.

It follows from the binomial theorem that

2" +1=03-1"+1 =3n+2(—1)k(2)3k. (10. 7>

k=2

Let3* | k!. Then

2 =§[_f—i]<f]

L2 |

e
5

=1
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Thus by

(:)3k _nin —1)';(;1 —k +'1)3k

we have that (Z )3" is divisible by 3%, and g satisfies (note thatk >2)

Bk o —a R +m—% Seom 1,

sof = m +2. Thus the sum on the right side of (10.7) is divisible by
32, If m >1, then2m =m +2, so it follows from 3% | (2" +1) and
(10.7) that 3™ | 3n, i.e., 3™ |n, in contradiction with (10.4). Thus
o=l

In the following Example 3 we can also apply the method of
comparing the powers of prime.

Example 3 Prove that for each n > 1, the equation

n a1

o) TR Sl
nl n — 1)1

8

I e o
b H =0
has no rational roots.
Proof Assume that a is a rational root of the equation. Then

| | 1
a” *TH—T)_I‘IN e i +Fﬁ-a +nl =0. (10.8)

Thus a is a rational root of a polynomial with integer coefficients and
the leading coefficient 1. So a is an integer (cf. Exercise 2. 4).
Sincen >1, n has a prime divisor (this fundamental fact has been

!
used many times). Asn z—! (¢ =0,1,...,n—1), by (10.8) we have

» | a, thus the prime p divides a. Now compare the powers
containing p in each term on the left side of (10.8). Since the number
of p occurring in £ is

== =ik
ZE [p‘ 2 '

= =1

P*1E! (k =1). Assume that p” || n!, then it follows from p*|a* and

|
|

T B B B OB OB P e e
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) !
"1k ! that p %ak (k =1, 2, ... n). Thus (10.8) implies that

27" | al, in contradiction with the definition of r.
Remark By a more complicated method we can prove that the
polynomial with rational coefficients

n n—-1 2
dinm e

Is irreducible over the rational number field, that is, it cannot be
decomposed into a product of two non-constant polynomials with
rational coefficients. Example 3 is a special case of this conclusion:
the polynomial in question has no rational divisor of degree one.

In mathematical competition, some problems of number theory
involving polynomials occur frequently. Let us show some examples.

Example 4 Assume thatn > 1, z,, ..., Z, are n real numbers,
and their product is denoted by A. If A —x;arealloddfori =1, .., ,
n, prove that each x; is irrational.

Proof We prove it by contradiction. If there is ¢ such that z; is a
rational number, then as A —zx; is odd, A must be a rational number.
Writed —we — osld =1, o, w0 Than byx; -» 2, = A we have

(A —a)(A —a,) =A, (10. 93

Since a; are all (odd) integers, A satisfies an equation with integer
coefficients and the leading coefficient one. So the rational number A
is an integer. But on the other hand, whether A is odd or even, the
parities of the two sides of (10.9) are different. Thus (10.9) does not
hold, a contradiction! Hence, every x, is an irrational number.

Rational roots of a polynomial with integer coefficients and the
eading coefficient + 1 must be integers. This simple result has many
uses. Sometimes, we can use it to prove that a rational number is
actually an integer.

Example 5 Let a, b and ¢ be integers, and f(z) = z° +az? +
bz +c. Prove that there are infinitely many positive integers n, such

that f(n) is not a perfect square.
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Proof We prove that for any positive mteger n =1 (mod 4),
among the four numbers fn), fn+1), Fla+9y, fia g there ig
at least one number which is not a perfect square, wh
Prove the conclusion in the problem.

It is easy to get

ich in turn will

) =144 444, (mod 4),
fla+1) =25 40 (mod 4),

Tl =y, —b +c (mod 4),
F(n+3) =¢ (mod 4).

Eliminating a and ¢, we have

fln+1) — f(n +3) =26, f(n) — fln +2) =2 +2 (mod 4),
Hence, either f(n +1) —fn+3)
(mod 4). Since perfect squares
either one of f(n + 1) and f(n +3) is not a perfect square, or one of
F@) and f(n +2) is not a perfect square. Thus among f(n), f(n +1),
Fln +2); fla +3) there is at least one which is not a perfect square,

Example 6  Assume that ?2(z) is a polynomial with integer
coefficients, and for ay»n =1, pla) > n. Define Ly =
AL o E =

=2 (mod 4), or f{n) — f(n+2) =»

3

¥ Cn im=
) (n = 2). If for any positive integer N, in
the sequence {z,} (n = 1) there Is a term which is divisible by N,
prove that p(z) =z 41,

Proof We prove it in two Steps. At first, we will prove that for

any fixed m > 1, the sequence {z,} modulo

m — 11is a periodic
Sequence. Obviously, z,,

=di=imitmod - dy s 20z)is 4
polynomial with integer coefficients, for any integers « and v (» Fu), we
have (w —v) | (p(w) —p(v)), that is,

() = p(v) (mod u — ).

In the above equation take y T B 3 0SSy = 1y We BRE T = Cmod

Zm —1). Similarly, z,,., =Z31 Ty =z4; .., (mod z, —1) , thus {x, )

modulo z,, — 1 is g periodic sequence z,, ... r Tty A et

.I',,p];....

(B B B O O O O O R B
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In the second step, we will prove that
ol B (10.10)

From the hypothesis it follows that for N = z,, —1 there is z, such
that (z,, —1) | z.. From the above results we can assume 1 <<k <m — 1.
Moreover; plt,—1) > Lot 5y SO, —1 = =z,.,. Hence & must bem —1,
that is, (z, —1) | zn. Thus, .4 = z. — 1, which implies that
(10.10) holds.

In view of (10.10), p(xpn1) —1 = z,.., and m is any integer
greater than 1, which means that p(z) = z + 1 has infinitely many
different roots. So p (x) must be the polynomial z +1. This completes
the proof.

From an arithmetic property of a polynomial (with integer
coefficients) we deduce its algebraic properties, it is an interesting

topic of number theory. Example 6 is such an example, so is the

following Example 7.

Example 7 Suppose that f(z) is a quadratic real polynomial. If
for any positive integer n, f(n) is a square of an integer. Prove that f(z)
is a square of a one-degree polynomial with integer coefficients.

Proof This problem is not easy, but there are several completely
different solutions. Here we give a comparatively easy solution based
on limited knowledge of sequences.

Set f(x) = az® +bx +c, a, = f(n) (n = 1), then it is easy to

prove that

o fmy e
: Y e e

2an —a +b
Jan? +bn +¢ ++an? +(—2a +&)n +a —b +c

2a +b =

£ 2a a*bJrc
,\/a-%— +—+,\/ + =

Hence, when n — ©, ./a, — +/a.. has a limit, and the limit is
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7-‘1% = Ja. But we know that va, are all integers, {«/&T —
a a

Va1 )} (n 22) is a sequence of integers, hence its limit value va is ap

all terms Ma, =L -1 €qua]l
there is a fixed Positive integer £

Vil e =g tor alln >p +1.

Now assume that m is any Integer greater than £

equations forn = 4 +1 , .
that is,

-integer, and when »n Is sufficiently large

the limit ./, that is, » such that

» summing the above

"X T, We get o = /o +Gn =) g,

a, =(77’1'\/a_+'\/22?“-]€f'\/ﬂ‘)2.

Writee =z, and g = v'ay —k+a, then o, B are fixed integers ang
independent of 7 Thus from (10, 11) it follows that all integers s,
greater than £ are roots of the polynomial '

(10.11)

do not need much Pre-reguisite,
met them in former chapters. N,

oW we show more.
Example 8 Assume thatn > 1 and the sum of » positive integers is

ntegers we can choose some numbers,
such that their sum 1s 7, except for the given numbers satisfying one of
the following conditions.
(1) There is a number which is » + 1, and the others are L
(2) When 7 is odd, a]] numbers equal 2.
Proof Assume that the
BELS:, — g b +a(k =1
numbers

given numbers arc ( <ay Ka; < g,

»-+.sn—=1). Then among the following

O-,- (25 (s T SIJ...JSﬂ—i

;
:
E
L
5
E
=
L
-~
2
=
L
-
=
[
=
=
=
-
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there must be two numbers which are the same after modulo »n. We
discuss this by dividing it into four cases.
(1) Assume that there is S (1 <k <n—1), such that S: =0 (mod

n). In this case
1€S,§ -g\al + .- -?—a,,‘a;m \‘<__271_‘Iy (10 12)

kiel Sk ="M

(i) Suppose that there are S. and S, 0<i<j<n—1), satisfying
S; =S;(mod n), then from (10.12) we have 1<S5, -5, <2n—1, s0
S; —=8.= n,that is,

Gy F o fa, =g,

(1i1) Suppose that there is S, (1 < <n —1), such that S, =4, —
a,(modn). If £ =1, then a, =0 (mod n). Buta,, ..., a.-, are all
positive integers, soa; + - +a,; =n —1. Thus

@p =20 —(ay +- Fua) < 1 10437
Hencea, = n, in this case the result holds. If & > 1, then
a; + +ay +a, =0 (mod n).
However, the left side of the above equation is a positive integer less
thana, + - 4+4a, = 2n, so
@yt b fg. =y

(iv) Assume thata, —a, =0 (mod n). We have proved thata, <
n + 1 (see Equation (10.13)). The sum of n — 1 positive integers
Q1 ... @nisequal to2n —a, =7 —1 provideda, =n +1. Thus they
are all equal to 1. This is the case (1) ruled out in the problem.

Assume thata, <n, then0 <a, —a,; <<n —1, together with i
a; =0 (mod n) we deducea, = -+ = q, =a; =2, When =n is odd this
is the case (2) ruled out in the problem. If » is even, then the sum of

n 5
any - numbers a; is equal to n.

The proof of Example 8 can be summarized as follows. Since the
sum of all given numbers is 2n, we only need to prove that the sum of
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some (not all) numbers is a multiple of », then this sum is just n, ang
the latter is a problem we can deal with using congruence.

Example 9 Let » be a prime. For given p + 1 different positive
Integers, prove that we can choose one pair of numbers among them,
such that after the larger number is divided by the greatest common
divisor of the two numbers, the integer quotient is not less thap P +1.

Proof After the given p + 1 numbers are divided by the greatest
common divisor of them, obviously this does not affect the conclusion
of the problem. Thus we can assume that these p + 1 numbers are
relatively prime. In particular, among them there is a number which is
not divisible by p. Denote these P +1 numbers by

Tpx saas Tew Ty = P, o Zow-=Pleriy,
where z,, ..., z, are distinct and relatively prime to p (2 > 1), Tt
lpw are positive integers, LT
divisible by p.

Among p + 1 numbers

ey

- » Yp=1 AT€ positive integers and not

x“...,zk,ym,...,y‘m, (1014)

there must be two numbers which arc congruent modulo ». We discuss
this by dividing it into three cases.

(1) Among (10.14) there are at least three numbers which are the
same. In this case the statement can be proved easily. If y, =y, = Vo
then p', p, p% are distinct, where the greatest number is at least D

times of the least numbers, we can assume that P =p2 . pl, then e

and z, meet the requirement. If Yo =0 =l e k). we van

assume that/, > [,, then/, > 2, thus z. and z, meet the requirement.

(2) Among (10.14) there are two pairs of numbers, such that the
two numbers in each pair are the same. If Yi =9;, we havey, =y
Then when |/, —1; |=2or 2. =L |>2, by a similar discussion we get
the result. When |/, —7; | <1 and l1. =1, | <1, we can denote Ey
Z,y T, by a, ap, b, bp, respectively, anda << 4. In this case,

bp by
ged(a, bp) = a =2

- 1 BE i T
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so the integer =p +1,

28 B I
geda, bp)

If z; =v,, z; =3,(1 <i, j <k) , by the same argument we can
also get the result.

(3) Among (10. 14) there are just two numbers which are the
same, this is the case only wheny, =y, orz; =y, (1 <i <k). In this
case we can delete y, in (10. 14), then the rest of the » numbers are
distinct, but there are still two numbers which are the same modulo b
There are still three other possibilities:

(i> Lety, = y,(mod p). We can assume thaty, >y,. Ifl, >1,,
the result is obviously true. If [, <, , write ¥, =y, +n, thenn >0,
and p|n. Let ged(y,, y.) =d, then pid, thus ged( x,, x,) = phd,
we have (note that d|n, p|n, and pid)

L r Vs
= == 4 =
de/1+p.

ged(z., z,) d

Therefore, the larger one between z, and z, divides their greatest
common divisor, the quotient is at least p +1 .

(ii) Let x, = z,(mod p) (1 <r <s < k). This can be solved
similarly to (i).

(iil) Letz, =y,(mod p) (1 <r <k). If y, > z,, then the result
is clearly true. If y, <x,, letz. = y, +n, thenn >0, and p|n. Let
ged(z, , y,) =d, then pid. Thus ged(z, , z,) = ged(x, , phy,) =d,
therefore

xT Vs 7
e Rt
ged{z, s, d er =l

Hence, after the larger number between x, and z, is divided by their
- greatest common divisor, the quotient is not less than p +1 .

This completes the proof.

We note that if the p + 1 integers in Example 9 are replaced by p
integers, then the conclusion does not hold. For instance, clearly,
among the p numbers 1, 2, ..., p there do not exist two numbers

which meet the requirement.
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Example 10 Let S be a subset of (o Do s om0 aimel S| the
number of elements in S, such that | S | = (2~ —1)n +1. Prove that in
S there are m +1 distinct numbers ay, . .

19 P m)-
Proof Each positive integer a can be expressed in the form ki

where # 220, and £ is odd. We call £ the odd part of a, and if the odd
part of 2 is not larger than =, then n js called a go

-+ @m, Such thata,, | a; (2 =

od number. Qur
proof is based on the estimate of lower bound of the number of
numbers in S.

good

Suppose that in the interval [1, n] there are : odg numbers (ip

fact, ¢ equals [n ;1], but we do not need this result). Let % be one

such number, then the number of integers satisfying n << 2 <27, is

Just m . For this we note that if an integer © satisfying 27! ki R

then 2k, DFRE, | 2908 all required numbers, that is, i the

interval (n, 27n] there are m numbers such that their odd partis £, so
among them there are only m: good numbers. Hence in this interval

there are 2"n —n — gy non-good numbers. Thus in S the number of
good numbers =| S | — (27, — 5, —mt) =mr +1,

Assume thatk,, ..., %, are a]] odd numbers in [1, n], and there

are only z; numbers whose odd Partarek;(k =1, ..., ) ,» then from

the result in the last section it follows that the number of good
numbers in S is

st s e S i

Thus there isz; (1 <7 <z), such that z; >m +1, that is, there are at
least m + 1 integers in S whose odd parts are all £, , these numbers are

(from small to large) «,, @15 -..5 @m, which are the m + 1 required

numbers. This completes the proof.

Remark 1 Whenm = 1, we get a well-known result, the proof
here is a generalization of this (ordinary) result. There are other
solutions of this problem. For instance, by induction on m or .
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Interested readers can try it themselves.

Remark 2 The set S = (n +1, ..., 2™n} shows that if S in
Example 10 satisfies | S | = (2 — 1)n, then the conclusion is not
always true. This is so because if ags ..., a, meet the requirement,

thena,, = 27a,, hencea,, >2™(n +1), which is impossible.
Example 11 Let A be a set with » positive integers (n=2). Prove

that there is a subset B of A satisfying | B | > %, and x +y & B for

any z, y €B.

Proof We denote all numbers in A by a1, ..., a,. From
Exercise 3. 2 we know that there are infinitely many primes which
modulo 3 are — 1. Choose one such prime P >a, (1 <i<n). Assume
that p = 32 — 1. Let us consider the following pn numbers (with 2
rows and » columns)

{2 W0 Y e S
2&1, 2(11, sy 2(1";

(10.15)
pal, pﬂzg St e Pfln-

ASp > a;, ged(p, a;) = 1. Hence every column in (10. 15) is a
complete system modulo p (see (10) in Chapter 6), thus for every
7 (0 <j <p), there are in total » numbers in (10. 15) which modulo
p are 7. Therefore, there are kn numbers which modulo P are one of
k15, 98 =1,

Assume that in the i-th row in (10. 15) there are z, numbers
which modulo p are one of b, £ +1, ..., 2k —1. Then according to
the above argument we have

Ty s my = En,
So there is z;, such that

En. kn n
I‘/p 3k*1>3’

Le., thereis! (1 <l < p), such that the number of elements in lay,
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lazs ..., la, which modulo p are one of &, & +1, ..., 2k —1islarger

than —g— We put

B={a€cA |l modulopisoneofk,k-i—l,...,Zk—-]},

then B is a required set, because for any z, y €B
that the remainder of / (= +y)(=
2k —1, thenz +y & B.

This solution is provided by N. Alon, a famous Israe] mathematician.
It is very clever and you may enjoy it.

At the end of this chapter,
solved by construction method.

Example 12 Letn > 2. Prove that there exist » distinct positive
integers possessing the following properties.

» It is easy to obtain
[z +1y) modulo p is either>24 or <

we show two problems which can be

(1) These numbers are pairwise relatively prime;

(2) The sums of any £ (2 <
composite.

Proof Ifn =

< n) numbers among them are

2 the statement is obviously true. Suppose that there
have been 7 positive integers which meet the requirements. According
to this fact we will construct n + 1 required numbers.

As there are infinitely many primes, we can choose 2" — 1 distinct
primes:p; (1 <<i < 2" —1) which are all relatively prime with aaza,.
Denote by S; (1 <j <2" —1) the 2" —1 sums of £ numbers (1 <% <
n) chosen froma,, a,, ..

-+ @, where the sums are numbers a; (1 <
1 <<n) whenk = 1.
Since ged(p;, a, -- a,) =1, there exists b; such that @, ---

b; =1 (mod p;) (1 <i <2 —1). By the Chinese remainder theorem,
the system of CONEIuences

(7

has infinitely many solutions z of positive integers.
solutionzy > p. (1 <i < 2
(10.16), we obtain

Choose one
—1), multiply ;- a, on the two sides of

I
|
i
|
i
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@y - @axe +1 +8; =0 (mod p;), 1 <7 <2" —1. Lo 173

Seta,. =a, - a,x¢+1, then the n +1 numbers @15 ... s @ny Ay Meet
the requirements. This is because x, G S e Bot (1017
implies that a,., + S; has divisor pi» so for any i, a,;; + S, is a
composite number. By the construction of a,., it is relatively prime with
every a: (1 <7 < n), completing the inductive construction.

The key of the above solution is: if a,, ..., a, are given, we
want to choose one value of a parameter z, such that the number
a;**a,z +1 can be constructed to be a,+1. The main benefit
constructing such kind of numbers is that the conditions ged(an, a:) =1
(1 <7 < n) hold automatically.

Elements that met the requirements are usually not unique, we can
try to choose some elements with some special properties, that is the
elements satisfying some suitable sufficient conditions to meet part of
requirements in question. This kind of methods has many applications
in constructive proofs.

We can solve this problem by using the following constructive
method (more directly) : choosea, —i -n! +1, then ais ..., a, meet
the requirements. This is because:

At first, for i # j, we have ged(a;, a;) = 1. This is because if
ged(a:, a;) =d, thenja;, —ia; is a multiple of d, that is, d | (i —7
Butl <|:—; |<n,sod|n!, thus from d |a, it followsd = 1.

Moreover, the sum of any 2 (2 < % < n) numbers a; has a form
m -n! +k (m is some integer), this number has obviously a proper
divisor &, thus it is not prime.

Example 13  Find all positive integers, such that there exists a
positive integer n satisfying

F(T”Z)—) =z, (10. 18)
T\

where z(n) is the number of positive divisors of 7.
Solution By the formula of z(n) in (6), Chapter 3, r(n?) is
odd, therefore & satisfying (10.18) is odd. We will prove that every
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positive odd number £ meets the requirement. ’
Clearly, 2 = 1 meets the Tequirement. Fork > 1, by the formula !

of z(n) we obtain that the problem is equivalent to proving that there l e
exist positive integersa, 8, ..., ¥, such that :

G b OB T o - oy iy
B FEE e k. (10.19)
Now suppose that all odd numbers Jess
requirement. For the odd number £
wherel > 1

than %2 meet the
» WC can assume £ = 24y — 1,
» and m is an odd number, Since £ > 1, we havem <
by the assumption in induction, there exist o', g/,

@D e . oytep
TeEE 7 A i)

» SO
.+ 7', such that ;

Now we choose two integers to be determined o

; 1 and u 2'— D,
satisfying 2|z, and ‘

é & i
3z 4y 25 1 2 e :
PYSE sfime “m (0.2 |
§+] ‘2—’;4—1 . ;

Obvioﬁsly, if we can, find out & and v satisfying the above

requirement, then multipling (10.20) and (10. 21), we can get an

expression of £ in a form such as (10.19). Hence we have proved that
% meets the requirement,

ductively.

In fact, €10.21) can be rewritten as

. 3 |
~which completes the construction in-

2xF1

Z
=l

on

oe
m!

which implies that (note that 5 = 24y, =i}

SRR
e e

Henee, if we choose ¢ — I —1, thenu >

0, the corresponding z =

N BB R LB e e e e e e
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Exercises
10.1  Prove that for any integera >3, there exist infinitely many
Positive integers 7> such thatg" —1 jg divisible by n.

10.2  Suppose that Mis ..., m, are positive integers, satisfying
the following Properties '

n; | (282 =Dy, | (2% e ng [ (2m —1)
Prove thatn, = i n, =1,
10.3 Suppose that integers a and p satisfy a®p | (a3 +5%). Prove
thatg = ¢
10.4  Prove that the indeterminate equation =" +1 = ¥™'! has no
Positive integer solution (z, vy, n), where gedCxs n 1) = I, n >1,
10.5 Letq ands be positive rational numbers and q = 3, [f there

exist Infinitely many positive integers 7, such thata™ —3” are integers,
then a and & are integers.

10.6  Assume that n =4 is an Integer, and 21y ..., a, are
distinct positive integers less than 2n. Prove that we can choose certaip
members from these numbers, such that their sum is divisible by 2n.
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Appendix: Answers of Exercises

1.1 Among 1, 2, ..., n, the numbers &, 2k, ..., dk are
divisible by 2, where the positive integer d satisfies d¢ <<z and (d +

n _ n ; _|n n
1)k >n. Hence, 2 1<d <k , thatis, d [k :| So there are |:k ]

numbers which are divisible by 2 among the numbers considered.
1.2 Since numbers of mushrooms picked up by each child are the
same, the number of children » + 11 divides the number of mushrooms

n?2 49 —2 = +11)(xn —2) +20.

Hence, n + 11 divides 20. As» + 11 > 11, » must be 9. Therefore,
there are more girls than boys.
1.3 We know that

n—Tm) = (ayg —ag) + (10a; +a,) +++ +(ap X10* — (—1D*a,).

It is easy to see that fori =0, 1, ..., &k, a; X10° —(—1)‘a; is divisible
by 11 (depending on whether 7 is even or odd, we apply factorization
(5) or (6), respectively). Hence n — T (n) is divisible by 11. Thus the
divisibility condition for 11 is necessary and sufficient.

1.4 Letas,..., a, beintegers with the given properties, and A

their product. » divides é —a; for1 <7 <\n, hence divides

ai(‘%—ai)=A —a?.
So n divides the sum of these numbers
(A—a?) +++ A —a2) =nA — (@? +-+ +a2).

Thus »n divides a? + +** +a?2.
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Appendix : Answers of Exercises 95

1.5 Ifa, b, c are all divisible by ad —bc, then (ad —bc)? divides
ad and bc, and so divides ad — bc, which implies | ad — bc | = 1,
contradicting the given condition ad —&c > 1.

2.1 We have4(9n +4) —3(12n +5) = 1.

2.2 Letd =ged(2” —1, 2* +1). Then2” —1 =du, 2" +1 =dv,
where « and v are integers. It is easy to get (du +1)* = (dv — 1™, by
expanding the two sides (note that = is odd), we getdA +1 =dB —1
(A and B are integers) , hence d |2, that is, d =1 or 2. But obviously,
d must be 1.

2.3 Since ged(a, ) = 1, we have ged(a?, ) = 1. Hence ged(a® +
b%*, b) = 1. Similarly, ged(a® +b6%, a) = 1. Thus ged(a® +b7, ab) =1
(by using (6) of this chapter).

2.4 Let rational number g (with ged(p, ¢) = 1) be a root
of polynomial

f&x) =x" +a1x"! ++ +a,qx +a,
with integer coefficients. From f (§> = 0 it follows that

" Faip™q + o Faipgt Fa.gt = 0.
Since a1 p™'qs ... a,1pq"t, a,q" are all divisible by g, we have
gl|p". But ged(p, g) =1, hence gcd(g, p*) =1. Thusq ==+1, that is,
p

the rational number a is an integer.
2.5 According to (10) of Chapter 2, the given condition is

m+kdm _  (n+k)n
gedn +k, m) gedn +&, n)°

Since

gedm +k, m) = ged(m, k),
ged(n +£, n) =gedn, k),

from the above equation we have
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Gn +k)m _ (n+k)n
ged(m, k)  ged(n, k)’

(A. D

Suppose that ged(m, k) =d,. Thenm =m,d,, k = kid,, where
ged(my, k1) = 1. Next, supposec that ged(n, £) =d,. Thenn =n.d,,
k = k,d,, where ged(n,, k;) = 1. Thus equation (A. 1) becomes

(m1 +k1)m1d1 = (711 +k2)7’11d2-

Multiplying two sides of the above equation by k., and using k1d; =
k.d, (= k), we get

(m1 +k1)m1k2 = (n1 +k2)n1k1.

The left side of the above equation is a multiple of 2,. Thus &, divides
the right side, thatis, &, | 2,73, Butged(k,, n,) =1, soged(k,, n}) =1,
thus %, | k£,. Similarly, %, |k,. Therefore, &, = k,, i.e., ged(m, k) =
ged(n, k). Due to(A. 1), m +k)m = (n +k)n, thus we getm = n.

3.1 It is easy to verify that (n + D! +2, (w + D! +3, ...,
(n + 1)1 + (n +1) are n consecutive composite numbers.

3.2 We can prove it by a method similar to the method by which
Euclid proved that there are infinitely many primes. Assume that there
are only finitely many primes of the form 42 — 1, we set all of them to
be p15 ... pm. Consider the number N = 4p, --- p,, —1. Obviously,
N >1, and N has prime divisors. Moreover, a product of two primes
of the form 4% +1 is also a number of the form 4% +1. But N is of the
form 42 —1, so N must have prime divisor p of the form 4% —1. By the
above assumption, p is one of py, ..., p,. Hence N —4p, - p, is
divisible by p, namely p |1, a contradiction. Similarly we can prove
that there are infinitely many primes of the form 64 — 1.

3.3 Putm =9*(k =1, 3, ...), then

8™ +9m? = (2")° + (9k*)°.

It is easy to verify that it has a proper divisor 2" + 9&>.
3.4 Prove by contradiction. Suppose that there is a required set
of numbers a, b, ¢ and 4, such that ab + ¢d is a prime, say p.
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p —cd
b

Substitute a = into the given equation, we have

p(p —2cd +bc) = (B +c>)(B* +bd —d?).

Since p is a prime, p divides % +¢? or 6> +bd —d>.
If p | (% +¢?), then

0 <b®+c? <2ab <2(ab +cd) =2p
which yields 4> +c¢* = p, namely,
ab +cd = b* + 2.

Hence b | c(c —d). Clearly, gcd(b, ¢) =1 (asab +cd is a prime) , so
b | (c —d), contradicting0 <c¢ —d <c <b.

If p | (B> +bd —d*), then0 <b* +bd —d* <2(ab +cd) =2p
which yields &> +&d —d? = p, that is, ab +cd =b> +bd —d? =a® +
ac —c?ys0a | (¢c +d)c and b | (¢ +d)d. But gcd(ab, c¢d) =1, soc +
d is divisible by both a and 5. Since 0 <\c¢ +d <<2a, and0 <c¢ +d <
2b, thus¢c +d =a andc +d = b, a contradiction.

3.5 Seta —b =k, then the given equation can be rewritten as

E(c —b) =02 (A.2)

Set ged(k, & —c) =d. If d > 1, then d has a prime divisor p. From
the above equation we have p | 5%, so p |b. Combining with p | (b —¢)
and p |k we get p|c and p|a, contradicting ged(a, &, ¢) = 1. Hence
d = 1and (A.2) implies that £ and ¢ — & are all perfect squares.

4.1 Letx(x +1(x +2)(x +3) = y%, where z and y are
positive integers. Then

(x? 43z +1)2 —»* =1,

and it is easy to check that it is impossible.

4.2 Assume that integer n» can be expressed as the difference of
two squares of integers: n = z*> — y?, thatis, n = (x — y) (= + y).
Since £ +y and x —y have the same parity, = is either odd or divisible
by 4.
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Conversely, if » is odd, we can takez —y =landx +y = n,

namely = =n;1andy ="2_1. If 4|7, we can take z —y = 2 and
x+y =%,namelyx =%+1andy =%—1,thena¢2 —y* =n,

4.3 Eliminate x from the system of equations we have
8 —9x —9z +3x? +6xy +3y*> —x%y —xy* =0,
and rewrite it as
8 —3x(3—x) —3yB—x)+xzy(B—=x) +y*(G—=z) =0,

that is, 3 —x)(3z +3y —xy —y*) =8. So (3 —x) | 8, thus3 —x =
+1, +2, +4, +8. Hence x =—5, —1, 1, 2, 4, 5, 7, 11,
Substitute them into the original equations and check them one by
one, we can find all integer solutions (=, y, z) = (1, 1, 1), (-5, 4,
4), (4, =5, 4), (4, 4, —5).
5.1 By properties of combinatory numbers we have

<m+n)_m_|_n(m—|—n—1)_m+n<m—|—n—1>

m m m—1 m n

m+n m+tn—1 )
som( )= (m +n)( ) . Since gedGm, m +n) = ged(n,
m m —
m-+n—1
n) =1, m ( )
n

5.2 Letn =2+ (x+1) +--+(x +k&—1), where z is a positive
integer and £ == 2. That is,

Qz +k —1k =2n. (A.3)

If n is a power of 2, then 2 and 2x — 1 + % arc all powers of 2. But
2x —1is odd, so k2 = 1, contradicting the given condition.
Conversely, if » is not a power of 2, sayn =22t +1), m =1,
t >=1. Whent = 2", we can takek = 2", x =¢ +1 — 2", When
t <2', wecantakek =2t +1, x =2 —¢, then 2 and z are all

positive integers and £ = 2.
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5.3 When#n is even we can takea =2n andb =n. If n is odd, we
assume that p is the least odd prime which does not divide ». Then p —
1 has either no odd prime divisors (i.e., is a power of 2), or its odd
prime divisors all divide n. Hence a = pn and the number or different
prime divisors of & = (p — 1)n is equal to the number of different
prime divisors of n plus 1.

5.4 Rewrite the equation in the question as

xleyl =z (z—1D.

Takex = n, y = n! —1and = = n!, then infinitely many integer
solutions satisfying the condition follow.

5.5 We can construct it by induction. When n = 2 we can take
a1 =1, a, = 2. Suppose that we have a;, ..., a, satisfying the
requirement when n = £, put b, to be the least common multiple of
ais . apsa; —a; (1 <i, j <k,i#j), then the 2 + 1 numbers

b09 ai +boy vee s Ap +bo

meet the requirement.

6.1 Denote by S the sum stated in the question. We replace — 1
at any vertex by +1, then there are four numbers in S, saya, b, ¢ and
d whose signs are changed. Denote by S’ the sum of 14 changed
numbers. Sincea +& +c¢ +d =0 (mod 2), we have

S—S" =2(a+b+c+d) =0 (mod 4).

Repeat this process until all numbers at the vertices are +1. Thus S =
1+1+++1=14=2 (mod 4), s0S #0.

6.2 Positive integers N consisting of » —1 digits 1 and one digit 7
can be expressed as N = A, +6 X 10*, where 0 <k <n —1, A, is the
integer consisting of »n digits 1.

When 3|z, the sum of digits in A, is divisible by 3, so 3| A, and
3|N, but N > 3, thus in this case N is not a prime.

Now suppose 31z. Note that 10°=1 (mod 7), so we can classify n
by modulo 6 to discuss the values of A, modulo 7 (we do not need to
consider the casen =0, 3 (mod 6) ). It is easy to see, for! >0,
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Agu = % X (1087 —1) = % X (109 —1) X 10 +% X (10 — 1)

=1 (mod 7),
Ago =4, Agy =5, Ags =2 (mod 7).

On the other hand, 10°, 10*, 10*, 10° modulo 7 are congruent to 1, 2,
4, 5, respectively. Thus whenn > 6 according ton =1, 2, 4, 5 (mod
6), takek =0, 4, 5, 2, respectively, we have

N=A,+6x10* =A, —10* =0 (mod 7),

so N is not a prime. Hence n does not meet the requirement if n >5. When
n <5, it is easy to check that onlyn = 1, 2 meet the requirement.
6.3 Bya™ =1 (mod p) we havea™ =1 + pz. Hence

a™ =1 +px)? =1+p?x + (;)pzxz 4+ =1 (mod p?).
(A.4)

Further, a*! =1 (mod p?), s0a®P” =1 (mod p?), thusa”™ =
a™(mod p?). Combining with (A.4) we knowa™ =1 (mod p?).

6.4 We can assume m > 1. Denote by x, the remainder of x,
divided by m. Consider the ordered pairs of the numbers

<.’E19 i2>9 <.’Ez, £3>’...9 <i,,9 .’En+1>. (AS)

Since there are m?® different ordered pairs of the remainders
divided by m, there must be two pairs which are the same if we take
the left most m? + 1 pairs in sequence (A.5). Suppose {x,, x;1) is a
pair which is equal to some other pair {x;, z;+» and has the minimal
index ¢ (j < m?» + 1), we have to prove that : must be 1.
Otherwise, from

Zi-1 = Xivt — Xiy Tj1 = Tjn — Xj

it follows that x;,;, = x;, (mod m), 80 {x;1» Z;) = (Xj1s X;) »
contradicting the minimal property of ;. Thus: = 1. Now from {z;,
Zin? =Lx1, 22> =1, 1) it follows thatz; , =z;4 —z; =1—1=0
(mod m), namely, m | ;4 (1 <j —1<m?).
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7.1 By the condition we have
3(n —1) =427 + D@ —1). (A.6)

As the prime p > 3, by the Fermat’s little theorem we have p | (227" —1).
Combining with (A.6) we get2p | (n —1), thus 2% —1) | (2*! —1). By
the given condition we have n | (2% —1). Thereforen | 2! —1).

7.2 Since there are infinitely many primes, we can choose 2n
distinct primes p1, ... s p2.. Due to the Chinese Remainder Theorem,
a system of congruences

z=—k (mod pyp1pn)r 2 =1,2, ..., n,

has a positive integer solution. As for any . (1 <k <<n), x +#% has at
least two distinct prime divisors, it is not a power of a prime.

7.3 Assume thatm =11'u, n =11v, where i, j are nonnegative
integers, and u, v are positive integers not divisible by 11. We want to
prove that u = v, thusm = 117y, If u #* v, we can assume u > v.
Since ged(u, 11) = 1, by the Chinese Remainder Theorem, there
exists a positive integer x, such that

x=0(modu), £ =—1 (mod 11), A7)

that is, x = 11k —1 (% is some positive integer). From (A.7) it follows
that ged(11%2 —1, m) = ged(x, 11'u) = u, but ged(112 —1, n) = ged(x,
11v) < v <u, contradicting the condition ged(112 — 1, m) = ged(11% —
1, n), thusu = v.

8.1 We have to prove that any prime divisor p of F, satisfics
p =1 (mod 2¢"") . Clearly, p 2. Suppose that the order of 2 modulo
p isr, by p|F: we have

22 =—1 (mod p), (A.8)

s02?" =1 (mod p), hence r | 2!, Therefore r is a power of 2.
Assume thatr = 2/, where 0 <! <k +1. If { <k, then from2? =1
(mod p) it follows that 22 =1 (mod ). Combining with (A.8) we
get p = 2, this is impossible. Hence [ = £ + 1. Furthermore, 2™ =1
(mod p), thus7 | (»p —1), and 2" | (p — 1), namely, p =1 (mod
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2k+1 ).

8.2 (1) Letr be the order of a modulo mn. Bya” =1 (mod mn)
we geta” =1 (mod m) anda” =1 (mod n). Thusd; | r and d, | r,
hence [dis d,]|r. On the other hand, from a® =1 (mod m) and
a®> =1 (mod n) it follows that a'¥* %] =1 (mod m) and al%-> %] =1
(mod 7). Since gedGm, n) =1, a4 %! =1 (mod mn). Thus r|[d;,
d,]. Combining these results we have r = [d,, d,].

(2) By direct verification we obtain that the order of 3 modulo 2*
is 4. Also, we have the order of 3 modulo 5 is 4, so by (1) of Example
5, we get that the order of 3 modulo 5* is 4 X 5°. Hence from (1) of
this exercise we know the order of 3 modulo 10* is [4, 4 X 5° ] = 500.

8.3 We prove it by induction. When &2 = 1, 2, the result is
clearly true. Assume that for 2 >3 there exists n, such that2* | (3" +5),
write 3”0 = 24 —5, If u is even, then2*"! | (3" +5). In the following
we assume that « is odd.

The key of the proof is to note that for 2 = 3 we have

377 =1 424, v is odd.
(See (8.11) of Example 5 in Chapter 8.) Now we have
302 =3 037 = (=5 4+ 280 (1 +2%0)
=—5 4 (u —5v +2%uv) « 2%,
The number in the parentheses about is even, so 2*"' divides 3707 +

5. This completes the proof.
9.1 Rewrite the equation as

Qx +3y)? = 17y2 +4 X 122.

Apply modulo 17 and we have (2z +3y)? =12 (mod 17). But it is easy
to verify that a perfect square modulo 17 has only values 0, 1, 2, 4, 8,
9, 13, 15 and 16, not 12. Therefore, the original equation has no
integer solutions.

9.2 Applying modulo 4 we know that the equation

12m —5" =—7
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has no positive integer solutions. Clearly, the equation
12 —5" =7 (A.®

has solution m = »n = 1. In the following we prove that whenm >1 it
has no positive integer solutions. (A.9) modulo 3 we have — (—1)" =
1 (mod 3), so n is odd, and 5 =5 (mod 8). Since m = 2, we have
8 | 12, (A.9) modulo 8 we get —5 =7 (mod 8), which is impossible.
Thereforem =1, thusn = 1.

9.3 When p =2 or p =5 the condition is not satisfied. Assume
the prime p > 2 and p # 5. By the binomial theorem, we have

p

2 +30 =2 +(5—2)» =5¢ —(1

)5?*1 X 2 4 e +5( ? )2?*1
p—1

=5%u +5p X271,
where » is an integer.

So5 || (22 +3?), hence 2 + 3? is not a k-th power of an integer
& > 1.

9.4 Obviously, the equation has solution x = y = 1. The
equation modulo 4 we know that y must be odd. If y > 1, the equation
modulo 9 we have

5 =2 (mod 9). (A.10)

It is easy to find that for x = 1, 2, ..., 5° modulo 9 they are
periodically 5, 7, 8, 4, 2, 1. By (A.10) we know that = must have
the form 6% + 5. The equation modulo 7, it is easy to verify that for
odd y we have

3 =3, 5, 6 (mod 7).

When z = 6k +5, from the Fermat’s little theorem it follows that 5¢ =
1 (mod 7), so

57 =5%% =5 =3 (mod 7),

thus the two sides modulo 7 are not equal. Hence it has no solution when
y > 1. Thus it has only one positive integer solutiony =1, z = 1.
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10.1 Sincea >3, a —1 has a prime divisor p. By Fermat’s little
theorem, we have a? =a =1 (mod p). By induction, it is easy to
prove that alln = p*(¢ =1, 2, ...) meet the requirement. (We can
compare the problem with Example 2 in Chapter 8.)

10.2 The given condition can be rewritten as

2% =1 (modn.), 2% =1 (modn,), ..., 2" =1 (mod n,).
Let D=[n4, ..., n;]. From the above equation it follows that
22 =1 (modn;),i =1, ..., k.
Hence, 2° = 1 (mod D). Thus by Example 2 in Chapter 8 we have
D = 1. Thereforen, =n, =+ =n, =1,

10.3 Leta® +b° =ma®b, then (%)3 —m(%)2 +1 =0, namely,

a

b
with integer coefficients and the leading coefficient being 1

the rational number - is a root of the following polynomial equation

x> —mx? +1. (A.11D)

So % must be an integer. On the other hand, any integer root of

equation (A.11) must divide the constant term 1, thus it is + 1.

Further, a, b are positive integers, so % =1, thatis, a = b.

10.4 Obviously, y > 1. The original equation can be factorized into
(y =D " +y" e +y +1) =z", (A.12)

The key is to prove that y —1 and y* +y*™* +++- +y 41 are relatively
prime. If their greatest common divisor 4 > 1, then d has a prime
divisor p. By y =1 (mod p) we know y* =1 (mod p). Hence we have

y" _|_yn*1 +eoety+l1l=n+1 (mod;b),

thus p | (n +1). But from (A. 12) it follows that p | z", thus prime
p |z, contradicting ged(x, n +1) = 1. Henced = 1. Now it follows
from (A. 12) that there are positive integers a and &, such that
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y—1=a", y" +y" 1 4 +3y +1 =5, (A.13)

But y* <y" +y" "+ +y+1<(y+D", thatis, y" +y*" +-- +
y + 1 lies between two adjacent n-th powers. Thus it is not an »n-th

power of some integer, contradicting the proved result (A. 13).
10.5 ILeta = f, b = %, x, y and z positive integers, and
ged(x, y, 2) =1. Then the statementa® — 4" is an integer is equivalent to
x" = y"(mod z"). (A.14)

We have to prove that z = 1, from this we know that ¢ and & are
integers.

Let = >1, then = has prime divisors. If =z has an odd prime divisor
p» we denote by r the least positive integer such that z” = y” (mod p)
holds. By (A. 14) we have x* = y"(mod p), so r |n (see Remark 3 in
Example 5 of Chapter 8). Let p° [|» and p# || (z" —y”) (note that as
a #b, x # vy ). Then from (1) of Example 5 in Chapter 8 it follows
that p*™ | (z" —y"), but (A.14) implies that p" | (z" — y™), hence
p" <p**, son <a +pB. Moreover, p* <n, soa < log,n, thus

n < log,n +p,

which does not hold when 7 is sufficiently large (note that 8 is a fixed
number). Therefore (A. 14) does not hold for infinitely many values
of n, a contradiction.

If z has no odd prime divisor, then z is a power of 2. Combine
with (A. 12) and ged(x, y, 2) = 1 we know that x and y are odd

numbers. When 7 is odd, from
" —y" =(z —y) (@™t +z*%y + o Fayt +y71),

noting that the second divisor of the right side of the above equation is
odd, it follows that2” | (x* —y") implies 2" | (x —y) forx # y. Thus
there are only finitely many such n. When n is even, let 2° | (z* —
¥?), by (2) in Remark 3 of Example 5, Chapter 8, we know that if
2¢ | n, then 27" || (z* — y"). Combining with (A.12) we have
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n <a +s —1. Since ¢ < log,n, we have
n <logn +s —1,

which does not hold for sufficiently large even values of n, a
contradiction.

10.6 The result is easy to prove if every a; is not equal to =n.
Since 2n numbers

A1y Q23 eues Qno 20N — A1y 20 — A2y «vv s 21 — A,

are all positive integers and less than 2z, there must be two which are
the same, namely, there are : and j such thata; = 2n —aq;. Since: = j
implies that a; = n, contradicting the assumption, we have: #j, thus
a; +a; = 2n is divisible by 2x.

Now without loss of generality we assume a, = n. Consider n — 1
(=3) integers a;» azs ... a,1» among them there are two numbers

—1
whose difference is not divisible by n, since if all (n ) ) differences

1
of these numbers are divisible by »n, then (n ) >3 implies that there

are three numbers a; <a; <a; such thatz | (a; —a:;), n | (ar —a;),
thusa, —a; = (ax —a;) +(a; —a;) = 2n, which it impossible.

Without loss of generality we assume a; —a — 2 is not divisible by
n. Consider the following » numbers

A1s Azs a1 Taz, ay +a; tass ..., a; ta; ++ +a,.

(A.15)

If they are not congruent modulo » pairwise, then among them there is
one number which is divisible by n. If there are two numbers in (A.
15) which are congruent modulo n, then the difference of these two
numbers is divisible by n, which implies that there is a sum of some
numbers of a,, ..., a,. divisible by n (as a; — a, is not divisible by
n). Denote this sum by kn. If £ is cven, then the result holds. If % is
odd, add a, into the sum, we also get the result.



