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Introduction

Mathematical induction is an important method used to prove particular
math statements and is widely applicable in different branches of
mathematics, among which it is most frequently used in sequences.
This book is rewritten on the basis of the book Methods and
Techniques for Proving by Mathematical Induction, and is written with
an understanding that sequences and mathematical induction overlap
and share similar ideas in the realm of mathematics knowledge. Since
there are a lot of theses and books related to this topic already, the
author spent quite a lot of time reviewing and refining the contents in
order to avoid regurgitating information. For example, this book
refers to some of the most updated Math Olympiad problems from
different countries, places emphasis on the methods and techniques for
dealing with problems, and discusses the connotations and the essence
of mathematical induction in different contexts.

The author attempts to use some common characteristics of
sequences and mathematical induction to fundamentally connect Math
Olympiad problems to particular branches of mathematics. In doing
so, the author hopes to reveal the beauty and joy involved with math
exploration and at the same time, attempts to arouse readers’ interest
of learning math and invigorate their courage to challenge themselves

with difficult problems.
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Preface

Mathematical competitions are a special type of intelligence competition
among teenage students. Although many common intelligence competitions
are based on science knowledge, mathematical competitions hold the
longest history and are the most internationally recognized, and thus,
have the biggest impact. China first began to hold math competitions
in 1956. The most prestigious and well-known mathematicians from
China include Hua Luogeng, Su Buqing, and Jiang Zehan, all of
which actively participated in creating and organizing these initial
competitions. They were also influential in the publishing of a series of
math reading materials for young people and teenagers, which inspired
large numbers of young people to begin engaging in mathematical and
scientific research. China has participated in the International Math
Olympiad since 1986 and received first place awards on a number of
occasions. In 1990, China hosted the 31* International Math Olympiad
in Beijing, which spoke to China’s leading international position and
attracted the attention of scientists and educators from many other
countries worldwide.

China’s success in math competitions over the years has resulted in
increasing participation of young people in these competitions across
all regions, heightened interest and enthusiasm towards math learning
in students, greater facilitation of creative thinking abilities, and
improvements in studying habits and efficiency. In addition, they have
led to healthy competition strategies to be used in math teaching,
which aids in selecting those students with special math talents to
participate in the competitions. Those who stand out and achieve
success in math competitions prove to have a solid foundation in math,
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as well as strong science study strategies and skills, and many of the
students who are successful in these competitions go on to work in the
field of science. In the United States, some winners have gone on to
become famous, for example, J. W. Milnor, D. B. Mumford, D.
Quillen are all recipients of the Fields Award. In Poland, A. Schinzel,
the famous Number Theory expert, received awards in math competitions
when he was a student. In Hungary, the famous mathematicians L.
Fejér, M. Riesz, G. Szegd, A. Haar, T. Radé were all once winners
of math competitions. Hungary was the first country to organize these
competitions and as a result, many great mathematicians have come
from this region; the number is way beyond the normal ratio of the
number of mathematicians to the total population.

Through the implementation of mathematical competitions,
participating schools receive a valuable opportunity to strengthen ties
between one another and in doing so, exchange math teaching
experiences. From this point of view, math competitions become the
“catalyst” for math curriculum reforms and become a powerful
measure for cultivating excellent talents.

When organizing math competitions, attention should be
simultaneously placed on both popularizing the event and improving
performance. Popularizing the event is the main focus, as with
popularity comes more participation and a lasting, strong influence for
the competition, which is the aim of holding these competitions in the
first place.

Some may be tempted to become over-concerned with performance
instead, organizing and participating in these competitions with a very
strong utilitarian objective. These practices are incorrect and are
against the original intention of implementing math competitions. These
drawbacks have deep social implications and influence and need to be
overcome step by step. Math competitions must not be negated because
of such drawbacks.

I am very pleased with the publishing of this set of Mathematical
Olympiad Series. This sct of books in particular covers a large range of
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meticulous topics. Based on my own knowledge and experience, it is
rare to come across books of this nature. This set does not only explain
the common methods that appear in math competitions, but also
provides to-the-point analysis and solutions to the problems, most of
which is derived from the authors’ own research. This makes this set
of books very valuable in preparing for math competitions and can be
used as reference materials for students and teachers in primary,
middle and high schools.

The authors of this set of books are all teachers and researchers
involved in mathematical competitions; many of them are even lead
teachers or coaches for the China National Math Olympiad camp and
team. They have all contributed to the organization of math
competitions in China and in leading China’s students to winning
achievements and bringing honor to China in IMO. They all put forth
many efforts in order to make the publishing of this set of books
possible. The East China Normal University Publishing House
designed this set of books using their experience in publishing math
competition books, such as Math Olympiad Courses and Going Toward
IMO:; it is quite evident that they spent a lot of time and energy on it.
I am very grateful for the work that the authors and editors put in for
this set of books and I would like to conclude by offering my sincerest
wishes for a successful future for China in mathematical competitions.

Wang Yuan
Famous Mathematician. Member of the Chinese Academy of Sciences.
Former Chair of the Chinese Mathematical Society and Chinese
Mathematical Olympiad Committee.
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Notations

The set comprised of natural numbers 0, 1, 2, -+
The set comprised of positive integers 1, 2, *-*
The set of integers

The set of rational numbers

The set of real numbers

The set of complex numbers

The integer 4 is divisible by the integer a

The integer 4 is not divisible by the integer a

The maximum value

The minimum value

The greatest integer no bigger than the real number x,
i.e., the integer part of x

The smallest integer no less than the real number x

The decimal part of the real number x, i.e., {x} =x —[x]

To find the sum

To find the product

Congruent
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Knowledge and
Chapter ] Technique

1 The First Form of Mathematical Induction

Mathematical induction is a common proof technique used to prove a
given proposition P(n) involving a positive integer n. It is a direct
corollary of the following axiom of induction.

Axiom of induction Let S be a subset of the set of positive integers
N*, satisfying:

(H1esS;

(2) Ifn € S, thenn +1 € S.

Then S = N~.

Axiom of induction is one of the five axioms for positive integers
presented by Peano. The axiom laid the foundation for mathematical
induction.

The first form of mathematical induction is the most common
form, which is referred to in our high school textbooks.

The first form of mathematical induction ILet P () be a proposition (or
property) about (of) positive integer n. Suppose the following conditions
hold.

(1) P(n) is true whenn = 1;

(2) Tt can be inferred from the validity of P (n) that P(n +1) is true.

Then P(n) is true for alln € N*.

Proof, LetS = {n | n € N* and P(n) is true.}. Then S is a
subset of N* . Noting (1), we have 1 € S; noting (2), ifn € S, then
n +1 € S. Thus, by axiom of induction, we can deduce that S = N*,
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i.e., P(n) is true for alln € N*.

Explanation. In fact, the first form of mathematical induction is
equivalent to the axiom of induction. So, they are also named as the
principle of mathematical induction. The first form of mathematical
induction is called mathematical induction for short.

It is not hard for high school students to understand the implications
and validity of mathematical induction. However, utilizing mathematical
induction is no easy job.

Utilizing mathematical induction is composed of two steps.
Checking the validity of P(1) lays the foundation. Combining the
inductive hypothesis with relevant knowledge, we gain the recursion of
P(n + 1). These two steps complement each other in proving the
proposition and constitute the logical structure of the inductive proof.
Most importantly, it is necessary to make use of the inductive
hypothesis in inductive proof, which provides a criterion for the
validity of the proof.

Example 1. For anyn € N*, prove that

1 1 1 |
1><2+2><3+ +n(n'{-l) ! n+1 @

Proof. Whenn — 1, the left side of D — -, while the right side

of D =1 —1—1—1 = % Thus, @) holds forn = 1.
Now suppose that (D holds for n. Let’s consider the statement with

n +1.

1 1 __1
By ;e 7D =% i Wehave
1 1 1
%2 2x3 "t GIiDG D

e )

L.\)|»a

(-4
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Therefore Q) holds for » + 1.

In conclusion, by the principle of mathematical induction, we
prove that (D holds for all positive integer n.

Explanation. This proof is wrong in that the inductive hypothesis
is not made use of when we prove () holds for » + 1.

Here is the correct process:

Noting the inductive hypothesis, we have

N S S 1 1
2 T G E D T D+

1__

1
- (1*n1+1>+(n+1>1(n+2>
( n}0—1>+(n-10-17n}0-2)
1

:1_71 +2

Therefore (O holds for n + 1.

Actually @ is derived accurately. However, it is a direct proof for
(D without the technique of mathematical induction. This mistake is often
made by high school students, which must be corrected seriously.
Otherwise, it will be hard for students to establish an accurate thinking

structure of deduction.

Example 2. Letn € N”. Prove that after removing any square
from a 2" X 2" grid, the remaining part can be tiled with L-shaped

&l

I” tiles (no gaps and no overlaps).

Proof. Whenn =1, since a ” turns into a |” when

any square is removed from it. So the proposition holds forn = 1.
Now we assume that the proposition is true whenn = k. That is,
after removing any square from a 2* X 2* grid, the remaining part can

be tiled with “ ” tiles. Let’s consider the statement withn = & + 1.
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ok o As shown in Figure 1, when we divide the
2K X 2% orid into four 2% X 2* grids along the
k k
2 2 middle latitude and longitude, the removed
% square must fall in one of the 2¢ X 2* grids. So,
2 %, ot B
at first, we can put a “ I” tile in the
2% 2
Fisure 1 middle of the remaining part. Then let’s
igure

remove the four shaded squares, as shown in
Figure 1. Now one square is removed in cach

2% x 2% grid. Noting the inductive hypothesis, all of them can be tiled

with J” tiles. Along with the tile put in the middle, we get the

validity of the proposition aboutn = % +1.

Generalizing all above, the proposition is true for all positive
integers n.

Explanation, This example shows the common expression of the
proof technique of mathematical induction. The structure can certainly
vary according to one’s own style. However, it is necessary to achieve
a correct transition between the inductive hypothesis and conclusion,
which is the key step in proving a proposition with mathematical

induction.

Example 3. Let x, y be real numbers satisfying that = + y,
z? + %, x* + 3y and x* + y* are all integers. Prove that ™ + y” is an
integer for anyn € N*.

Proof, This problem calls for a varied form of the mathematical
induction: let P (n) be a proposition (or property) about (of) positive
integer n. If

(1) P(n) is true whenn = 1 and 2;

(2) If can be inferred from the validity of P(n) and P (n +1) that
P(n +2) is true.

Then P(n) is true for alln € N*.
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Actually, this change only adjusted the step size in the process of
induction. This kind of cases will occur frequently in later discussions.

Let’s return to the problem. Since x + y and x* + y? are both
integers, the proposition is true when»n = 1 and 2.

Suppose that the proposition is true for » and n + 1. That is, =" +
y" and """ + y™'" are both integers. Let’s consider the statement with
n +2. Now

I"+2 +yn+2 :(x+y)(xn+l +yn+1)_xy(xn +yn)'

So, in order to prove x™** + y™* € Z, with the help of the
inductive hypothesis and the condition that x + y € Z, we need only
prove that xy € Z.

Noting that x +y, x> +y> € Z, we have

2zy = (x +y)? —(2? +y?) € Z.

Ifxy ¢ Z, letxy = %, where m is odd. Since x? +y?*, 2* +y* €
Z, we can infer that

2123/2 :(IZ +y2)2*(14 +y4) GZ

2 2
Therefore 2 X (%) = % € Z. However, m is odd. There is a

contradiction. So xy € Z and, thus, the proposition is true for n + 2.

In conclusion, " +y* € Zfor alln € N* .

Example 4. Letd € <0, g) and n be a positive integer greater

than 1. Prove that

(sirll”(9~l><co1s"0“1)>2nvz%ﬂ . @

Proof. Whenn = 2, the left and right sides of (D are equal. So

the proposition is true whenn = 2.

Assume that the proposition is true for n(== 2). Then
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(;n']’rﬁ 41) (coslﬂﬁ _1>

l s ot n+1
S cos g (1 =sin""'@) (1 —cos™ §)
— 1 S | _ n+1
ST e a 6(1 sin™™@ —cos™'g) +1
_ 1 ( 1 Acosﬁfsinﬁ) 1
sin fBcos @ \sin"fcos"d  sin"d  cos™f
1 1 1 1 —cos@ 1 —sinf
=L [(=== 1 -1 -
sin fcos @ [ <sm”0 ) (cos”@ ) + sin"@ + cos™@ 1 ] +1
1 [ 2 N/(l—cos@)(l—sinﬁ)}
>———— (2 —23n +1
“ sin@cos 8 % 227 +2 sin"@cos*d ’ ®

where @ is deduced from the inductive hypothesis and the AM-GM

inequality.
Note that sin fcos § = %sin 20 < % and that
(A —cos@® —sinf) _ < 1 )"‘2 . 1
sin"fcos™d sin fcos (1 +sind) (1 +cos @)’
in which

(1 +sin@)(1+cosf) =1+sinf +cosf + sinfcos @

2
=1 b4 1

- %Q 1) <%(ﬁ 1)

(we have made use of the property thatt = sing + cos§ =2 sin(@ +

) e a.vzl).

Hence

A —cos®d—sind) o 27 5 5
sin"fcos™g J2 +1

Therefore it can be deduced from @ that
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(ﬁ 71)<cos}‘“0 A1>

=20 (2 —25t ) +2(28 =27 )]+ 1

t nt
=202 —2T )+ =2 2T g

So the proposition is true forn + 1.

In conclusion, the proposition is true for allz € N* (n = 2).

Explanation. The examples above refer to knowledge in several
branches ranging from algebra, number theory to combination and

demonstrate the diverse applications of mathematical induction.

Example 5. Sequence {a, ) is defined as follows:
a; =1, a, =a, tagzgy, n =2, 3, .

Prove that there are infinitely many terms in the sequence that are
multiples of 7.

Proof, Calculating directly by the recurrence formula, we can
get that

a, :1,a2=2,a3:3,a4:5,a5:7-

Now we suppose that a, (n = 5) is a multiple of 7. Let’s find a
subscript m > n satisfying 7 | a,,.

Since a, =0(mod 7), we havea,, = as- +a, =a,(mod7) and
Qo1 = Aoy +a, =a2,(mod 7). SOam =as, =ars (mod7). Letr be
the remainder when a,,—, is divided by 7. If » = 0, it suffices to take

m =2n —1; if r # 0, let’s consider the following 7 numbers:
Aan—39 Aan—2 °°°y A4ni3s. @
Note that

Qa2 — Aan3 +a2,,71 = A4n—3 +r(m0d 7)7
Agp-1 — A4p—2 +a2,,71 = A 4p—2 +r(mod 7) = A4n—3 +27’(m0d 7),
Aan = Qa1 T A2y = Qi1 T7 = Aupz T3r,5 =2,

Qarts = Quntz T Aoept = Qaniz T7 = a4, 3 +6r(mod7).
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Therefore ay,—s, asm—as ***» as4s constitutes a complete system of
residues of modulo 7. So, there exists anm € {4n — 3, 4n — 2,
4n + 3} satisfying thata,, = 0(mod 7).

In this way, starting from as and combining with the deduction
above, we proved that there exist infinitely many terms in the

sequence that are multiples of 7.

Example 6. (1) For any positive integer n( == 2), prove that

there exist » different positive integersa,, *+, a, , satisfying
(ai _aj) I (Cl,' —l—a]-),

forany1 <7 <j <n.

(2) Is there an infinite set {a,, a», **-} of positive integers satisfying
(a; —a;) | (a; +a;) for any: # j?

Proof. (1) Whenn = 2, it suffices to take 1 and 2.

Suppose that the proposition is true for n. That is, there exist
positive integers a; <<a, <-'+ <a,, satisfying (a; —a;) | (a; +a,), for
any 1 <X7 <j <<n. Now we consider the following » 4+ 1 numbers.

A,A+a1,A+a2, "’7A+an. @

Where A =q,!'anda,! =1 X2 X3 X+ Xa,.

Take two numbers x <<y from @. xr =A, y =A+a;, 1 <i <
n, theny —x =a, andx +y = 2A +a,;. Combining witha; <a,, we
havea; | A. So(y —x) | (y + ) ifx =A +a,» y =A +a;, 1 <
i <j <n,theny—x =a; —a;» vy +x =2A +(a, +a;). By inductive
hypothesis that (a; —a;) | (a; +a,), noting a; —a; < a,, we have
(a; —a;) | A. Therefore (y —z) | (y +x). Thus, the proposition is
true forn + 1.

In conclusion, for any n € N*, n = 2, there exist n positive
integers satisfying the conditions.

(2) If there exist infinitely many positive integers a; << a, <C
satisfying (a; —a;) | (a; +a;) forany 1 <: <j, then for any; > 1,

we have (a; —a,) | (a; +a1). So(a; —a,) | 2a,. However, sincea, <
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a, <+, we infer that 2a; is divisible by infinitely many positive
integers, which is a contradiction. Thus, there can’t be infinitely
many positive integers satisfying the conditions.

Explanation. What mathematical induction proves is that for any
n € N*, P(n) is true. That is to say, it deals with propositions about
any limited positive integer n rather than P (). Here we demonstrate
partly the essential difference between finiteness and infinity by the
comparison of (1) and (2) in the example.

We can certainly deal with some results concerning infinity by
mathematical induction, such as what we have done to Example 5.
Comparing the structure of the recursion in Example 5 with the one in
Example 6, we can find the essential difference between them. The

former is compatible with the previous result, while the latter isn’t.

2 The Second Form of Mathematical Induction

The second form of mathematical induction Let P(n) be a proposition
(or property) about (of) positive integer n. Suppose the following
conditions hold.

(1) P(n) is true whenn = 1;

(2) If P(k) is true for all positive integers % less than », we can
infer that P(n) is true.

Then P(n) is true for alln € N*.

Proof. Consider proposition Q(n): “ for all1 <%, <n, £ € N",
P (%) is true.” It can be deduced from the validity of Q(n) that P (n) is
true.

Whenn =1, by (1), we have that Q(n) is true.

Now we suppose that Q(n — 1) (n = 2) holds. That is, P(k) is
true for all 1 <<k <<n — 1. Then by (2), we have P(n) is true. Thus,
forall1 <k <n, £ € N*, P(k) is true and therefore Q(n) is true.

Hence by the first form of mathematical induction, we can deduce
that for alln € N*, Q(n) is true and furthermore, P (n) is true. Thus,
we have proved the validity of the second form of mathematical induction.
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The second form of mathematical induction is a corollary of the
first form. When putting forward the inductive hypothesis, we
suppose that P(1),-:-, P(n —1) are true. Then we prove that P (n) is
true under these conditions. This is where the second form differs
from the first form, and this difference may sometimes be very handy

in proving a proposition.

Example 1. The sequence of real numbers a,, a,, - satisfying

thata.; <a; +a; foralli, j € N*. For anyn € N*, prove that

a,
ar +Z 4G+ 42 >, ©
Proof. Whenn =1, it is obvious that the proposition is true.

Now we suppose (D holds for all positive integers less than n. That
is, for1 <<k <n —1, we have

a1+2+ +k a.

Letb, =a, +2 > 2 4. + s k=1, 2, >+, n —1. By the hypothesis,

n—1 n—1
we have > b, = >, a,, equivalently,
k=1

k=1

n—1

— 2 g =D Sa..

_ n
(n —Da, + > p— 2

n—1
Adding Za « to both sides, we have
k=1

n—1

T e D ZZak

Hence

n—1
nla +2 4o 4 82) 20, 42300 @
k=1

It can be deduced from the condition that
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ar ta, Zays ay Ta,ns =Za,, = a, +ta1 =a,.

n—1

Thus, 22 a, = (n —1a,. Then by @, we deduce that (D holds

k=1
for n.

Therefore for anyn € N*, the inequality (D holds.

Example 2. The sequence of positive integers ¢;, ¢», -+ satisfies
the following condition. For any positive integers m, n, if 1 <m <

E ¢;» there exist positive integersa;, a», ***» a, satisfying that

i=1

n
Ci
m = Li

i—1 Qi

Then for any given: € N*, what is the maximal ¢;?

Proof. Let’s prove that the maximal ¢, is 2 and the maximal ¢, is
4 X372, wheni =2,

For this purpose, we need first prove thatc, <<2andc¢, <4 X372,
when: =2,

In fact, if ¢; >1, letting (m, n) = (¢; —1, 1), we have that there

exists ana; € N” satisfying thatc;, —1 = 1 Then

ai
9 1
a1—C1_1 1+C1_1.
a is an integer only whenc¢;, = 2. Soc¢; << 2.
Now we suppose that (D holds for all: =1, 2, -+, 2 —1(k =2).
Let (m, n) = (cx» k). Then there exist a,, ***, a, € N” satisfying

k—1

cr = 2—1 .- -i-;—k. This calls for a, =2, otherwise E YL — 0 which is
1 & =1 Qi

k—1
contrary to that a; and ¢; are positive integers. Thus, ¢, << % + E Cis
i=1

k*
¢;. Hence
i=1

equivalently, ¢, << 2

1

Cpo K2(2 44 +4 X3 4 o0 +4 X3F3) =4 X372,
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Therefore by the second form of mathematical induction, we can
deduce that @O holds.
Whenc, =2, ¢; =4 X372(i = 2), let’s prove that the sequence

{c;} has the property in the problem. @
Let’s induct onn. Whenn =1, m <c¢, =2. Som =1or 2. If
m =1, it suffices to leta, = 2. If m = 2, it suffices to leta, = 1.

Now we suppose the sequence {c,} has the property given in the
problem for 1, 2, «=-, n — 1. Let’s consider the situation for n. Then

1<<m < Zci.
i=1
Itm =1, it suffices to leta, =nc,» i =1, 2, ***, n;
n—1
f2<m <£21 +1=(>)c;)+1, leta, =c, and apply the inductive
i=1

n

hypothesis tom — 2 — 1 —1. Then we can deduce that @) is true;

2%

If %c,, +1 <m < ¢,, it suffices to let a, = 2 and apply the

inductive hypothesis tom — %";

Ife, <m< 2 ¢;» it suffices to leta, = 1 and apply the inductive

i=1

hypothesis tom —c,.

Hence @ is true.

Generalizing all above, when ¢ == 2, the maximal ¢; is 2 and the
maximal ¢; is 4 X 3772,

Explanation, Comparing the two examples, we can find that
there are two ideas when solving problems by the second form of
mathematical induction. One is handling the problem as a whole, just
as adding the » — 1 inequalities in the inductive hypothesis in Example
1. Another is including the situation for n in some situation for 1,
2, -, n — 1, which has been demonstrated in the latter part of
Example 2.

Example 3. p(x) is a real polynomial of degree » and « is a real
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number no less than 3. Prove that there is at least one number among

the following n + 2 ones that is no less than 1.
‘ a' —‘P(()) ” | a' _P(1) ’, R | an+1 *p(n +1) |.

Proof. Induct on the degree n of p(x).

Whenn =0, p(x) is a constant polynomial. Let p(x) = c¢. From
the inequality that | 1 —c [+]a —c | =] a —1 | =2, it can be deduced
that max{| 1 —c |, | @ —c¢ |} = 1. Thus, the proposition is true when
n = 0.

Suppose that the proposition is true for all polynomials with

degree less than n. Now we consider the polynomial p (x) of degree n.

Let f(x) =—=[p(z +1) —p(x)]. Then the degree of () is

less than n. By the inductive hypothesis, we have that there exists
m €{0, 1, 2, «-, n} satisfying that | a™ — f(m) | =1, i.e.,

ar ~;llfl[p<m +1) —p(m)]| = 1.

Therefore
la™ —pm +1) +p(m) —a™ | =a —1=2.

Hence max{| a™' —p(Gm +1) |, |a™ —p(m) |} = 1. Then there exists
r € {0, 1, 2, ===, n + 1} satisfying that | a” — p(+) | = 1. Thus, the
proposition is true for n.

Generalizing all above, the proposition is true for any polynomial
p(x) of degree n.

Explanation. We often make use of the second form of mathematical
induction when inducting on the degree of a polynomial. The degree
of the difference between two nth degree polynomial may not ben —1,
however, it must be less than n. We can avoid this kind of discussion

by applying the second form of mathematical induction.

Example 4.  Prove that any convex n-gon can be overlapped by a
triangle spanned by three of its sides or a parallelogram spanned by
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four of its sides.

Proof. Let’s induct on n.

When n = 3, the case is trivial. Whenn =4, if
the quadrilateral is a parallelogram, the proposition
is true. If it is not a parallelogram, there is a pair of
its opposite sides that is not parallel. Extend the
two sides. They intersect. Along with one of the
rest two sides, they constitute a triangle which Figure 2
overlaps the quadrilateral (see Figure 2).

Y Now we suppose that the proposition is true

for any convex m-gon. Here m < n and n = 5.

Take an arbitrary side AB of the convex n-gon M,

4 D There are at leastn —3 =5 —3 = 2 sides except AB

and its two adjacent sides. One of the two sides

C  must be unparallel to AB (because there is at most

one side parallel to AB). Let the side be CD.

Figure 3 Extend BA and CD (without loss of generality, we

can suppose the polygon is shown in Figure 3).

They intersect atU., Now we substitute the broken line BUC for broken

line AD, side BA and side CD which are overlapped by ~/BUC. Then

we get a convex polygon M, which overlaps M. The number of sides of

M, is less than n. By inductive hypothesis, we can deduce that the
proposition is true for n.

Generalizing all above, the proposition is true.

Explanation. Mathematical induction is also widely applied in
plane geometry. The proposition in the example, in fact, can be
strengthened: if the convex n-gon is not a parallelogram, then it can
be overlapped by a triangle spanned by three of its sides.

Example 5. Leta;,, ass ***» a, be the first row of an inverted
triangle wherea; € (0, 1}, ¢ =1, 2, ==, n. by, by, **=, b, are the
second row of the inverted triangle satisfying that if a, = axy, then
by =0; ifa, #apn, thend, =1, k=1, 2, -=-, n —1. The remaining
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n —2 rows of the inverted triangle are similarly defined. Now, what is
the maximal number of 1s in the inverted triangle?

Proof. Let f, be the maximal number of 1s in the inverted
triangle. It is easy to see that fy = 1, f, = 2, f3 = 4. The
examples are

We can start with the number of Os in the first line and get the
results above. However, it becomes hard to begin from the first line
when n grows bigger. When trying to deal with the cases wheren =5,

6, we can find many 1s in the following table.

tr 101101 10

One feature in the table above is that each line recurs every three
lines (in a smaller scale). We are thus, simulated to utilize mathematical
induction to find the value of f,.

First, let’s prove a lemma.

Lemma. Whenn == 3, consider the upper three lines of the inverted
triangle.

Aty Aoy Az ***y Ay
bis bay o0y by

Cly ***y Cpos

There are at least n — 1 0, in the three lines.

Proof. Let’s induct on 7.

The verification of the initial cases is left to readers. Let’s see
how to complete the process of induction. Note that, in the sense of
mod 2, the first three lines are
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A1y A2y A3y Agy Asy "5 Ay
ai +a2, az +a39 as +a49 "ty Ay +an

aq +a3, as; +as, **, (22 +an

Ifa,, a; +a,, a; +a;are not all 1, then we can remove the three
numbers and turn the case into the one of » — 1. By the inductive
hypothesis, we can deduce that the lemma is true.

Ifa, =a, +a, =a, +a; =1, thena, =1, a, =a; =0. Now the
beginning part of the first three lines are

There are at least three Os among the nine numbers in the
parallelogram. Hence removing the nine numbers, by the inductive
hypothesis, we can deduce that the lemma is true.

It can be inferred from the lemma that f, <2(n —1) + f,—, n =

4. Since f, =1, f», =2, f; =4, we have f, <("<n—3+1)1, where [z |
denote the smallest integer greater than x. Noting the previous
example, we can deduce that f, = (@ —‘
Thus, the maximal number of 1s in the inverted triangle is
(n (n +1) —1
5k

Explanation. Finding an example is a key point in solving this
problem. However, it is not hard after making some effort. The
difficulties lie in taking every three lines as a whole when dealing with
the problem — the spark can come from toying with the example graph

above.

Example 6. Letn € N and function f: {1, 2, 3, ==+, 2 '} >N~
satisfies that 1 < (i) <<i, for1 <i <{2"'. Prove that there exists a



Knowledge and Technique 17

positive integer sequencea; , a»» ***» a, , satisfying that 1 <a, <{a, <+ <
a, <2"'and f(a,) <+ < f(a,).

Proof. Induct on n.

Whenn = 1, it is obvious that the proposition is true.

Suppose that the proposition is true for 1, 2, «-, n —1. Now we
consider the case of =.

For1 < ¢ << 2", let (i) denote the maximal m satisfying that
there exists a positive integer sequencei = a; <<a, <+ <a, <27
such that

flap) < flay) < < flan).
If the proposition is not true for n, then from the fact that

t(1) = max (i),
12!

it can be deduced that for any 1 <{: <<2"', we havet (i) <<n —1. Let

Aj :{1 |1<1‘<2n719 1 (1) :]}9] =1,2, =y n—1L

n—1
Then any two A; don’t intersect and _U1A]- ={1, 2, 3, =, 277"},
iz

n—1
Therefore Z |A; | =2"",

=1

Now for arjly 1<j <n—1,let’sprove that | A; | <27,

In fact, if there exists a j satisfying | A; | >2"7"", then there exist
1 <<dy <idy <Teve <i, <27 'satisfying thatz (i) =1(,) =+ =1(,) =
J» wherer =277 +1, Now for any 1 <{p <q <r, we have f(i,) >
f ) (otherwise, if f(i,) < f(i,), then putting (¢, ) in the front of
the increasing sequence f beginning from ¢, leads toz(i,) =:(,) +1,
which is contradictory). Hence f (i) > f(ip) > = > ().
Furthermore f(i,) =r = 2"7" + 1, Noting that 1 << f(4;) <i,, we
have that:, =2"7" +1.

Now from the definition of #(i,), it can be deduced that there
exist i, =a; <<+ <a; <27, satisfying that f(a;) <+ < f(a;). By
the inductive hypothesis, there exist 1 <b <+ <b,; <2"7"7 iy =
a;in{l, 2, 3, ---, 2777} satisfying that f(6,) <--- < f(b,-;). Noting



18 Sequences and Mathematical Induction

that

f,) <b,; <277 <r < G = fla),
we have

1<by <oor <bpy <ay <ap <o <a; <271
and

f(bl) < e gf(bn—j) <f(a1) SQREE <f(a,-),

which is contrary to the assumption that the proposition is not true for
n. Hence | A; | <2771,
However, we can now infer that

n—1 n—1
27N = DT LA K D02 =24 27 =2
i=1

=1
This is contradictory. Thus, the proposition is true for n.
Generalizing all above, the proposition is true.
Explanation. Here we utilized proof by contradiction when proving
that the proposition is true for n. Other methods of proving can be
supplemented when we prove a proposition by mathematical induction.

3  Well-ordering Principle and Infinite Descent

Well-ordering Principle is often applied in mathematical competitions.
Its typical form is as follows.

Well-ordering Principle There must be a least element of any
nonempty subset T of the set of all positive integers N* . That is, there
exists a positive integer ¢, € T, satisfying that for any¢ € T, we have
ty < t.

Proof. ConsidersetS = {x | x € N*, = ¢ T}. It’s easy to see
that S = N"\T.

If there is no least integer in T, let’s prove that every positive
integer belongs to S and thus, T = J, which is contradictory.

First, 1 € S. Otherwise, we have that1 € T and then 1 is the least
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element of T.

Next, suppose that 1, 2, -y, n € S, i.e. 1, 2, *+, n are not
elements of T. If n +1 € T, thenn +1 is the least element of T', which
is contradictory. Hencen +1 € S.

Therefore by the second form of mathematical induction, we can
deduce that for anyn € N*, n € S.

Thus, the Well-ordering Principle is true.

When dealing with specific problems, we often make use of some
other forms or corollaries of the principle.

1. Greatest Integer Principle. Let M be a nonempty subset of the
set of positive integers N* . Suppose that there is an upper bound of M,
That is, there exists a € N* satisfying that for any x € M, x < a.
Then M has a greatest element.

2. There is a least element and a greatest element in any finite set
of real numbers.

3. The axiom of order. Set M of n real numbers can be written as
M ={z,, =, x,}, Where x; <<z, <+ <z,.

The Well-ordering Principle guides us to start from the extremes
(the least or the greatest element) when dealing with a problem. Tt
contains the idea of turning back. We should turn back to the essence
of the problem.

Infinite descent comes from solving indeterminate equations.
Fermat made use of this method about 400 years ago when proving that
there is no positive integer solution to z* +y* = z*. It’s basic idea is as
follows:

“If proposition P (n) of positive integer = is true for n = n,, then
for somen; € N*, n; <ny, we can prove that the proposition P (n) is
true as well. ” Hence P (n) is not true for anyn € N*.

This is one form of the Well-ordering Principle, which is often
made use of when we deal with problems of number theory, especially

indeterminate equations.

Example 1. Given n arbitrary different points on a plane, prove



20 Sequences and Mathematical Induction

that there exists a circle passing through two of the points that keeps
the other » — 2 points outside.

Proof. Since there are only CZ distances between every two of the
n points, there must be two points (say A and B) whose distance is the
least (if there are more than one pair of such points, just take any one
of them).

Now let’s consider the circle P which takes the segment AB as
diameter. Then for any point C in P, the longest side of triangle ABC
is AB. Noting that AB is least, we can deduce that other n — 2 points
stay outside of circle P. The proposition is proved.

Example 2.  Prove that there are no rational numbers x, y, =

satisfying that
xt+y? 2 +3(x +y +2) +5=0. @

Proof. Multiply both sides of ) by 4 and complete the squares.
We have

Qx +3)2+QRy +3)2 +Q2z +3)* =7.

If there exist three rational numbers =, y, = satisfying @O, then

there exists integer solution (a, &, ¢, m) to indeterminate equations
a’>+b*+c¢* =7m? ®@
satisfying thatm > 0.

If there exists integer solution (aq, by, co» my)» my >0to @, we
can prove that there is integer solution (a:, 15 ¢c1» m1)s m; >0to @
andm, < m,. Thus, by the idea of infinite descent, we can find a
decreasing sequence of positive integers m, > m, > m, > ¢+, which
leads to a contradiction.

In fact, if m, is odd, thenm} = 1(mod 8) and thus, a§ +b65 +c3 =
7(mod 8). However, the square of an integer =0, 1, 4(mod8). Hence
at +b +c2 =0,1,2, 3, 4,5, 6(mod8). a? + b3 +cZ =7(mod8) can
never occur. This leads to contradiction and thereforem, is even. Now
we havea? +63 +c} =7m§ =0(mod 4). On the other hand, the square
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of an integer = 0, 1(mod 4). Hence a,, b, and ¢, must be all even.

1 1 1 1
Then let a, = o b, = ?bo’ €1 = 5 Cos my = oM. We get a

solution (ay, by, ¢, m,) satisfying that 0 <<m,; <<my,.

In conclusion, there is no rational solution to (D).

Explanation, Starting from the least element or finding a less one
from a certain element is an important idea we are introducing in this
section. They are fundamentally special forms of mathematical induction.
This reflects, to some extent, difficulties and challenges in mastering
mathematical induction, probably by which people are attracted to
learn math.

Example 3. Let P,, P,, ---, P, be n noncollinear points on a
plane. Prove that there exists at least one line passing through exactly
two of the points.

Proof.,  This is the well known Sylvester Theorem. There are
many ways to prove it. One of the brief ways is given with the help of
the Well-ordering Principle.

Let’s consider the lines P,P; passing through at least two of
Py, ---, P,. The distances from the points not on the lines to them are
greater than 0. There are only finite number of distances (since there
are at most C2 lines and finite number of points not on the lines).
Hence there is a least value of the distances.

Without loss of generality, let the distance from P, to P, P; be the

least one. Let’s prove that there are no other points among P;, -*-, P,
on P,P,.
If there is another point among P, -+, P,

on line P, P, let P, be on P,P5;. Let Q be the
projection of P, onto P,P;. Then there must be
two of P,, P;, P, on the same side of Q. Let
P, and P; be on the same side of Q. Suppose
| QP, | <| QP; | (as shown in Figure 4). Then
the distance from P, to line P, P; is less than or
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equal to the distance QR from Q to P, P; and QR < P,Q, which is
contrary to the minimality of P;Q. Hence there are no other points on
P,P,.

Therefore the proposition is true.

Example 4. Prove that there is no positive integer solution to the
indeterminate equation

4

xt +yt =24,

Proof. Suffice it to prove that there is no positive integer solution to

xt +yt =22 )

If there is, suppose that (x, y, z) is a positive integer solution to

@, satisfying that z is the least in all solutions. Now, let d be the

greatest common divisor of x and y, i.e., (x, y) =d.

Thend? | (x* + y*) and thus, d®> | 2> andd | z. Henced =1
z Y oz
d 4’ d

z) is also a primitive root of

(otherwise, ( > is also a solution to @) . Therefore (2, y?,

u’ +v? =w? ®
Let y? be even. It can be deduced from the general solution of @

that there exista, & € N*, one of which is odd while the other even.
a and b satisfy that (a, ) = 1 and

x? =a? —b*, y* =2ab, z = a® + b2,

Noting that y” is even, we have that x is odd. Noting that x* +5% =a?,
we can deduce that there existm, n € N”, one of which is odd while

the other even. m and » satisfy that (m, n) =1 and
x=m?—n’, b =2mn, a =m?+n?
Then y*> = 4mn(m? +n?). Since (m, n) =1,
(m, m?>+n?) =, m? +n?) =1,

Hence m? +n?, m, n are perfect squares.
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Then letm =»%, n =52, m2+n? =22, r, s, z; € N*. We have
r* +s5* =21, where 2} = a < z. This is contrary to thatz in (z, y, 2)
is the least in all solutions.

Therefore there is no positive integer solution to (D. The proposition
is, thus, proved.

Explanation. We applied another form of infinite descent. “If
proposition P (n) is true for some n € N*, let n, be the least integer
satisfying that P(n) is true (the existence of n, is given by the
Well-ordering Principle). Then we can prove that there exists n; €
N*, n; <n, satisfying that P(n,) is true.” Hence for any n € N*,
P (n) is not true.

Example 5. Letn be a given positive integer. Is there a finite set
of nonzero plane vectors who has more than 2n elements and satisfies
the following conditions?

(1) For any n vectors in M, we can find n other vectors in M
satisfying that the sum of the 2n vectors is zero;

(2) For any n vectors in M, we can find n — 1 other vectors in M
satisfying that the sum of the 2» — 1 vectors is zero.

Solution. There is no such set M.

In fact, if there exists such set M, since set M is finite, there are
finite number of ways to choose n vectors. Therefore there exists a
way to choose vectors so that the length of the sum of the n vectors
takes maximum. Let the n vectors beu;, u,, ==+, u, andu; +u, + -+ +
u, =s.

Draw a line/ perpendicular to s from the origin. Then/ divide the
plane in two. Let M, be the set of vectors on the same side of s
belonging to M and M, be the set of vectors on the other side of s or on
[ belonging to M. ThenM, "M, = J, M, UM, =M.

By condition (2), we have that there exist vectors v;, **, v, in

M satisfying thatu, + «=- + u, + v, + - + v, = 0, Equivalently

Vi + eee +V,,71 =—S5.
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Now we prove that there exists no vector v satisfying thatv € M,
and v & {vy, =+, v, ).
If there exists such vector v, thenv « s < 0. Hence

|v1+...+vn71_|_v|2:|v—s!2:|s|2—2v-s+|v|2>IS|2,

which is contrary to how we choose u,, ---, u,.

Therefore | M, |<n —1.

On the other hand, it can be deduced from (1) that there exist
u’, -+, u, € M, satisfying that

|wy + e +u, +ui e un | =0,

Equivalently, #’++++ +u, =—s. It can be deduced from (2) that there
exist v, +-=, vy, satisfying that u’,+ -« +u’,+ v+ + v/ = 0.
Equivalently, v} + - + v, =s.

Similarly, we can prove that there exists no vector v € M,,
satisfying that v’ ¢ (v}, «+, v\, }. Hence | M, |<n —1.

It can be then inferred that | M | <{2n —2, which is contradictory.
Hence there is no M satisfying such conditions.

Example 6. Let o« be a given positive integer. Find the greatest
positive integer S satisfying that there exist z, y € N”, such that
_ 2 +y? +a

xy :

B @

Solution. Noting whenf =« +2, we can takex =y =1 and then
D holds. Hence f,ux = a +2.

On the other hand, let 3 be a positive integer satisfying the condition.
Assume that (x, y) is the one among all the pairs of positive integers
satisfying (D (here we regard §8 as constant) thatx + y is least.

2x2% +a
2

If x =y, theng = :2+J%<2+a.

If x+ # y, without loss of generality, assume that x > y. Then
there exists another real root = of the quadratic equation about x

22 —Bycxty +ta=0. )
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It can be inferred from Vieta Theorem and @ thatx =8y —x €

2
+ .
Z. Noting thatx + x = y*> +a, 0rx —2 T >0, we have thatr is a
x

positive integer. Then (£, y) is a pair of positive integers that satisfies
@ as well. Therefore
v? +a

xt+ty = +y =x +y.
x

The minimality of x + » is made use of here.
Then we have x> < y*> +q andx =y + 1. Moreover,

g = 22 +y? +a < 2(y* +a) < 2(y? +a)
xy zy y(y +1)

2y? 20
- + 2 +a.
Yy iyt —4Te

This shows that 8. <2 +a.

In conclusion, the maximum of Bisa +2.

Example 7. Find all integers » > 1 that any divisor, greater than
1, of them, can be written in the form of ™ + 1, wherea, r € N*,
r =2,

Solution. Let S be the set of all the positive integers satisfying
the condition, i.e., for anyn € S, n > 1, any divisor, greater than 1,
of it, can be written in the form of a” +1, wherea, r € N*, r =2,

It can be deduced that for anyn € S (n > 2), there exista, r €
N*, a, r > 1, satisfying that n = a” + 1. Suppose that a is the least
when n is written in this form, i.e., there isnob, + € N*, ¢t > 1,
satistying thata = 4°, Then r must be even (otherwise, let » be odd.
Then (a +1) | n. Hencea -+1 can be written in the form of 4* +1. Then
a = b', which is contrary to the minimality of a). Therefore each
element greater than 1 in S can be written in the form of n = z* + 1,
x € N™.

Now let’s find every n in S.

If » is a prime number, then n is a prime number that can be
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written in the form of z? +1.

If n is a composite number, discuss the problem in two cases:

(1) If » is an odd composite number, then there exist odd prime
numbers p and q that p, ¢, pg € S. Then there should bea, b, c € N*
satisfying that

p =4a*+1,q =4b* +1, pg = 4c¢* +1.

We can assume thata <<b <<c. Therefore pqg —q = 4(c* —b4?) and
thus, g | 4(c —b)(c +b). Noting that g is an odd prime number, we
have thatg | ¢ —b orq | ¢ +5&. Then there must be ¢ < 2¢ and lead to
pq < 4c® <4c¢* +1 = pg, which is contradictory.

(2) If n is an even composite number, noting that 2* ¢ S and
combining with the previous discussion, we have that » can only be
written in the form of 2¢, where g is an odd prime number. Now ¢,
2qg € S. Hence there exista, & € N* satisfying that

g =4a*>+1, 2g =6 +1.

Hence ¢ =b> —4a®? = (b —2a)(b +2a) and thus, 6 —2a =1, b +
2a = q. Moreover g —1 = 4a. Noting thatg —1 = 4a®, we have 4a =
4a° and thena =1, b =3, ¢ =5, n = 10. That is, there is only one
even composite number 10 in S,

In conclusion, any n € S must be 10 or prime number written in
the form of x? 4+ 1. It is obvious that such » satisfies the conditions in

the problem. Hence

S={x>4+1]|x € N*, 22 +1 is prime} U {10}.

Example 8. There are two piles of coins on the table. It is given
that the total weight of the two piles are equivalent. Furthermore, for
any positive number £ (which is less than the number of coins in either
pile), the total weight of the heaviest 2 coins in the first pile do not
exceed the total weight of their counterparts in the second pile. For
any positive number x , prove that if we replace coins weighing no less
than x in both piles by coins weighing exactly x, then the total weight
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of the first pile will not be less than the one of the second pile, after
the operation.

Proof. Let’s handle the problem with the axiom of order.

Suppose that the weights of the coins in the first pile are xy = =z,
and the weights of the coins in the second pile are y; =+ = y,.. It can
be deduced from the condition that for any & < min{m, n}, z; ++ +
Xy Kyt oy

For any x € R, let

We need to prove that
st txoy e tx, 2ty oy, CD

It is obvious that when s or ¢ does not exist (note that the condition
implies that if # does not exist, s does not exist as well), the inequality
(D can be deduced by the equality x; + «+ + x, = y; + == + y,.
Hereafter, let’s consider the situation where s and ¢ exist.

Letxy +++x, =y ++++y, =A. Then Q is equivalent to the

following inequality.

st (A —x) = —z,) Ztx +(A —y, — = — )
Sxy oA, Y@ ) Ly e oy @
Ift =5, then

xy et G ~sS)xr =x, o Fx, +tx+ e+
t 7T
t—s

Syt Ty Fyan e T

Inequality @ holds.
If z <s, then Q) is equivalent to

xyteredx, <y Fee oy x e Fa @

It can be deduced from the condition that
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iyt tx, <y Tty Fy e Ty
<y, ety tx .
Hence ) holds.

In conclusion, the proposition is true.

4 General Terms and Summation of Sequences

A row of numbers arranged in a certain order is called sequence. Each
number in the sequence is called term. The numbers are called, in
order, the first term, the second term, ..., thenth term, ....

The general form of sequences can be written as
A1y A "7y Ays *°°

It is denoted by {a,}. If the nth terma, of {a,} can be expressed
by an algebraic formula, then the formula is called the general
formula.

By the definition of sequence above, a sequence is essentially a
function defined on the set of positive integers. Finding the general
formula and adding up the first » terms of a sequence are most
fundamental and common among relevant problems.

Let S, be the sum of first » terms of {a,}. Then its relationship
with the general terms is as follows.

ai :S1’ ay :Sn “SnAl’ n =2$ 3’ "t

For the sake of convenience of discussion, let’s introduce the
following concepts.

If there are finite number of terms in a sequence, then we call it a
finite sequence. Otherwise, it is called an infinite sequence.

If sequence {a,} satisfies that for any n € N*, a, < a,; (resp.
a, > a.p ), then it is called an increasing (resp. decreasing) sequence. If
a, <an,p (resp. a, = a.,u), then it is called a non-decreasing

(resp. non-increasing) sequence.
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If there exists a constant M satisfying that for anyn € N*, | a, | <
M. Then the real sequence {a,} is called a bounded sequence.

Example 1.  Sequence {a, ; satisfies that for any nonnegative integers
ms n(m =n)s Apin TApn = %(az,n +a,,). Besides, a; = 1. Find the

general formula of the sequence.
Solution. It can be inferred from the condition in the problem
that for any m € N it holds that

%(azm +a2,) = a2 tay, =20, +a,),

thena, = O and a,, = 4a,,.

Noting thata, =1, we can find that whenn € {0, 1, 2}, it holds
thata, = n?. Then is it the general formula of the sequence?

Ifa, =0(mn—1?,a, =m?’, it can be deduced from the condition
that

Amig T Apq = %(azm +a,) = %(461,,, +4a,).

Hence a,,i1 =2a, —apq +2a; =2m* —(m —1)* +2 =m? +2m +
1 = (m + 1. Then by the principle of mathematical induction, we
have that forn € N, a, = n*.

In conclusion, the general formula of the sequence isa, = n?2.

Explanation. It is common, in sequence questions, that we are
asked to find the general formula of a sequence with conditions given.
This question is also a problem of functional equation in a special form,

since sequences are functions defined on the set of positive integers.

Example 2. Letn be a given positive integer. Sequence aos a;

2
as, ==, a, satisfies thata, = %, ar = a4 +a:2_1 s k=1, 2, n.

Prove that 1 *% <a, <1.
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Proof. It can be inferred from the condition that for any 1 <k <C
n, we have a,, <a,. Hence for any0 <%k <n, a, >0.

Let’s transform the formula in the problem and we can get

1 n 1 1

ay nap ftaiq  ar1 Qg +n’
After transposition of terms, we have

1 1 1

arq tn ap—t ak.

Adding up @ according to the subscript £ from 1 ton, we get that

2 ak~1l+n - <aio _al1)+ <le71 _aiz)+". * <a,,171 _a_ln>

1 N 1
2 -2 — L
an ;a;ﬂ—!-n —on

Hencea, <<1.
Since a, > a1, we get 0 <<a, <a; <+ <<a, <1. Therefore

SR R o R S o U S
k=1

an = a1 +n 1+n n +1
Thu57
nt+1 . 1 1
e RS

Hence the proposition is true.
Explanation, The skill of taking the reciprocal of both sides of
the formula is innovated by the idea of splitting terms, which is often

applied in the summation of sequences so that we can cancel out the
former and latter terms.



Knowledge and Technique 31

n

(n — 1% 403 +(n+13

Example 3. Forn € N, leta, =

Prove that
aq +a2 + e +a999 < 5()

Proof. The general idea is to deal with the problem “from part
to the whole”. For this purpose, we will enlarge a, properly. We can

thus, split the terms and cancel them out.
Noting thatz* —y* = (& —y)(&* +z2y +y»), letx = (n + 173,
y = (n —1)3, Thenxy = (n” —1)% < a3, Hence

n _nlx —y)
x? +xy +y° =y

a, <

_ n(x —y)
n+1?—(n—1)*
1

:Z((nﬂ)% —(n —1DF).

S
= 4(x v)

Therefore

999

ar o tany < (G DT = (- DF)
n=1

1 1000 5 998 .

o n? — n?

<n:2 ; )

= 2(1000% +9995 —1)
2L X 10005 = 50,

4
1
4
1

=3

The proposition is thus, proved.
Explanation. It is an important method to lessen or enlarge the

terms first and then add them up, when dealing with inequalities

relevant to the summation of sequences.

Example 4, Lett &€ N* and £ = 3(mod 4). Define that
S, =C —Ck +Ck> —Cik> + .
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For anyn € N*, prove that2"' | S,.

Proof. Let’s prove by using complex numbers.

If can be deduced from the definition of S, and the binomial
theorem that

S, = Re(1 +VED",

where i is the imaginary unit. Re(z) denotes the real part of =z.

Hence
Sy = 5 (L +VED" + (1 —VED".
Moreover lettingxz =1 ++ki, y =1 —+ki, we have

Sn+2 — %(xn+2 +yn+2)

= L@y @ ) —ay @ )

= (x +y)S,.11 —xyS.
=251 — (A +E&)S,.

Besides, S; =1, S, =1 —k%.

Now we prove that for anyn € N*, 2*7' | S,.

Noting that # =3(mod 4) , we have that the proposition is true for
n =1, 2. Then suppose that the proposition is true forn, n +1. That
is, 271 | S,and2" | S,.1. Astothecaseof n +2,sincel +k =1-+3 =
0(mod 4) and

Sn+2 = 2Sn+1 - (1 +k)sn ’

we have that 277! | S, (because 2" | 25,41, 271 | (1 + &)S,).
Therefore for anyn € N*, 2" | S,.

Explanation, We began from the conditions, then made proper
transformations, established the recurrence relation and finally made
use of mathematical induction. Thus, the problem was accomplished
by us at a stretch with clear thinking. This idea is also quite easy to

realize.
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Example 5.  The first several terms of increasing sequence of

positive integers {a, ) are
1; 2, 4; 5, 7, 9; 10, 12, 14, 16; 17, ---

The structure is one odd number, two even numbers, three odd

numbers, four even numbers, . ...
For anyn € N*, prove thata, = 2n — [li__ \/28"*7J

Proof. 1If there existsk € N”, satisfying thatn =1 +2+--- +&,
then #n is called a triangle number.

Now we define the sequence {b,}: b, =1,

bthl ‘_bn = @

{1, if n is a triangle number,
2, if n is not a triangle number.

Then it can be inferred from the structure of {a,} and mathematical
induction thata, = b&,.

Moreover, since sequence {5, } satisfying (D exists uniquely, it suffices

to prove that (note that whenn =1, 2n — [LL— V28"47} = 1)

{1, if n is a triangle number,
Cp, =

2, if n is not a triangle number.

Here
cn:201+1)—[1+"ﬁﬁ€17Tj7}—(2n—[l;bégzzzJ)
For this purpose, let’s prove:
If and only if n is a triangle number,
L+ BaID 7 -

2
In fact, if there exists £ € N* satisfying that

k(E+1)

n= 1424tk =5
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then

1+vV8n+1) -7 _ 1+/4kGk+1) +1
2 2

:L—izak-i—l:k-l—1EN*.

On the other hand, if = is not a triangle number, there exists ¢ €

&;—_Q “n <_(_ki1)2_(k_i2_) (i.e., n is between

two consecutive triangle numbers). Calculating in the same way, we
get that

N*, satisfying that

E+1<

V8n +1) —7
1+ 8(n2+1) 7 <k 40

Hence @ holds.
Then let’s prove that @ holds. Since

. :2+[1+«/28n—7 }[1%/8@2“)‘7 J

whenn € N*, we have

1+vV8n +1D —7 1+8n—7
2

0 < 5

:%( 8n¥1 /81 —7)
_1 ., 8r4+1—-GBn -7 _ 4
2 SBnF1+vVe8n—7 B+l +8n—7
4 —1
8+1+v8—7 '

+ v8(n +1) —7
2

Therefore if and only if 1 eEN',c, =2—1=

1. For othern, ¢, =2 —0 = 2.
It can be deduced from @ that @ holds.
1+V8n —7 }
5 .

In conclusion, a, = 2n — [
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Explanation. This is a problem of finding the general formula of
a grouping sequence. (D shows the relationship between consecutive
terms. The method we applied here is a special one when proving the
relationship with the answer already known. It is even harder if we

are asked to find the general formula of the sequence by ourselves.

Example 6. A finite sequenceaq, a1, ***, a, is called # balanced,

if
ag Tar Tay + =a; tap Fany +o
= =g Tana Tay— T

It is given that sequenceaqs a1, ***, a4 is k balanced fork =3, 5,
7, 11, 13, 17. Prove thata() =Qaq = " T dyy — 0.

Proof. Consider the polynomial

flx) =ay +aixz ++ +apx®. )

The idea is to prove that there are 50 distinct complex roots of

f{(z) and thus, f(x) is a zero polynomial thena, = +=+ = a, = 0.

Fork € {3, 5, 7, 11, 13, 17} lete( 1) be a kth root of unity.
Then whenm = n(mod k), we havee™ = ¢". Hence

f(e) = (ao +ak +a2k +"') +(a1 +ak+1 +"')€ oo
+apy Tauy +det!
= (a() +ak +a2k +"')(1 +e +€2 + - +€k—1)
= 0.

We made use of the formula in the condition and thate is a root of
the polynomial 1 +x + - +x*7'.

Therefore for & € {3, 5, 7, 11, 13, 17} ande =& (1 <m <k —
1), it can be deduced thate is a complex root of (D. As £ varies among
different prime numbers, we will get different complex roots. Then
there are (3 —1) +(5 —1) + - + (17 —1) =50 roots of f(x). Hence
it must be zero polynomial.

The proposition is proved.
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Explanation. The polynomial in (D is called the generating function
of {a, ). This method is often applied in finding the general formula of

a sequence. We will refer to generating functions in Section 7 later.

5 Arithmetic Sequences and Geometric Sequences

Arithmetic sequences and geometric sequences are two kinds of the
simplest sequences. We often transform other sequences into them.

If the difference (resp. ratio) between the consecutive terms is
constant, then the sequence is called an arithmetic (resp. geometric)
sequence. The constant is called the common difference (resp. ratio) of
the sequence, which is often denoted by d (resp. ¢). Note that g can’t
be zero, since zero can’t be a denominator.

We have the following formulas relevant to the general formulas
and summation of arithmetic sequences and geometric sequences:

1. Let S, be the sum of the first n terms of {a,}. Then

a, =a; +(n —1d,

n(n —1)

> d.

S, = %(m +a,)n =an+

2. Let S, be the sum of the first » terms of {a, }. Thena, =a, *¢™"

and

nai s ifg =1,

Sn =35a (1 - ”)
;T:_qi_, if ¢ # 1.

3. If geometric sequence {a,} is an infinite sequence and its
common ratio g satisfies that | ¢ | <C 1, then it is called an infinite

a,

1—q°

decaying geometric sequence. The sum of all of its terms is S =

Example 1. Let’s arrange n*(n = 4) positive real numbers in n

lines and n rows:
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ayr  di A1n
az Aaxn A2y
221 (23] oo An

The numbers in each line constitute an arithmetic sequence, while the

numbers in each row constitute a geometric sequence. Furthermore,

the common ratios are the same. Given thata, =1, an = % y Qaz =
1%. Find the value of ay; +axn + = +a,.

Solution.  Let the common ratio of the geometric sequence constituted
by numbers in each row be q. Thenas = az » ¢> = ¢°.

Since the numbers in the fourth line constitute an arithmetic
SeqUENCE; as, ds3, a4 constitute an arithmetic sequence as well.

Hence a4 -+ Q44 :2a43. Then

1, 2_6

g 7T g
Therefore g = % Noting that all of the numbers in the table are real
positive numbers, we have that g = %

Since the numbers in the fourth line constitute an arithmetic
sequence and ay, = %, As = 1%, it can be deduced that the common
difference of the arithmetic sequence is 1% f% = 116 Hence the first
termas = 1 1_1 Then for any1 <k <n, an =

8 16 16 16°

Noting that the £th row is a geometric sequence whose common

ratio is % , we have that

Ay = Au -q*3 :ﬁ o (%>_3 :ﬁ'
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Therefore forany 1 <m <n, am =ay * q¢" "' = f; Moreover

LetS =ay +ay +++ +a,. ThenS = >, me and thus, 5 E 2£
m=1 m=1

Subtracting both sides of the two formulas, we get

1o _ m m
2 S = mgl om “~ 2m+1
n nt1
= m _
2m

Hence S =2 — %

Example 2. Given that the nonnegative real solutions to the equation

about x
(2a —1Dsinx +(2 —a)sin2x = sin3x

constitutes an infinite arithmetic sequence, in ascending order. Find
the range of a.
Solution. The equation can be transformed into

2asinx —asin2x +2sin2x —sinx —sin3x =0
&2asinx (1 —cosx) +2sin2x —2sin2zxcosx = 0

& (2asinx —2sin2x) (1 —cosx) = 0.
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Then there holds 1 —cosx = 0 or sin 2x = asin x.
The nonnegative real solutions to the former one are x = 2k x,
k1 € N. As to the latter, it can be transformed into sinx = Q or cos x =

%. The nonnegative real solutions of sinz = 0 are x = k,m, k> € N.
There exist solutions to cos x = % if and only if | a [|<C 2 and the

nonnegative real solutions are x = 2k;x + arccos % orx =2ksm +x+

arccos%, ks, k, € N.

In conclusion, when | a | =2, the nonnegative real solutions to the
equation are x = kw, & € N, which constitute an arithmetic sequence.
When | a | <2, the nonnegative real solutions to the equation are x =

krn, R € Norx = 2k;m +arccos% or x = 2k,m + n +arccos —az~. Then if
and only if arccos —;— = %, or equivalently ¢ = 0, all the nonnegative

real solutions to the equation constitute an infinite arithmetic sequence,
from less to greater.

Hence the range of a satisfying the condition is

Example 3. There are two infinite sequences of positive integers.
One is an arithmetic sequence whose common difference is d(> 0),
while the other is a geometric sequence whose common ratio is ¢( >
1), where d and q are relatively prime. If there is one common term in
both sequences, prove that then there are infinitely many terms in
common.

Proof. Let the two sequences are {a +nd}, n =0, 1, 2, ---, and
{bg™}, m =0, 1, 2, -+, respectively, wherea, b, d, q are positive
integers and ¢ > 1.

If there is one term in common, without loss of generality, we
assume the first terms of both sequences are same. Otherwise, we can
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remove the finite number of terms before the common term in both
sequences, i.€., a = b, Then to prove that there are infinitely many
terms in common, we need only to prove that there exist infinitely

many m € N* satisfying that
ag™ =a(modd).

We need only ¢” = 1{mod d).

Noting that the remainder after dividing 1, ¢, ¢*, -+, ¢¢ by d
ranges among only d numbers, by pigeonhole principle, we have that
there exist 0 <Ci <{j <(d satisfying that ¢ = ¢’ (mod d). Since (d, ¢) =
1, it can be deduced that ¢ = 1(mod d). Moreover for anyn € N*,
lettingm = (j —i)n. we have that¢g™ = (¢Z)" =1" = 1(mod d).

Hence the proposition is true.

Explanation. If readers are familiar with Euler’s Theorem, we
can also findm satisfying the condition, by the fact that ¢**” = 1(modd),
when (d, q) = 1.

Example 4. Sequence {a, | is defined as follows.
a; = 1000000, a, :n[%}rn, no=1,2, -

Prove that there is an infinite subsequence of {a,} which constitutes an
arithmetic sequence (the sequence constituted by the terms of another

sequence is called a subsequence of it).
Proof. Letx, = g;_ﬂ. Then for anyn € N*, z, = [i—"]—f-l €

N*. {z,} is a sequence of positive integers.

Moreover forn € N*,
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This shows that {x,} is a non-increasing sequence. Therefore {z,}
becomes a constant sequence from some term on (since all the x, are
positive integer). Denote the constant by 2. Then from that term on
a, = kn. Hence {a,} is an arithmetic sequence from that term on.

The proposition is proved.

Explanation. The conclusion in this problem does not rely on the
initial value (we only need thata, = 0). We applied an obvious result
in solving this problem that any infinite non-increasing sequence of

positive integers becomes constant from some term on.

Example 5. For any given positive integer n > 3. Prove that
there exists an arithmetic sequence a,, a,, ***» a, and a geometric

sequence b, b,, *+*, b, satisfying that
b1<a1<b2 < a; <L oo < b, < a,. @

Proof.  Note that exponential growth is greater than linear
growth. Hence there doesn’t exist an infinite increasing arithmetic
sequence of positive integers {a,, ; and an infinite increasing geometric
sequence of positive integers {b,,} satisfying that for anym € N*, a,, >
b, » letting alone satisfying (D. What we discuss in this problem is
about finite sequences. The idea is to let the common ratio be
approximately 1 and keep enough space between consecutive terms.

Consider the sequences {a,} and {b,} defined by the following

formula.

b1 =x", b2 :1'"71(1 +I)9 “tt b,, :x(1 +x)"a1;
am =21 +2) =1+ m—Dx"'ym =1, 2, -, n.

Here x is an undetermined positive integer. Then {a,, } is an arithmetic

sequence whose common difference is "', while {6,,} is a geometric
.. 1

sequence whose common ratio is 1 +—. Hence we need only prove that
X

there exists such positive integer that (D holds.

On one hand, for 1 <<m <{n, since
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am ="+ —14+0m —Da™,

we havea,, > z2", whenx > 1. Hence
Am = am + 277 < a, +8n :a,,,(l +i>
T x

Noting that a; = b, — 1 < b, and that {b,} is a geometric sequence
whose common ratio is 1 + % , it can be deduced that for1 <<m <n —

17 Am < bm+1.
On the other hand, let’s prove that there existsx € N* (z > 1),
satisfying that for any 1 <m <n, b, <a.,.

In fact,

by <a, Qx"""U+)" <z +mxmt —1
Sx" +C 2t +C B2 e + O < 2" -1
SCHx™ o +C ! <z -1
S (Chx 2 e +C 2" < g — 1. ®

Since n == m, it can be deduced that
Crdam3 4o +C ™ +Cliix +C L =2 Cr83 ™2 4o 0™,
Hence if
2(ChBx 2 e +Cx +C)) <2t —1 ©)

holds, then @ holds.

The left side of @ is a polynomial of degree n —2 of x, while the
right side is a polynomial of degree n — 1 of x. Therefore when x is
sufficiently big, @ holds.

In conclusion, the sequence satisfying the conditions exists.

Example 6. Letk(>=2) be a given positive integer. For any 1 <7 <C
k, a; and d; are positive integers. The set corresponding to the
arithmetic sequence {a; +nd;} (n =0, 1, 2, <) isA; = {a; +nd, |
n=0,1,2, <}, 1< <k. LetA,, A;,*+, A, be a k-partition of N”
(i.e., the intersection of any two of A;, A,,*--, A, isempty and A; U -+- U



Krnowledge and Technique 43

A, = N*). Prove that

— —1 = -
(1) + +dk 1;

a1 k +1
(2) + +dk TS

Proof. Let’s make use of the method of generating functions. It
can be inferred from the conditions in the problem that for | =z | <1,

i M+
l
L
g
&h
B

By the summation formula of the infinite decaying geometric sequence,
we have

_Il.

Hence

k
E 1+x + +:c @
As x approaches 1 from the left, take the limit of both sides. It
yields Z: di = 1. Hence (1) holds.
N(l);v differentiate both sides of (D with respect to x. We have

1= Zk) ax A+t +ah?) — 25O+ 1420 oo+ (dy = Da?)
£ Atz + - +2%) '

Then as x approaches 1 from the left, take the limit. It yields

k
di =424+ d — D)
1=>4 pe

Hence
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_ 1., _k+1
—1+2(k 1 -

We applied (1) here.

Therefore the proposition is true.

Explanation. In comparison to Example 6 in last section, we
referred to the theory of infinite series, an important skill in utilizing
the generating function. We will discuss in detail what generating
functions are and how to utilize them in Section 7.

6 Higher-order Arithmetic Sequences and the Method
of Differences

We can get a new sequence by subtracting consecutive terms of a given

sequence {a, ) :
Ay — A1y A3 " Apy "*"e Apt1 " Apy *°

It is called the first difference sequence of {a,}. If this sequence is
denoted by {b,}, where b, = a,u — a,. Then subtracting the

consecutive terms of {5, }, we get the following sequence.
by —biy by — by bn+1 —by,

It is called the second difference sequence of {a,}.

And similarly, for any p € N*, we can define the pth difference
sequence of {a, /.

If the pth difference sequence of {a,} is a nonzero constant
sequence, then {a, } is called a pth order arithmetic sequence. Specifically,
the first order arithmetic sequence is the arithmetic sequence in
general. The second and higher order ones are called higher-order
arithmetic sequences in general.

Note that sequences are functions defined on N*. Generalizing
the idea of subtraction above, we can get the concept of difference.

Suppose f(x) is a function defined on R. Let Af(x) = f(x +1) —
f(x). Then Af(x) is also a function defined on R. It is called the first
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difference of f(x). Similarly, we can recursively define the second,
the third, ..., the pth difference of f(x).

N f(x) = AAf(x)) = Af(x +1) — fx))
=(fx+2)—flx+1)) —(flx+D —f(x»
= f(x +2) —2f(x+1)+flx),

.o
b

AP f(x) = AN f(x)).

By mathematical induction, we can prove the following theorem.
Theorem 1. Let f(z) be a function defined on R. Then

?
A f(x) = D (=P Coflx +)

=0
P

=D (= DICf(x +p —i).
i=0

If function f(x) (z € R) is a polynomial of degree p of x, then
Af(z) is a polynomial of degree p — 1 of x. A’ f(x) is a polynomial of
degree p — 2 of =, -+, A’f(x) is a polynomial of degree 0 of x.
Besides, A? f(x) = pla,, where a, is the leading coefficient of f(x).
Whenm >p, m € N*, A"f(x) =0.

Conversely, for function f(x)(x € R), if A?*" f(x) =0. then the
degree of f(x) is no more than p.

Applying these results to higher-order arithmetic sequences, we
have the following theorem.

Theorem 2. The sequence {a, } is a pth order arithmetic sequence

if and only if the general terma, is a polynomial of degree p.

Example 1. Let sequence {a, } be a third order arithmetic sequence.
The first several terms are 1, 2, 8, 22, 47, 86, ---. Find the general
formula of {a,}.

Solution 1.  Calculate the difference sequence of each order of

{a,}. It yields
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{bn}: 1, 6, 14, 25, 39’...;
{Cn}: 57 8, 11, 14,--.;
{dn}: 39 3, b

Noting that {a,} is a third order arithmetic sequence, we can
deduce that {d,} is constant. Thenc, =c¢; +3(n —1) =3n +2. Hence

bor1 = b, =3n+2.,n =1, 2, -
Therefore

b,, _b1 = (bn _bn—1) + . +(b2 *b1)

n—1

—E(?;/z +2) = ?L@‘(‘%j—)+2(n—1)
_Gnt+tHn— 1
5 .
_3 2.1
Sob,,—zn +2n 1.

The same as above, we have

n—1

3 1
s —ar = D (kA ok —1
@n T ;<2 2 )
_=DnCn—1  nln -1

n y) —(n —1).

: vt 51 5
It yields a, on N n +2.

Explanation. Here we applied the method of summing after splitting
the terms and the summing formula

>k =mim D Ek2=%m(m+l)(2m+l).

k=1
Solution 2. By the result of Theorem 2, we can supposea, = An® +
Bn?+Cn +D, where A, B, C, D are undetermined.
From the initial data, we can deduce that

A+B+C+D =1,

8A +4B +2C+D =2,
27A +9B +3C +D =8,
64A +16B +4C +D = 22,
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Ityields A =+, B =—1,C =—1,D =2,

1
2 k4
1

v s 1 5
Hence a, 2n 271 n +2.

Explanation, The method of undetermined coefficients is often
applied in finding the general formula of a higher-order arithmetic
sequence.

Example 2, If the value of polynomial f(x) is an integer for any
x € Z, then f(z) is called an integer valued polynomial. For any
integer valued polynomial of degree n, prove that there exist integers
Ans @n—1» "5 ag, satisfying that
X xX X
f(x) :an( )+an_1( >+"‘ +a1< )+a0.
n 1 1

n —

Here (x) = k—l'x(x —1)--(x —k +1), where (g) = 1. It is called

k
a difference polynomial of degree k.

Proof. For polynomial f(x) of degree n, if the leading
coefficient is ¢, , then letting5, = n! » ¢, , we can deduce that f(x) —

b, <I> , is a polynomial whose degree << n» — 1. Continuing the same
n
process, we have that there existb,, b,—, ===, b, € Csatisfying that
x X X
f(I) :b,,< >+bn71< )+"'+b1< >+b0. ®
n n—1 1
To prove that the proposition is true we need only to prove that

b, =5 by are all integers.
Noting that for £ € N*,

s =006
- k_l!((x + D (x =k +2) —z(x — D (x —Fk+1))

=l D=k D) :( * )
(E —1N E—1/
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Then it can be deduced from @ that 6, = f(0) € Z (for f(x) is an
integer valued polynomial). Take the difference of the both sides of
D. It yields

Af(x) :bn( * 1)+---+bz<f>+b1.

n —
Lettingz = 0, we getb, € Z, and similarly b, &, -+, b, are all
integers.
Explanation.  If the value of A*f(x) at x = 0 is denoted by
A*£(0), then from the process of proving that b, is an integer, it can
be deduced that for any polynomial f(x) of degree n,

- x
— k
f(x) ;:0: A f () (k ) ,
where A" £(0) = F(O).

Example 3. Let sequence {a,} be a pth order arithmetic sequence,
whose general formula is a, = f(n), where f(x) is a polynomial of

degree p. Prove that

?
Dran = 2 CHIA*F(O). )

m=1 k=0

And by this, find the formula of »,m>.

m=1

Proof. It can be inferred from the Explanation of last example
that
d m
an = fm) — EAkf(O)( )
=0 k

Hence
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P
DSTAFO(CE + - +C)
k=0

Il

=3

I

A FCOY(CHED + Chy 4 -+ +C)
0

a~
Il

l
N

A F(O) W +Cn +-+C

a~
Il

)

4
e = DICHL AR (O,
k=0

Therefore O holds.
When f(z) = x?,

Af(x) = (x +1)° =2 =32 +3x2 +1,
A f(x) =3(x +1)* +3(x +1) +1 —Bx2 +3x +1) =6x +6,
Nf(x) =6(x+1)+6—(6x +6) =6,

Hence Af(0) =1, A2f(0) =6, A’ f£(0) =6. Then by D, we have

n(n +1))2'

Dym? = 6Ch +6Ch +Chy = (7

m=1
Explanation. Here we have given the summing formula of the

first » terms of a pth order arithmetic sequence (with the general
formula provided). By this, we thus, give the summing formula of

imp(p =1, 2, *).

m=1

Example 4. Given the polynomial f(x) = x" +a; 2" " ++ +a,,

where a;, ***, a, € R. Prove that there is at least one number no less
than Z—"' among
If(l)r’|f(2)]7"'9’f(7’l+1)|.

Proof. It can be deduced from Theorem 1 that

Af(x) = D (—DiICf(z +n—i). @

=0

Noting that f(x) =x" +a;x™ " ++ +a,, we have A"f(zx) =nl.



50 Sequences and Mathematical Induction

Lettingx = 1in (D, we have
n!:i(fl)iC;f(n+1—i). @
=0
If the proposition is false, then for 0 <7 < n, there holds
| S+t <2

Along with ), there must be

n o n ) '
nl < D) [ (=DICfn+1—) < DC - ’;ﬂ- =nl,
=0 i=0)
which is contradictory.
Hence the proposition is true.
Explanation.  This problem can also be dealt with Lagrange
interpolation formula.

Example 5. For nonnegative integer N, let w (N) be the number
of 1s in the binary representation of N (for example, «(10) = 2,
because 10 = (1010),). Denote the degree of p(x) by deg p(x). For
any £ € N*, prove that it holds

k(e—1)

(—Dlrg skl e2 7, if deg p(x) = k.

2* 0, if deg p(x) <k;
E(_1)u(i)p(i) :{
i=0

Here o is the leading coefficient of p(x).
Proof. Solve the problem by the method of differences.
Fort € N*, let A, (p(x)) = p(x) —p(x +1¢). Then
gr(x) = A (Do (Ao (At (p(x)))mee))
is also a polynomial of x.
Let’s prove the following by inducting on &.
2*—1

DDV p (i) = g, (0. ©)

i=()

When £ =1, the left side of D = p(0) —p (1), while the right side
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q1(0) = p(0) — p(1). Hence O holds for £ = 1.
Now suppose that (D holds for 2. Let’s consider the case of & +1.
Then

2k+] 1 2k 1 21z+1 1

2 (_1)u(i)p(i) _ E(*D““)p(i) + E (wl)u(i)p(l’)
i=0

i=0 it

%*—

o
_ 2(71)14@)1)(” _ Z(,Duwp(zk +i)
i=0 i=0

2

= D= DD (pG) — p(2* +1))

1=

*

= D (= 1D*DAp (p (D).

i=0
Now substitute A (p(x)) for p(x) and apply the inductive hypothesis
to it. It can be deduced that

2k+1 1

D=1 p() =g (A (PO = gogs (O,

i=(
Therefore for 2 € N*, @ holds.
Note that when deg(p (x)) <k, every time we take the difference
of p(x), the degree is reduced by one. Hence when deg p(z) < &,
q:{(x) = 0. Whendeg p(x) =k, fort € N*, we have

Ap(x)) = p(x) —plx +1)
=olz* —(x +0") +RGE" —(x +)") + -,

By the Binomial Theorem, we can deduce that A, (p(x)) is a
polynomial of degree # — 1 and the leading coefficient is — atk.

Therefore ¢, () is a constant polynomial and

1
@@ =[] (—G+D+2))ea
i=0
k(E—1

=(—1)* 2 2 ekl eqg.

Hence the proposition is true.
Explanation. We can get a different identity when we take different
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polynomial p (x) of degree k.

Example 6. Let {a,}, {b.} be two sequences. Prove the following

binomial inversion formula: for anyn € N*, a, = >, Ckb, holds if and
k=0

only if for anyn € N*, b, = >, (- 1)"*Cka, holds.

k=0
Proof. For m € N, let f(x) be a polynomial of degree m

satisfying that for 0 <<k <m, f(k) = a,.

From the difference polynomial in example 2, it can be deduced that
n x
flz) = EAkf(())( )
k=0 k
S x . .
Letg(x) = Ebk (k ) Then g (x) is a polynomial of degree m.
k=0

If for any n € N*, it holds thata, = ECﬁbk. Then for any 0 <

k=0
n <m, it holds that g(n) =>,Cis, = a, = f(n). This shows that

k=0
there are m + 1 different roots (x =0, 1, 2, -, m) of f(z) —g(x).

Hence it is a zero polynomial. Therefore b, = A" f(0). Along with
Theorem 1, it can be deduced that

b, = N FO) = D (—=1)"*CEf(R)

k=0
= Zn) (— D" *Clay.
=0
Conversely, if for anyn € N*, it holds thatb, = Z") (—=D"*Clax,
then b, = A" f (). Hence g(x) = f(x) and thus, o

a, = f(n) = gn) = >,Chb, = >,Cib,
k=0 k=0

(note that we have to take m > n).

In conclusion, the binomial inversion formuia holds.
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Explanation. We have given several formulas related to the method
of differences. They are useful in proving some identities. They are
also often applied in finding general formulas and summation of
higher-order arithmetic sequences.

7 Recursive Sequences

If the nth term a, of sequence {a,) is determined by several terms

before it, then the sequence is a recursive sequence. In fact, arithmetic and

geometric sequences are recursive sequences. The recurrence relation

of them isa, = 2a,4 —a,, anda, = a,— * q, respectively.
Generally, suppose

Apte — F(an? Apt19 **° an+k*1)- @
That is, a,+ 1s a function of a,s a,s ***s a.is and the initial
dataa,, --*, a, are determined. Then sequence {a,} is called a kth

recursive sequence and (D is called the recurrence relation of {a, }.

The problems related to recursive sequences fall into two classes.
One is finding the general formula (or other properties) of a sequence,
given the recurrence relation; the other is establishing the recurrence
relation first and then seeking the essence of a problem by the idea of
recurrence.

Now let’s give some instrumental results.

Sequence {a, } satisfying the following recurrence relation is called

a homogeneous linear recursive sequence with constant coefficients.
Aptr = C1lptp—1 T Colppr— 000 T Colyns @

where ¢y, ¢35 ***» c; are constant.
Note that if A is a root of

A = AT A e gy, ®
then sequence {1} (n = 1, 2, ---) satisfies recurrence relation @.
Moreover if the roots of @ are distinct, letting them be Ay, Az, -+,

Ars then sequence {A A7 +AA5 ++-+A A7) (n =1, 2, -++) satisfies Q)
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and the coefficients A;, A,, ---, A, can be determined by initial data
ais az» =+, a; (by solving a linear system). In this way, we get the
general term of a sequence satisfying (2 with given initial data a,,
Ars ***y Ap.

This method of finding the general formula of a linear recursive
sequence is called the method of characteristic roots. And @ is called
‘the characteristic equation of 2. The result will be rather complicated
if there are multiple roots of @, which will be illustrated in later
examples.

In comparison, we can also make use of the method of generating
functions. Generally, for sequence {a,}(n = 0, 1, 2, +), the
following formal series

flx) =ae +ajx +ax® + -

is called the generating function of sequence {a, .
For example, the generating function of constant sequence a, =

Iyn =0, 1,2, s (@) =14z +2? = = 2— (|2 [ <1, which

is the summing formula of infinite decaying geometric sequences.
Since the method of generating functions involves knowledge

about advanced sequences like convergence of series, we will give the

following formula of form series without proof and then show how to

utilize this method in examples.

a) _ale =1 (a—n+1)

n!

For « GR,denote( »n € N(itisa

n

generalization of binomial coefficients, which has been referred to in

last section. Also, we define (?)) = 1). Then

(1 +x) :1+<‘i>x+(‘;>xz+.... @

Specifically, whena € N*, @ is the binomial theorem.
There is no uniform method to deal with recursive sequences of
other forms. One of the common methods is the method of fixed points.



Knowledge and Technique 55

Example 1.  Given sequence {a, } satisfying that

a, =0, ayy =5a, ++/24a2+1,n =1, 2, =,

find the general formula.
Proof. Transform the recurrence relation. It yields

(app —5a,)* = 24a2 +1.
Equivalently,
a’y —10a,a,4 +a2 = 1. )
Substitute the subscript n + 1 for n. It yields
aly, —10a,pya,s a2y = 1. @

Comparing @ with @, we can deduce that a, and a,4 are the

roots of equation
x? —10a,qx +a2y —1 =0. ®

It can be deduced from the recurrence relation that {a,} is an
increasing sequence. Hence a, and a,4, are distinct. Therefore applying

Vieta’s theorem to @), we get
An+2 +an = 10an+1 ’

equivalently a,, = 10a,44 —a,, n = 1, 2, *--,

This is essentially a problem of second order homogeneous lincar
recursive sequence. We will give the following two ways to find the
general formulas.

Method 1. The characteristic equation is
AP =101 — 1,
with two roots A;,, = 5 +2/6. Hence we can assume
a, =A+(5+2/6)" +B .« (5-2/6)",

Noting the initial dataa, = 0, we havea, = 1. Then solving
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{(5 +2/6)A +(5 —2/6)B =0,
(5 +2/6)2A + (5 —-2/6)’B =1,

_5-2/6 5 _ —=5-2/6
46 46

. Therefore

a, = —1 (G5 +2/6) — (5 —2/6)).
4/6
Method 2.  Utilize the method of generating functions. For the
sake of convenience, we can define complementally that a, =— 1 by
the recurrence relation and the condition thata; =0, a, = 1. Then the

generating function of {a,} (n =0, 1, 2, ---) satisfies that
oo o0
flx) = Dlax” =—1+ D,a,x"
n=0 n=2

o e
== 14+10> apsx" — X a,mz”
— n=2

n=2

+oo o0
=—1+4+10x Y a,z" — x>, a,z"
n=1

n=0

=—1+10x(f(x) +1) —x?f(x).
10x —1
2 —10x + 1
A 4 B
1—G+2/6)x 1—6G—-2/6)x

in the form of a partial fraction), we have

Solving the equation, we get f(z) =

Letting f(z) = (rewrite f(x)

{(5 —2/6)A + (5 +2/6)B =10,
A+B=—1,

1 1
Then B = —(—5 -2/6), A = ——(5 —2/6).
e NG 46

Now expand f(x) in the form of formal series.

+oo +oo
f(@) =AY, +2/6)"x" +BY,(5—2/6)"x"

n=0 n=0
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400
= D (AG +2/6)" + B(5 —2/6))x".

n=()

Hence

a, =AG+2/6)" +B(5 —2/6)"

=L (5 +2/6) — 5206,
46

Explanation.,  This example demonstrates fundamental steps of
finding the general formula of sequences by the method of generating
functions: first, find the generating function f(x) by the recurrence
relation, then expand f(x) in the form of formal series and get the
general formula from the equality of the coefficients of corresponding
terms.

Example 2. Sequence {a,} satisfies that a; = 2 and that forn =
1, 2’ seey

An+1 292_"+ai- CD

Find the general formula of the sequence.
Solution. Here we introduce the method of fixed points (which
comes from the idea of iteration of functions). First, find the roots of

equation

— A
A=G+ @

1
e
They are Ay, , ==4+/2.

Noting @O and thata, =2, we can deduce that each term of {a,} is

a positive rational number. Now by O —@, we have that forA = +2,
it holds that

e

which can be transformed into
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Ant1 _)( :l__l_:kan *2
a, —A 2 Aa, 2a, ®

Take A =+2, —v2 in @ respectively. The quotient of both sides
of the two formulas is

An i“/—2— — {an _ﬁ }2
A+t +ﬁ a, +’\/—2- ’

Hence we have

At =2 _ [an -2 r _ [aﬁ -2 ]2

2

a,+ +ﬁ an _)_\/2_ An—1 _'_ﬁ
a, _«/E ” n
=== =(3-2/2)
{(11 “'ﬁ J
=2 -,

Therefore a"—jr% = (/2 —1?. Solving the equation, we get
a,

_ 20+ G2 -7
1-W2 -

n

Example 3. Letm, n € N* and mn be a triangle number (i.e.,
there existst € N*, satisfying thatmn =1 +2 + --- +¢). Prove that
there exists a positive integer £ such that for any subscript j, the
sequence {a,} defined by the following recurrence relation

a1 = My Qy — Ny a]- - 6a]-_1 — A4 +k, ] = 3, 4, vee
satisfies that a ;a;1, is a triangle number.

Proof. Note that

x is a triangle number & there existst € N*, satisfying that x =
142+ 41

t(t +1
2

©there existsz € N* satisfying that 8z +1 = (2 +1)2.

&there existst € N satisfying thatx =
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Hence we need only prove that there existsk € N* , satisfying that
foranyj € N*, 8a;a;y, +1is a perfect square.

Starting from the formula of the perfect square, let’s see whether
there exists & € N*, satisfying that for any j € N*, it holds that
8a;aj1 +1 = (a; +aju +1)%, where/ is a constant related to £ only.

Taking j = 1in the conjecture, we have that! = /8mn +1 —m —

n ( since mn is a triangle number, +/8mn +1 € N*).
Moreover, if for any ;j € N*, it holds that
8ajaj+1 +1 =(aj +aj+1 +Z)2 @
Then substitute j + 1 for j in D. It yiclds
8aj+1a]-+2 +1 = (aj.H +aj+2 +l)2. @
Subtracting both sides of the two formulas, we get
8(aj+2 —a]-)aj+1 = (aH‘Z *aj)(a]urz +2aj+1 -l—aj +21)
<:>8aj+1 = dj +2a]-+1 +a,- + 2/ ®
<:>aj+2 = 6aj+1 —a; ‘2[
Then it can be deduced from O, @ that @ holds.
With the analysis above, if we let

E=—2l =2(m +n) —2/8mn +1,

then the sequence {a, } defined by the given recurrence formula satisfies the
condition, which can be proved by mathematical induction.

In conclusion, the proposition is true.

Explanation. Here we applied the idea of proving after guessing,
which is not unique to problems of sequences, but common throughout
the study of math. It is a reflection of inspiration.

Example 4. Sequence 0, 1, 3, 0, 4, 9, 3, 10, ---, is defined as
follows:
ag = 0and forn =1, 2, ---, there holds

An1 —ns ifa, 4 =n,
a, =

a,4 +n, rest.
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Does every nonnegative integer occur in this sequence? Prove your
result.

Solution. Every nonnegative integer occurs in this sequence.

Noting that by definition, {a, } is a sequence of integers, let’s first
determine the range of each term in {a,}. Inducting on n, let’s prove
that

0<<a, <2n—1(n = 1. @

When n = 1, it can be inferred from the condition thata; = 1.
Then @ holds. Suppose thata,_, (n >2) satisfies @. Whenn <a,; <
2n —3, a, =a,—1 —n € [0, n —3] (noting thatn < 2n — 3, we have
n >=3), which satisfies @; when0 <a,—, <n—1,a, =a,4 +n € [n,
2n — 1], which also satisfies (). Therefore @ holds forn € N*.

Now let’s rewrite the recurrence formula of «,: whena,, = 0,
A, =0,y apy =2n+1; whena,; €[1,n—11,a, =nt+a,4 €[n+
1, 2n — 1], and thena,, =a, —(n +1) =a,— —1; whena,; € [n,
2n — 3], a, =a,—1 —n € [0, n —3], and thena,y, =a, +(n +1) =
a,—1 +1. Hence whenn =3, we have that

2n +1, ifa,,#1 :0,
Ap+1 = YAn—1 _17 lf a,— c [1, n — 1], @
a,41 +1, ifa, . €{n, 2n —3].

As to the original question, if there are nonnegative numbers that
don’t occur in the sequence, we can take the least one. Let it be M,
then M >1and M —1 occurs in the sequence. Suppose thata,, =M —
1. If a,y € [n, 2n — 3], then M = a, 4 +1 = a,u, which is
contradictory. Hencea,—, <<n —1. Noting thatM >1, we havea,—, €
[1, » —1]and thena,.s =a,1 —1 € [0, n —2]. Moreover, a,;; =
a,+1 —1(ora,s =0). Repeating the steps again and again, we get a
subsequence a,—y > d,t1 > apps > 0 >aq =0, wheres =n +2,

Noting thata,—, <<n —1, we have M <{n. Sincea,, =0, by @,
we can deduce thata,w = 2s +1 > s +2. Moreover, it holds that

A2 = At 7(5 +2) =s5s—1¢ [09 5+1:|.
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We can infer in the same way thata ., € {0, ags —1}, ---. Therefore
there must be a subscript ¢ such thata, =M (sinces —1 =n +1=M).
Hence M must be a term in {a, } , which is contradictory.

In conclusion, every nonnegative integer appears in {a, }.

Explanation. The key to this question is to rewrite the recurrence
formula given in a proper way into the form of @, which reveals the
feature of adding 1 or subtracting 1 every two terms. This laid a solid
foundation for proving that every nonnegative integer, occurs in the

sequence.

Example 5. Let A, denote the set of n-letter words consists of a ,
b, ¢ with no consecutive as and bs; let B, denote the set of n-letter
words consists of a, b, ¢ with no three distinct consecutive letters. For
any positive integer n, prove that | B,, | =3 | A, | holds.

Proof. Let’s apply the method of recurrence to solve this question.

Let ¢, denote the number of words with initial c and d, denote the
number of words with initial« orb in A,,.

For words in A, , we can classify them by their initials. If the
initial isc, then the word belongs to A, as we remove the first letter; if
the initial is a , then the second letter must be ¢ or b; if the initial i1s &,
then the second letter must be ¢ or a. Therefore the following

recurrence formula holds:

Cn+1 :1An |:Cn +dn’

dn—H = ch +dn- @

Now let ¢/, denote the number of the words in B, whose first two
letters are same and d, denote the number of the words in B, whose
first two letters are different.

For words in B,1,, we classify them by the first two letters. If
they are same, then we can give the third letter arbitrarily. The word
belongs to B, as we remove the first letter. If they are different, then
the third letter must be same to one of the first two letters. If it is

same to the first letter, we can get d’, words as we remove the first
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letter. If it is same to the second letter, we can get 2¢,, words, as we
remove the first letter (here the coefficient is 2 because we get the
same word as we remove the first letter from abb--+ and cbb--+).

Therefore the recurrence formula is

v =| By | =c,+d,

do =2 +d. @

Noting that the recurrence formulas (D and @ are exactly the
same. The only difference is there initial value. By enumerating
directly, we have c; = 1, d; = 2; ¢3 =3, d,= 6. Hence ¢, = 3¢,
d’=3d,. From the recurrence formula, we can deduce that ¢’,4, =
3¢ns diyss = 3d,. Noting that | A, | =c,, and | B, | = ¢’y s we get
| Bow [ =31 A, |

The proposition is proved.

Explanation. It is an important method to apply the idea of
recurrence to combination and counting problems. The recurrence
formula we established here can be turned into homogeneous linear
recurrence relation with constant coefficients. We can then find the
value of | A, |.

Example 6. Sequence of real numbers {a,} satisfies that for any

different positive integersi, j, | a; —a; | = % holds. Moreover,

there exists a real number ¢ such that for anyn € N*, 0 <<a, < c holds.

Prove that ¢ < 1.

Proof. This question does not give the relationship between the
terms of the sequence in the form of an equation. Instead, it describes
the distance of the terms by an inequality. There is a sense of real
analysis in the process of solving the question. The solution is based on
the idea of summation after splitting terms.

Forn = 2, let (1), ---, =(n) be a permutation of 1, 2, -, n,
such that

0 <an(1> <a,((2) < e <an(n) <C. @
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Note that the terms of {a,} are distinct according to the conditions.
Thena,, -, a, are just sorted from the least to the greatest in .

From () and the conditions, we can deduce that

n—1

€ Zam —awn = Z(an(k+l) — )
=

- n—1 1
T e 1) k)

By Cauchy inequality, we have
n—1

1 (n —1)?
2. =
~ (k FD r xRy T L
e T ) Sk +1) + k)

k=1
_ (n —1)° _ (n —1?
: nF D — =D =G0
23V r (k) — (D) — () e
=1

(n —1)? n—1)?* _n—1_ 3

Z A+ D —1=2 " nn¥D =2 ant2 ' ay2

Hence we have

Lettingn — + o, we getc > 1.
The proposition is proved.

Example 7. An infinite sequence of real numbers {a,} is defined
as follows: ay, a, are two different positive real numbers and a, =
| apis —auia |s m =0, 1, 2, -+, Is it possible that the sequence is
bounded? Please prove your result.

Solution.  This sequence must be unbounded. The fundamental
idea is to take an increasing unbounded subsequence from {a, }.

In fact, if there existsn € N*, satisfying thata, = a, , then by
the recurrence formula, we have a,—, = 0, and moreover a,—» = a,—

(note that each term of {a,} is nonnegative). As we deduce
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successively, we have a; = a, or one of a,, a, is zero, which is
contrary to the condition that a,, a, are two different real numbers.
Therefore for anyn € N*, a, # a,, (equivalently, there are no same
consecutive terms in {a, }). Hence noting the recurrence formula, for
anyn € N*, a, > 0.

Now let’s find an increasing subsequence {4,,} from {a,}.

It can be inferred from the condition thata,., =a, +a, 0ra,» =
ap+ —a,. If the former holds, then a,+, > a,4. If the latter holds,
thena,, <a,+. It must holda,s = a4z T a,s, SINCE Aty = apy —
a, (otherwise a,13 = a,2 — a,n < 0, which is contradictory).
Therefore a,.43 > a,+. The discussion shows that it holds either a,., >
Aut1s OT Apty < At << Ap43.

With the result above, we can remove from {a, } all the termsa,
satisfying thata,+; <a, anda, <<a,i, (note that whenn =2, a,, >
a,). It’s certain that we remove a, and keep a, if a; > a,. As we
remove the terms, the remaining ones can be denoted by, , b,, -+ and
then sequence {6, } is increasing.

At last, let’s prove that {4,,} is unbounded.

For anym € N*, it suffices to prove that b, —b,p1 = by — b,
(since by summing after splitting the terms, we have b, —b6, = m (b, —
b1). Lettingm —+ oo, we get that {b,,} is unbounded).

By the definition of {b,,}, we can setb,,., = a,4» (note that » may
not be same tom). Since a,.» is not removed, a,.; > a,11. If gy >
a,s then b, = a,+ while b,, = a, or a,—, (if the former, thena, >
an,— ). Thus, it always holds that 4,, = a,—. Therefore we have

bm+2 _—ber] T Apt2 T Aptt T Anp T Ap41 T Ag— >bm+1 gbm‘

Ifa, <a,,thenb,, =a, whileb, =a,, ora,—, (if the latter,

thena, , > a,—. Otherwise a,—; is not removable). Hence
bm+2 _bm+1 = Apy2 T Ay T Ap T Ay T Ap— >bm+l _bm-

The proposition is proved.
Explanation. Readers are encouraged to write a specific sequence
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when reading the answer which helps to find the relationship between
{a,} and {b,,}. Similar to the previous question, this recursive sequence is
not defined by definite formulas. Both questions involve the estimate

of inequality, which is a reflection of analysis.

Example 8. Sequence {a, } satisfies the recurrence formula

2
.1
an+1:an+17n:()’ 1929"

Is there a positive real number such that both of the following
results hold?

(1) If ay = a, then lima, does not exist;

n—=co

(2) If 0 <<ay <a, then lima, = 0.

700

Solution. There exists such positive real number a = 2. Mathematical
induction is applied repeatedly in the solution to this question. The
details are left to readers.

(1) When ay = 2, we can prove by mathematical induction that
forn =0, a, = n +2 holds. Then lima, does not exist.

n—00

(2) when 0 <<a, <2, it can be divided into two cases:

Case 1. 0 <Ca, << 1. Now we can prove by mathematical induction

that for anyn € N*, | a, |< % holds; thus, lima, = 0.

n—-oo

Case 2. 1 <<a, <<2. If there existsm € N* satisfying thata,+ <

2
0, we can take the least m. Then0 <<a,, <1land | a,u | = }n +ai" <
ﬁ. With this result, by mathematical induction, whenn =m +1,

we can prove that | a, | < % holds. Hence lima, = 0.

n—»—-o00
Lastly, if for anym € N*, a,, >0 holds, noting that 1 <{a, <2,
we have a, >>1holds forn =0, Now leta, =2 —¢ (0 <<e <1). By the

recurrence formula and mathematical induction, for any n € N*, we

can prove thata, <\n +2-—ne. Therefore takingm =(% W » we havea,, <<
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m +2—me <<m +1. Then we can prove by mathematical induction that
(m +1)* —1

e When = is sufficiently large, it

foranyn > m, a, <

holdsa, <1, which is contradictory. Hence there must be ann € N*
satisfying that a,, <C 0, which falls in the previous case.

In conclusion, a = 2 satisfies the conditions.

8 Periodic Sequences

We call sequence {a,} a periodic sequence, if there exist positive
integers T andn,, such thata, = a,4r holds for anyn =#n,. Moreover,
we call {a,} a pure periodic sequence if n, = 1 and T the period of
{a,}.

By the definition of periodic sequence, if T is a period of {a,},
then mT is also a period of {a,) for any m € N*. Combining the
property above with the Bezout’s Theorem, a famous theorem in
number theory, we can get the following theorem:

Theorem 1. If T, and T, are periods of periodic sequence {a,},
then (T, T,) (the greatest common divisor of Ty and T',) is also a
period of {a,}.

From this theorem, we can infer that a periodic sequence {a,} has
its least positive period, which is in stark contrast with the fact that a
periodic function f may not have a least positive period.

For sequence of integers {a,}, it can be a periodic sequence
modulo m , for some positive integer m , while it may not be a periodic
sequence itself. This is the concept of modulo periodic sequence. Then
there exist T, n, € N*, such that for anyn >=ny, a,4+r =a,(modm)
holds.

Theorem 2, If sequence of integers {a,} is a recursive sequence
with constant coefficients, then for any m € N*, {a,} is always a
periodic sequence modulo m.

Actually, if {a,} is a recursive sequence of degree & with constant
coefficients, let’s consider the following arrays
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(a1,a2,"-, ak)9 (azv aszs **% ak—H)"". @
Eachx; in the array (a;, a,, ***y a,), can only take a value from0, 1,
2, =+, m —1, modulo m, then there are at most m* different cases for

the arrays in . Consequently, there existr, ¢ € N* (r<t), such that
(@rs Gmas s ) =(ary Aty =5 ane) (modm).

Let T = ¢ —r. Noting that {a,} is a recursive sequence with constant
coefficients, we can get that for anyn >=r, a,r = a,(modm).
Therefore, Theorem 2 holds.

Example 1. Let x,, x; be positive real numbers and sequence

_ 4max{x,4, 4}

{x,} satisfying that x,, = n=0,1,2, - Find the

xﬂ
value of xop1.

Solution, For the sake of convenience, let x, = 4y,. Then

n H 1
Vot2 = max{y al }a n — 09 19 2’ e,

Yn

We can get the following table by direct calculation:

yu<1yy1<1 y(><1,y1>1 yu>1,y1<1 yo>1,y1>1
. 1 I 1 »
Yo Yo Yo Yo
B 1 1 1 { 1 1 }
Y3 = - — max{— s —
YoY1 Yo Y1 Yo Y
_ 1 1 Yo Yo
Y4 = o o — -
Y1 Y1 Yi Y1
Y5 = Yo Yo Yo Yo
Yo = V1 Y1 Y1 Y1

Therefore {y, } is a pure periodic sequence with period of 5, so is
{x.}. As aresult, x5 = z;.

Explanation. The recurrence relation given in the question above
is a special form of Lyness Equation. Here determining a period by
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direct calculation is a straightforward and effective method to deal
with fractional (periodic) recursive sequences.

Example 2. Let0 <<z, <1 and sequence {z,} satisfy

22, —1,il 3 <z, <1,
Tt = (n=0,1, 2, --)
2%, s if0<zx, <E
And xs = z,. How many sequences are there that satisfy these
conditions?
Solution. Note that sequence {x,} is determined uniquely when
xo is fixed. Then we have converted the problem into finding how
many different values that x, can take on.

We use the binary system to solve this question. Represent {z,} in

binary numbers. Letx, = (0. 8:6,-+),. Ifb; =1, then% <z, <1,

and thus, z,+ =2z, =1 =1(0.b,6;"*)2; ifb; =0, then0 <z, <% and

thus, .1 = 2z, = (0. b3b5+++),. It indicates that x,+, = (0. b,b5+++),
holds as long as x,, = (0. b,b,+++), (which is equivalent to “swallowing”
the first number after the decimal point).

Now, letx, = (0. a as**"),.

Then we can deduce that x5 = (0.as a;++*), from our discussion
above. Noting that x5 = z,, we have that x, is a recurring decimal in

binary numbers, i.e., x¢ = (0.d,a,*** ds)y = %g‘_"iﬂsT)g, in which

(a,+++as), represents a nonnegative integer in binary numbers (noting
thata,, -+, as are not all 1).

In conclusion, there are 2° — 1 = 31 different values for x,
(because a;, ***, as can take on O or 1 as their value, however, they
are not all 1). That’s to say, there are 31 different sequences.

Explanation. Here we use binary representation to turn recurrence

relations into formulas with more regularity. Then combining it with
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the periodicity of the sequence, we grasp the structure of this sequence. In

essence, we are mapping functions between different spaces.

Example 3. Let f(x) be a polynomial with integer coefficients,
and sequence {a, } is defined as follows.

ay :0, A+ :f(an)9 n=20,1, 29 oo

If {a,} is a pure periodic sequence, prove that the least positive
period of {a,} is no more than 2.

Proof. We can turn this question into proving that if there exist
m € N” such thata, =0, thena, =0ora, = 0.

According to the factor theorem, since f(x) is a polynomial with
integer coefficients, for anym, n € Zim #n), m —n | f(m) — f(n)
holds.

Now letb, =a,n —a,» n =0, 1, 2, +--, then by the result above
and the definition of {a,}, we have b, | b,., (Note that if 6, = 0, then
bot1 = flawn) — fa,) = 0.

Sincea,, =ay =0, appy = f(ay) = a,. Consequently, b,, = by.

If 6, = 0, thena, = a; = *+ = a,, and the proposition is true.
Otherwise, | by | =| b,, | # 0, then noting that &, | b,, b, | by, -,
bt | by wecan get | by | =] by | =< =| b, |.

Since

b() +b1 +"' +bm71 =a, dy — 0,

half of ., 6., **-, b, are positive integers, while the others negative
integers. Consequently, there exists 2 € {1, 2, -, m — 2} such that
br1 =— by, and then ay—s = app. By the definition of {a,}, we have
ap.42 = a, holds for alln =%, — 1. Letn = m, we get

Ay = Ay = Apia :f(am+1) :f(f(am)) :f(f(a())) = daj.

Thena, = 0.
Hence the proposition is true.

Example 4. Letm be a positive integer greater than 1, sequence
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{x.} is defined as follows: x; = 1, 2, = 2, ***, x,, =m, and
Lptm = Tntm—1 +-rn? n = 17 27 °ec. CD

Prove that there exist m — 1 consecutive terms in {x,} such that they
are all multiples of m.

Proof. Consider sequence {x,(mod m)}, in which x, (mod m),
denoted by vy, represents the remainder that x, is divided by m. We
turn to prove that there are m — 1 consecutive zeros in the sequence
{yn?.

By Theorem 2 and (D, we have that there exist n, and T € N*
such that y,yr = y, for any £ = n,. Specifically, we have

Yuytm=t T Yagtm14T 2 Ynydm—2 = Ynydm—24T-

Subtracting the two formulas and noting (D and the definition of
Yes» WEcan get y, 1 = ya,—utr» and y. = yuir for every & = 1in the
same manner.

To get our result and calculate conveniently, we extend the
subscript of {z,} to negative integers according to the recurrence
relation determined by (D. Combining this with what we discussed
above, we can get that y, = yur, for everyk € Z.

Now, by x, = Z,4m —ZLaim1, We can conclude thatz, =z, =+ =
Z—wm-2 = 1 (here we used the initial condition thatx; =j, for any 1 <
j <m), furthermore, x_¢.—1, = x_, = *** = x_.—» = 0. Noting that

Yr = YetT» WE Can get
(VT s = Yem—a1) = (Yemmr s *** 0 Yotmn) = (05 ===, 0).

Nevertheless, v = *** = yo = 1. Therefore — 2m —3) +T =1,
which shows that there are m — 1 consecutive zeros among the terms
with positive subscripts in sequence {y, }.

Hence the proposition is true.

Example 5. Let m be a given positive integer, and for any
positive integer n, S,,(n) denote the sum of mth power of every digit
of n in the decimal system. For instance, S;(172) = 1° +7° +23 =352,
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Consider this sequence: n, is a positive integer, n, =S, (n,—), £ =1,
2, see,

(1) For any positive integer n, , prove that sequence {n; ) is always
a periodic sequence;

(2) When n, varies, prove that the set made up of the least
positive periods in (1) is a finite set.

Proof. Note that for positive integer n = 10™"!, there exists
p € N*, p =m +1such that 10? <n < 10", Thenn is a number with
p +1digits in the decimal system. Therefore

Sp(n) < (p+1)e9™ < (p+1) 971!
<9 +C e <O+ =107 <n.

This indicates that the terms of {n,} satisfies that if n, = 10",
then Nyt = Sm(nk) < ny.
On the other hand, if positive integer n < 10™", then

Sa(n) <(m +1) 9" <O+ =101,

We can get that if n, <<10™™, thenn ., =S,.(n,) <10 as well.

The discussion above indicates that when the subscript % is large
enough, n, < 10™" must hold. Hence from some term on, every term
of {n,} belongs to set {1, 2, -+, 10™" — 1}. That is, there exists
ko € N* such that for any 2 =k, 1 <<n, < 10" —1 holds. Combining
this with pigeonhole principle, we can get that there existr, s € N*,
r > s 2= ko such that n, = n,. By the definition of {n,), n, = npr
holds fork =5, where T = —sand T < 10" —1.

Hence {n,} is always a periodic sequence for any n, € N*, with
least positive period < 10" —1,

Therefore, (1) and (2) hold.

Example 6.  First choose a positive integer a,, and thena, € {a, +
54, ay +77}, and so on. When a, is fixed, we can choose a1y € {a;, +
54, a, +77}. In this way, we can get an infinite sequence {a, }. Prove
that there always exists a term whose last two number are same.
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Proof, Discuss this question by a, modulo 100. Let &, denote the
remainder when a, is divided by 100. Equivalently, &, is a double-digit
number among 00, 01, -, 99,

By the definition of {a,}, for anyn € N*, b4, =b, +770rb, +
2 X 77(mod 100) holds.

Since (77, 100) = 1, when j traverses the 00 79
complete system of residues modulo 100, 77; /,23
traverses the complete system of residues modulo { 54
100 as well. Forj; =0, 1, 2, ===, 99, we arrange \\ //
the remainder of 77; divided by 100 on a circle as . S

shown on the right. Then from the structure of )
{b,}, we can deduce that &, and b, are next to Figure 5
each other or separated by one number. Hence
there must be one in any two adjacent numbers that is in {4, }. Since 00
and 77 are adjacent, there must ben € N* such thatd, =00o0r 77, i.e.,
the last two digits of a, are 00 or 77.

Therefore the proposition is true.

Explanation. Each term of {a,} has two choices and furthermore
{a,} is not changing periodically under mod 100. But it does jump
regularly and the method of combination helps solve the question

smoothly.

Exercise Set 1

1. For any nonempty finite set, prove that we can arrange all of
its subsets in a line, such that the difference between the numbers of
elements of any adjacent subsets is 1.

2. Sequence {a, ) satisfies thatay, =0, a, +a,» =>2a,4, n =2,
3, vee,
For anyn € N* and k € Z, prove that na, < ka, holds as long as
0 <k <n.

3. Sequence {a, ) of positive real numbers satisfying thata? <a, —
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Aui1s n =1, 2, -, Prove thata, <% holds for anyn € N*.

4. Let real numbersa,, =+, a,(n ==2) satisfy thata, <<a, <+ <
a,. Prove that

aias +aral + - +a,at =asat +azal +-- +aat +aal.

Apdn,— +1
ap—

5. Leta; =1, a, =2, a,u = s =2, 3, -,

Prove that a, >+/2n holds for any positive integer n > 3.

6. Leta be a positive real number. Prove that

1+4+a%+a* +: +a” —ntl
a+a+a’+-+at T a
holds for any n € N*.
7. Prove that

3n¢t 1 1
lg(n!)>10<2+3+ —l—n)

holds for anyn € N*, n = 2.

8. Sequence {a,} of positive real numbers satisfying that Eaf- =

i=1

( z a; )2 holds for any positive integer n. Prove thata, =n for anyn € N*.
j=1

1

9. Leta,, -, a, ben different positive integers. Prove that
a? +-+ +a? >2n3+1(a1 + e Fa,).

10. Sequence {a,} of real numbers satisfies that
M) a;, =2, a» =500, a; = 2000;

a,2 ta a
(2) n+2 ntl _ Unfil ,n = 2’ 3,
Ayn+1 +an71 ap—1

Prove that each element of {a,} is an integer, and 2" | a, holds for any
positive integer n.

11. Let £ be a positive integer given, and sequence {a,} satisfy
that



74 Sequences and Mathematical Induction

ai =k +1,a,m =a2 —ka, +k,n=1,2, -,

Prove thata,, anda, are relatively prime, for any positive integers
m #n.

12. Sequence {a,} satisfies thata, =1, a, = a, +a[%] ,n=1,
2, e

For any prime number p no larger than 13, prove that there are
infinitely many terms of {a,} that are multiples of p.

13. Denote {x} the decimal part of x. Prove that

holds for anyn € N*.

14. Letm, n € N, and S, (n) = >, [’ez X ] Prove that
k=1

S,.(n) <n +m( yz_m—1)

holds, where [z ] is the greatest integer which is no larger than x.
15. Let & be a positive integer given. Consider sequence {a,}

satisfying that;
k
a0 =1y awrs =an +| Yay | n=0,1,2, .

Find the set comprised of all the integer elements of { Va. } for

every k.

16. Sequence {z, ) satisfies that x; = -é— y Ty = 27[2; 3

Luas N =2,

3, e
Prove thatxy +x, +++ +x, <<1holds for anyn € N*.
17. Sequence { f (n)} satisfies that

QO =2, fn+1D =@ —fn) +1,n =1, 2, 3, -,

Prove that
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1 1 1 1 1
1— + R el B
> ST 7@ 70 5
holds for any integern > 1.
18. Two sequences x;, x,, *** and y,, y,, *- of real numbers

satisty that

Zor1 =Z, TV 1 H2Z0 5 Yo =

Yn
—_—, n = 1.
1+/1+52
Prove that2 < z,y, <3 holds for anyn > 1.

e 1 2a,
19. Sequence {a,} satisfies thata, = o7 Gt = Tral n =0,

while sequence {c, } satisfies thatc, = 4, c,1 =c¢2 —2¢, +2, n =0.

“Cu holds for anyn = 1.

n

Prove thata, = 26('“?

20. Sequence {a,} satisfies thata, = 1, a,+n = ‘;—" + 0=,

Prove that [a2] = n holds for anyn € N*, n >4,
21. Let a be an irrational number, and n» be an integer greater

than 1. Prove that (a + va? —1)% 4+ (a — v/a? — 1)~ is an irrational

number.

22. Sequence of real numbers {a,} is defined as follows. a; = ¢,
awpn = 4a,(1 —a,)s, n =1, 2, ---. How many different ¢z are there
satisfying that a, = 07

23. Sequence of real numbers x,, x., ***, x1; satisfies that
| x; =z |<1fori =1, 2, -+, 2010. Find the maximal possible
value of D | x; [—| D), |.

i=1 =1
24. Let ags ais az, -+ be an infinite sequence of positive real

numbers. Prove that there exist infinitely many positive integers n such
that 1 +a, >v2a,_;.

25. For anyn € N, the function F: N— N satisfies that;

(1) Fl4n) = FQ2n) + F(n);

(2) Fl4n +2) = F(4n) +1;
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(3 FQn+1) =FQn) +1.

Prove that the number of integers » satisfying that 0 <<n <C2™ and
F(4n) = F(3n) is F(2™),

26. Function f: N* — N* is defined as follows. /(1) =1 and for
any positive integer n,

f) +2,ifn =) —n+1,
+1) =
fn ) fn) +1, other n.

(1) Prove that f(f(n) —n +1) € {n, n +1} holds for anyn € N*.
(2) Find the expression of f(n).

27. Sequence {a,} is defined as follows:
a1 =0, a, =ary] (=D, 0 =2, 3, -

For each £ € N, find the number of subscripts n satisfying that
2 <n <2 anda, =0.

28. Sequence of real numbers {a, ) satisfies that

. o —2,fx, —2>0,and x, —2 & {x15 ***s Z,).
1 =1, Tpy =
! A x, +3, other cases.

For any positive integer £ >> 1, prove that there exists a subscript n
such that r,y = x, +3 = k2.
29. Letn be a positive odd number, & be a real number satisfying

that % is an irrational number. Leta, = tan(@ +k;"> y B =1, 2, -,

a; ta, ++ +a,

a as***a,

n. Prove that is an integer and find its value.

30. For anyn € N*, prove that there exists a polynomial P (x) of
degree n with integer coefficients whose leading coefficient is 1 such
that 2cos ng = P (2cos ¢), where ¢ is any real number.

31. Leta and cos an be rational numbers. Find all possible values
cos aw can take on.

32. Do there exist infinitely many points on the unit circle such
that the distance between any two points is a rational number?

33. Letn be a positive integer no less than 2. Find all polynomials
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with real coefficients
P(x) =a,x" +a,—1x™ "+ +ags (a, #0),

such that P(x) has n real roots that are all no more than — 1, and
satisfies that

at +aa, = a2 taja,—.
34. Let P(x) be a polynomial with integer coefficients satisfying

that P(n) >n for anyn € N and that there exists at least one term in

sequence
P, P(P(1)), P(P(P(1))), -

that is a multiple of m for any m € N*. Prove that P(x) = x + 1.
35. Let P(x) be a polynomial with real coefficients whose degree

is an odd number. It satisfies that
P(z?—1) =P(x)*—1

for any x € R. Prove that P(z) = x.
36. Function f: N-> N satisfies that
(D | f(x) — f(y) |<| = —y | holds, for any real number x, y.
(2) There exists positive integer £ such that £’ (0) = 0, where

S = f@), O (@) = (@) n =1, 2, -,

Prove that £(0) = 0 or £(f£(0)) = 0 holds.
37. Sequence {p (n)} satisfies that

P1 =2, p2 =5, paya = 2ppt TP =1, 2,
Prove that

o« G AR
P = 2R

holds for any positive integer n. Here, we take the sum among all

nonnegative integer groups (i, j, &) satisfying that: +; +%, = 2n.

38. LetA, :{1+—“—1 4o -2 14, =10r—1, wherei =1,

V2 /2)"
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2, ).

(1) Find the number of different elements of A, , for everyn € N*.
(2) Find the sum of the product of any two different elements in
A, , foreveryn € N*.

39. Sequence {z,} is defined as follows

xg =4, 21 =2, =0, 23 =3,

XLpt+s — Ty +xn+1? n=20,1, 2, -

Prove that p | x, holds for any prime number p.

40. Find all sequences of positive integersa,, a;, ***» a, such that
Ao 4 @y Dt 99

(1) aq +a2 + + ay 100’

(2) ayg — 1 and (ak-H _1)0.12—1 Zaﬁ(ak _1), k= 1, 2, e n —1.

41. Sequence {y,} is defined as follows. y, = y; = 1, and
n+1Dn =Dy, =nn?> —n—Dy, —(n =13y, ,n =3, 4, -,

Prove that y, is an integer if and only if » is prime.
42. Let p >3 be a prime number, and ¢ = p>. Sequence {a,} is
defined as follows.

a, =

{n, n :()9 19 2, “tty p _17
Ant Fanpsn>p —1,

Find the remainder of a, divided by p.
43. Let n be a positive integer no less than 2, and b, be an integer
satisfying 2 << b, << 2n — 1. Consider the sequence {b,} determined by

b‘ 2{2])1"1, ifbi<n9
i+1
2b; —2n, if b, >n.

Let p(b,, n) denote the minimal subscript p satisfying thatb, = b,.
(1) Let & be a positive integer, find the value of p(2, 2*) and
p(2, 2 +1).
(2) Prove that p(by, n) | p(2, n) holds for any » and b,.
44. Given a broken line starting from (0, 0) and ending at (1, 0)
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on a coordinate plane.

For anyn € N”, prove that there exist two points on the broken
line with same ordinate, whose abscissas differ ;1— from each other.

45. There are a black box and » white boxes marked by 1, 2, ---,
n and n white balls placed in the white boxes. The following operations
are allowed: If there are exactly £ white balls in the box labeled by &,
then take all the %2 balls out, and place one ball respectively in the
black box and white boxes labeled by 1, 2, -+, £ —1, Foranyn € N*,
prove that there exists only one way of placement such that the »n balls
are placed in the white boxes at the beginning, and are placed in the
black box after limited times of operations.

46. Let R, be an array with n elements, whose elements belong to
{A, B, C}. Define sequences Ry, R, R,, -+ as follows. If R, = (z,,
sy 2,0y then Ry = (y15 y2» **» y.), Where

xiy f 2 = 2015

Yi = .
{A9 B, C}\{xi9 xi+1}7 if X F Tty

and x,1 = x,. For instance, if R, = (A, A, B, C), thenR;, = (A,
C,A,B),R,=(B,B,C, C), .

(1) Find alln € N* such that there exists m € N* satisfying that
R,. = R, for any R,.

(2) Find the minimal positive integer m satisfying (1) for n =
3*(k € N*).
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9 The Fibonacci Sequence

The Fibonacci sequence {F', } is defined as follows.
F1 :Fz = 17 F,,+2 :Fn+1 "}‘F", n = 19 2, b

This is a well-known sequence. There are endless discussions about
it. Many interesting and profound conclusions are drawn. Some of
them are displayed by examples here.

Example 1. For anym, n € N*, prove that (F,,, F,) = F¢., 0
i.e. the greatest common factor of the terms in the Fibonacci sequence
can be transformed into its subscripts.

Proof. It is obviously true when m = n. We consider the situation
when m # n. Without loss of generality, letm > n.

Applying the recurrence formula of the Fibonacci sequence, we
have that

F, =F,. +F,, = F,F, +F,F,_,
—F,(Fps +Fp3) +F Fosy
=(F, +F)F,» +F,F,.»
=F,F, +F,F,_,
=vo = FFpnis +FoiFor.

Therefore, (F,,, F,) =(F,.F,.., F,) =(F,.., F,). (Here we
utilize the fact that (F,—,, F,) = 1, which can be proved by mathematical

induction on n. Details are left to readers.)
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From the result above, we continue the discussion by substituting
(m, n) by m —n, n), which implies that solving the greatest common
factor of F,, and F, is essentially taking a division algorithm on
subscripts m and n. So, (F,., F,) = Fq., ».

Explanation. The following proposition can be proved by the
result of this example. If F, is a prime number, thenn =4 ornis a
prime number.

In fact, if » %4 andn is not a prime number, thenn can be represented
asn = pg, 2<<p <gandgq =3. Now (F,, F,) =F, , = F,. Meanwhile,
F, =22, F, > F,, which derives that F, is a composite number.

Example 2. Prove that every positive integer m can be expressed
in the following form uniquely.

m = (Q,a,1°*A2)F

@®
- a,,F,, +an—1Fn~1 +"' +a2F2.

Here a; =0or1, a, = 1. Also, there is no subscript satisfying 2 <7 <<
n — 1 such thata; = a,.y = 1. In the formula, F; is the ;" term of the
Fibonacci sequence.

Proof. The positive integer expression by formula (D is regarded
as F-expression of m. It is similar to the binary system. This result is
the famous Zerkendorf Theorem.

It will be proved by induction on m .

Whenm =1, m = F,. The proposition is proved. Now suppose
the proposition is true for any positive integer £ less than m.

There is a unique n € N* such that F, <m <F,4,. fm —F, =
0, then m is expressed in the form of . Otherwise, if m — F, >0,
from the inductive hypothesis, m — F, is expressed in the form of

@. Let
m *Fn - ((lla171"'a2)p = alFl +"‘ +a2F2.

Here ifa, =1, thenm =F, +a,F, ++- +a,F,. Nowifl =n —
1, thenm = F, + F,_, =F,4 , which is contradictory. So/ <<= —2.
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Positive integer m can be expressed in the form of (D.

The following part demonstrates the uniqueness of expression (D
of m.

In fact, if

m = (a,*a)r = (b;+by)r, @

wherea, =6, = 1. andn = 1.
If n >, there is no subscript 1 <<¢ <</ — 1 satisfying b, = b, =
1. Noting the definition of {F,} we have

F,+F,,++«++F;, mis even,

F,+F, , +«+F,+F,, mis odd,

F,+F,, ++ +F; +F, = F,,, m is even,
{F, +F 4+ +F, +F, +F;, = F.,, m is odd.

(bz"'bz)F <

Hence (b,+-+b,)r < F1y < F,. Equal signs cannot be taken at the
same time in @.

Therefore n = [ and then m — F, has two expressions, which
is contrary to the inductive hypothesis. There is a unique way to
express m.

In summary, by the second form of mathematical induction, the

proposition is true.

Example 3. It is well-known that the product of n consecutive
positive integers is a multiple of that of the first » positive integers
(namely n1). The Fibonacci sequence has a similar property. For any
k € N*, please prove that the product of any %2 consecutive terms of
{F,} is a multiple of that of the first £ terms.

Proof, Notation is imported. [n ]! = F,F,«F,, n =1, 2, *-,
Set[0]! = 1. And write

[m +n]! m
(m]V e [n]1” 77

To prove the proposition, we need only prove R(m, n) € N*, for

RGm, n) = n € N.

anym, n € N*.
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Taking a similar derivation as in example 1, we know
Fm+*n = FZFern‘1 +F1Fm+n72 =ttt = Fan-H +Fm71Fn-

Therefore, we have

Rem, ny = Fmen s lmtn —1J0 _ Fop o [m 42 —1]!
o [m]l - [n]! F,+F,«[m—101«[n—1]!

= . [m +n—1]1 . [m +n—1]!

N e N TR P TR CR |

=F,4*Rm—1,n)+F,—, +R(m, n—1).

The formula above holds for m, n € N*. Noting the initial
condition R(0, n) =R(m, 0) =1 (it holds for anym, n € N* ) and by
mathematical induction, we can prove that R(m, =) is a positive integer.

Hence, the proposition is true.

Example 4. Let f(x) = .- (x > 0). Prove that
x +1

(1) For any positive integer =,

g.(x) =x + f@) + f(fx)) +e 4+ ffCr f(2)))

n iterations

is an increasing function on (0, + );

LN i +oeee @, where {F,} is the Fibonacci

2) g, (1) =
(2 &) =5 T F Foo

sequence.

Proof. For convenient formulation, we notate

fP ) = f(f G f@))).

n iterations

This function iteration problem is discussed locally.
(1) It is familiar that y = = + % is monotonically increasing on

(1, + o). Accordingly,

— - 1 _ S
hix) =x +f(x) x+1+x 1 +x)+1+x 1
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is monotonically increasing on (0, + o).
Noting that

1 1tx ., 1

1 24z 2 +x
1+x

1
f(fx)) = =
1+ f () 1+
is an increasing function on (0, +%), we have that the function
F® (2) is an increasing function on (0, +) for any 2 € N*. Since
h(z) is increasing on (0, +o), f (x) + f** (z) is also increasing
on (0, + o),

With the conclusions above, when n is odd, function
g (@) =(x + @) +(FP @) + fP@) + -+ (P (x) + 7))

n+1

2

When 7 is even, £ (x) and g, (x) — f* (x) are both increasing

is the sum of increasing functions on (0, + o),

functions on (0, + ). Hence, g, (x) is also an increasing function on
(0, + o),

Therefore for anyn € N*, g,(x) is an increasing function on (0,
+ o).

(2) With the definition of g,(x), we need only to prove that

o = ?"H , foranyn € N* (here f (x) = z).
n+2
ege = . F1 _— 1 _ F2
Utilizing that 1 = 3 and f(1) = - = ==, we get that the
Fz 2 F3
statement is true when » = 0, 1. Now suppose that f™ (1) = ;ﬁ
n+2
. . . . (1) _ 1
(i.e., the proposition is true for n). Since f"™ (x) T /™)’
(nt1) — 1 _
we have £ (1) TEOrEIt Hence
1 F F
(D () = _ nt2 = Lo
f * 1 +Fn+1 Fn+2 +Fn+1 Fn+3
Fn+2

Therefore (2) holds.
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Example 5. Consider sequence {x,}: x1 = a, s = b, Xyis =
Zpm tx,,n=1,2,3, -+, wherea, b are real numbers. If there exist
positive integers £ and m, & #* m, such that x, = z,, = ¢, then real
number ¢ is called “Double Value”. Prove that there are real numbers
a, b such that at least 2,000 different “Double Values” exist. Moreover,
prove that we cannot find a, & such that infinitely many “Double Values”
exist.

Proof. A sequence with 2,000 different “Double Values” is
established with the Fibonacci sequence.

The idea is to extend the subscripts of {F,} to negative integers

corresponding to the original recurrence relation. We have

Fy, =F, —F, =0,

F,=F, —F,=1=F,,
F,=F,—F, =—1=—F,,
F,=F,—F,=2=F,,

and so on. Now we Know F ,, =— Funs Fotoprty = Fomp1o m =1, 2, «==,
Hence for anym € N*, leta = Fy,., 6 = F5,. Then the sequence
{z,} is displayed as

F2m+1, —Fzm’ F2m—“1’ 'Fzm—za *tty _an F1s Fo,
F19 an ) F2m71’ F2m’ F2m+1?

Terms Fy, F;, -+, F,, are all ‘Double Values’ in sequence
{x.}. Specifically, the required sequence {x,} is obtained by taking
m = 1999,

On the other hand, if we can find a, 4 such that infinitely many
‘Double Values’ appear in sequence {r,}. Then any two adjacent
terms in {x,} have opposite signs. (Otherwise, the sequences become
strictly increasing (or strictly decreasing) starting from the next term.
There can’t be infinitely many different “Double Values”.)

Note that the characteristic equation of {z,} (also the

characteristic equation of the Fibonacci sequence) is A* = A + 1 which
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have two distinct real solutions. Hence we assume that

o =A - (#) +B-. (%) no=1, 2, -

Because

1—2«/§‘<1and‘%‘>1,ifA >0 then x, >0 when

n is sufficiently large. So two positive adjacent terms occur. Similarly,
if A < 0, then two negative adjacent terms occur in {x,}. Both
situations lead to contradictions. Therefore A =0. Then xz, = B -«

(1_2—5) . Noting that 1‘25

is monotonically decreasing. There is no “Double Value” when B # 0.

<1, we have that the sequence {| =, |}

When B = 0, however, there is only one “Double Value”.
In conclusion, the proposition is true.
Explanation. The general formula of the Fibonacci sequence can

be solved by its characteristic equation and initial values.
1

SY L (1=V5) =
n_£<1+25> £<125),n_1,2, .

But the recurrence relation is more useful than the general

formula when solving practical problems.

Example 6. Arrange terms in the Fibonacci sequence in order:
1, 1, 2, 3, 5, 8, ---. Sort all the Twin Primes (if p and p +2 are both
primes, then p and p +2 are Twin Primes) by size: 5, 7, 11, 13, 17,
19, 29, 31,---. Find the positive integers that appear in both sequences.

Solution. Comparing several terms at the beginning of the two
sequences, we observe that only number 3, 5 and 13 show up in both
sequences. We may guess that these positive integers are all what is
required.

Due to the difficulty of understanding the patterns of Twin Prime
sequence, in order to testify the conjecture above, we should begin
with the properties of the Fibonacci sequence. If n is fairly large,
either F, is composite or F', =2 are both composite numbers, then F, is
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not in the Twin Prime sequence. With this idea, we need to tell some
properties of the Fibonacci sequence first.

List several first terms of the Fibonacci sequence.

n 112 (3456|789 (101112]13]|14,15

F, 1717235813121 34]55]|89144|233)|377]610/ -+

We find that F,, (when n > 3) is a composite number. F,, + 2
(when n == 4) are composite numbers too. Besides, there are some
formulas as follows.

(D) Fy, =F,(Foyy +F,—, withFy =0;

(2) Fants +2 = Foud (Fayt1 T F213);5

(3) Far1 — 2 = Fopy(Fopy +Fp, )3

4 Fops 12 =Fo3 (Fopy +Foy);

(5) F4n+3 —2 = an (an+2 Jr‘F2n+4)-

Note that if these five formulas are proved, then only 3, 5 and 13
appear in both sequences.

Now we prove (1)-(5) by mathematical induction.

Whenn =1, it is obvious that (1)-(5) hold by data listed in the
previous table. Now assume (1)-(5) are proved for integers no larger
than n. By the recurrence formula of the Fibonacci sequence, forn +1, we
have

F4n+2 = F4n+1 +F, = F4n+1 + Fa +F4n*2
=(F41 T2) + (Fyey —2) +Fis
=Fo (Foptt + Fopis) + Foua (Foy +Foun) + Fouet (Fouey +F2,)
=FonFot ¥ Foi Fops + Fopy (Fop +Fapy)
+ (FopaFonas +Foy o)
=FpuFopy T FpaFon +Foy (Fons +F2) +Fy0F o0
=Fo1 Fop +2F 01 Fopio + (Foy — Fon1 ) Fopin
=FynFa + Fonio (Fpuy +F2)
=Fps (Fon +Foui2),
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Foutny = Fouir (Fappig + Foppip ). @®
Similarly, we can prove
Fars = Fonra (Foypy +Fps) s
i.e.,
Faoniy = Fonta (Fonia1 + Fopian). &)

From @ and @ we know (1) holds for 2n +1 and 2n +2. Therefore it
is true for alln € N*.

F4n+5 +2 = F4n+4 + (F4n+3 +2)
=Foro(Font1 + Fopis) + Fons (Fopy + Fapy)
=Fonts (Fopie T Fons) + Fopis (Fappo +Fopr)
=Fout1 Fouts +2F 515 F 0y
=Fopi1t (Fonis + Fopis) s

i.e. (2) is testified for » +1. Similarly, (3), (4), (5) hold forn +1.
(Details are left to readers. )

Generalizing all above, (1)-(5) are true for alln € N*. Only 3, 5
and 13 appear in both sequences.

Explanation, With example 1, we can see that I, is a composite
number when n = 3. The result here is more powerful.

10 Several Proofs of AM-GM Inequality

From this section, we are going to discuss some other forms and
techniques of applying mathematical induction.

AM-GM Inequality Leta,, a,, ***, a, ben positive recal numbers.
Then

R T @

%(m + -+« +a,) is called the arithmetic mean of a,, a-, ***» a,, while

Jaias++a, is called the geometric mean of @y, as» ***, a,.
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Proof 1. Whenn =1, it is obvious that @ holds; whenn =2, O

is equivalent toa; +a, =2aa,,1.e. (Va, —+a,)* =0. Hence O
holds.

Now we suppose that (D holds for n (> 2) and consider the case of
n+1.

Let A = n—il (a; +-** +a,+ ). Then by inductive hypothesis, we
have

Lay + tany +A £ FA)
2n AT ra

n—1 items

= La, +oFa) + s +A £ +A)
2n 2n ——

n—1 items

=

(S

(Vaya, +\"/an+1 A--A)

n—1 items

n n —
> \/\/al'"an * \/anﬂ o An !
2n —
=g a, AT,

Noting thata; +- +a,+1 = (n +1)A, we can deduce that

L e tayy TA et A) = 2 DA +(n —DA) = A.
2n — 2n

n—1 items

Therefore

2n p—
A =Vaiam A",

moreover, A" = a,++a,+ , then we get

%H(al + e+ a,0) >"+«1/a1--'a,,+1 .

Hence D holds forn + 1.

Thus, for anyn € N*, inequality (D holds.

Explanation, This is a proof of @ given by the first form of
mathematical induction, which is quite skillful.

Proof 2. Since (D holds forn = 2 (the proof is same to Proof 1),
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it can be proved easily by mathematical induction that @ holds for all
n =2k € N").
In fact, if @O holds for 2¢, then for n = 2*™', there holds

(a; + +apn) = i( (ay 4+ +axr) + (a2k+1 + oo +a2k+l)>

2k+l 2

% «k/ tedok +2«702k+1"'az’““)

3 k
= \/2«/41'"612’* . 2«/612"+1“‘612’*H
S
= aiazertaktt

That is, D holds for alln = 2%, £ =1, 2, -
Let’s discuss the case of n. For anyn € N*, take 2 € Nsatisfying

that 28 <\n < 2*"' and denote A = %(a1 ++++ +a,). From the previous

result, we can deduce that

2k+1 (@) ++4a, +A+o +A) =" g, a, AA .
2 items 2y items

Noting thata, ++-- +a, = nA, we have

an!
2 E41_
A =" Waira AT T

Moreover, A" = a;**a,. Hence (D) holds for n.

Explanation.  This proof comes quite naturally. Both of the proofs
needs to piece together terms.

Proof 3. It can be inferred from the previous proof that @ holds
for n = 2%, which shows that there exist infinitely many positive
integers # such that (D holds.

Now suppose that (D holds forn +1. As to the case of n, denoting

A = i—(al + ¢ +a,), we have

n+1(a1+ +a +A) 1"'a,,-A.

Noting thata; + - +a, = nA, we get A >"+«]/a1'--a,l +A. And
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thus, A = +/a,---a, , which implies that D holds for n.

Hence D holds for anyn € N*.

Explanation, Here we apply the idea of patching up a hole,
which is a basic application of inverse mathematical induction.

Inverse induction is also called backward induction, whose basic
structure is as follows: suppose a proposition (or property) P (n) about
(of) positive integer n satisfy the following conditions

(1) P(n) is true for infinitely many positive integers .

(2) It can be inferred from the validity of P (n + 1) that P(n) is
true.

Then for anyn € N*, P(n) is true.

Proof. Let’s prove by contradiction.

If there existsm & N* such that P(m) is not true. We can prove
by mathematical induction that for anyn = m, P(n) is not true (then
there can be only a finite number of » € N* such that P(»n) is true,
which is contrary to condition (1)).

In fact, P (m) is not true according to the assumption.

Now suppose that P(n)(n = m) is not true. Then it can be
inferred from (2) that P(n + 1) is not true (by the contrapositive of
2.

Hence by mathematical induction, we have that for any n = m,
P (n) is not true, which is contradictory. Therefore inverse induction
holds.

Both of the two latter proofs of AM-GM inequality proved first
that the proposition is true for infinitely many » € N*. Then they
prove that the proposition is true for every n € N*. This idea is
applied in many cases.

AM-GM inequality may be the theorem with most proofs in
mathematics. Here we only give some most common methods with
mathematical induction. These ideas and methods can be applied to

other questions.
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Example 1. Let function f: N* — [1, + o) satisfy:

(D (2 =2;

(2) for anym, n € N, f(mn) = f(m) f(n);

(3) whenm <<n, f(m) < f(n).

For any positive integer n, prove that f(n) = n holds.

Proof. It can be inferred from condition (1) and (2) that /(1) =1,
Now suppose that £(2¢) =2*, & € N. Then f(2*") = f(2*)f(2) =2* X
2 = 2¥"', Hence for any £ € N, f(2!) = 2%,

Now let’s discuss the value of f(n). Set f(n) = [. Then by (2)
and mathematical induction, we have f(n™) = [, for anym € N*.

Letting 2t <<n™ <<2¢", by (3), we get f(2}) < f(n™) < f(2¢),
Therefore it can be deduced from the previous result that 2* < [™ <
2¥, Noting that 2* <<n™ < 2*"', we have

1 n\"
7 <(7) <2 v
This inequality holds for anym € N”.

If n >1, let’s takem > rﬁ Then

(%)m - <1+"l_l)m >1+m-”l_l =2,

which is contrary to @. Similarly, if n <[, we can take m T

Then <%) > 2, 1i.e., <_ln_>’" < _é_, which is also contrary to .

Therefore we can only haven = [/,

Generalizing all above, for anyn € N*, f(n) =n.

Explanation. If function f is a mapping from N* to N*, then the
question is simpler, and it is left to readers.

Similarly, this method can be used to prove the famous Jensen’s
Inequality.

Example 2. Find all functions f: N* — N", satisfying that for
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anym, n € N*,
F)? + f(n) | Gn? +n)2. )

Solution. Let f be a function satisfying the conditions. Setm =
n =1in @. Then (f(1)? + f(1)) | 4, Thatis, F(D(FD +1) | 4. If
fQ) =2, then f(1(F(1) +1) = 6. Hence there can only be /(1) = 1.
For any prime number p, let’s first prove that
f(p—1) =p—1 @
In fact, for any prime number p, setm =1, n =p —1in @. Then
(fD +fp =1 [p2ie. W+f(p—1) | p% Hence f(p —1)+1 =
p or p2. If the former one is true, then @ holds; if the latter, i.e.,
f(p —1) =p*—1,thensetm = p —1, n =1in . We have (f(p —
D2HFAND 1 W(p —D2FD% 0e. (P2 =12 +1D) | ((p —1D2 + 12
However
(p =D+ <W{p =D+ (p —1)?
=p2(p =D <(p+1D*(p -1 +1
= (PZ - 1)2 +1,
which is contradictory. Therefore @ holds.
Now for anyn € N*, let’s prove that f(n) = n.
In fact, for any positive integer n, we can take & € N* such that

k£ +11is a prime number (there are infinitely many % of this kind). Set
m =k in (D. Combing with @), we have

B2+ f(n)) | (B* +n)2. ©)
Note that

B2+ =R+ ) +n— fFn))?
=AER2+Ff) +n— Fm))?,

where A is an integer. By @, we have
B> + fm)) | (n — fFn))2.

This formula shows that (n — f (n))? is divisible by infinitely many
positive integers (since there are infinite ways to take 2). Hence (n —
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fm)»?* =0,1i.e., fn) =n.

In conclusion, there is only one function satisfying the condition,
fn) =n.

Explanation. Essentially, it suffices to prove that (&) =k holds,
for infinitely many £ € N* . Then patch up other holes. We break through
the question from @ because we expect the factors of the dividend as
few as possible. This technique is often applied in the theory of
divisibility.

Example 3. Find all of the functions f: N* — N* satisfying that

for anyn € N* and prime number p,
fn)? =n (mod f(p)). @
Solution. For any prime number p, takingn = p in (D, we have
p=f() =0 (mod f(p)).

Hence f(p) | p and then f(p) = 1or p.

Now denote S ={p | p is prime, f(p) = p}. The question can be
divided into three cases:

Case 1. Sisan infinite set. We can prove, by the method in the
previous example, that for anyn € N, f(n) =n.

In fact, there exist infinitely many prime numbers p such that
f(p) = p. Hence for any n € N”, there exist infinitely many prime
numbers p such thatn = £ (n)? (mod p). By Fermat’s little theorem, we
have f(n)? = f(n) (mod p). Therefore f(n) = n (mod p), which
shows that f(n) —n is a multiple of infinitely many prime numbers. So
fn) =n.

Case 2. S is empty. Then for any prime number p, f(p) = 1.
At this time, for the rest of positive integers n, f(n) can take any
positive integer (such that (D holds).

Case 3. S is a nonempty finite set.

Let p be the greatest prime number in S. If p = 3, we will prove
this leads to a contradiction. Therefore S = {2}.
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Since p is maximal, for any prime numberq > p, f(g) = 1. From
D, it can be inferred thatg = f(¢)? =1 (mod p), i.e., g =1 (mod p).

Now let Q be the product of all odd prime numbers no greater than
. Then each prime factor of Q + 2 is greater than p (note that we
applied that p == 3 here). Then combining with the result above, we
have Q +2 = 1(mod p), leading to p | Q +1, which is contrary to the
fact that p | Q.

The discussion above shows that S = {2}. So f(2) = 2. For odd
prime number p, f(p) = 1. By @, we only need to prove that f(n)?* =
n{mod 2). Hence for other positive integer n, f(n) suffices to take on
a positive integer with the same odevity with »n.

Checking directly, we can find that each function in the three
cases satisfies the conditions. They are what we are finding.

Explanation.  Finding functions from N* —N* is essentially equivalent
to discussing questions on sequences of positive integers { f(n)}. Here
we applied the analysis of prime factors, which is transferred from the
method of number theory. Similarly, some ideas in functional

equations can also be used in these questions.

Example 4. Given a positive integer 4, find all functions /: N* —

N*, satisfying that for anym, n €N*,
(fGm) + fm)) | Gn +ndk. @

Solution.  Obviously, function f(n) = n satisfies the condition.
Then is it the unique one? We are going to prove this.

First, let’s prove that f is an injective mapping.

In fact, if there exista, & € N* such thata =6 and f(a) = f(b),
then it can be inferred from (D that for anyn € N*,

(fla) +fm)) | a+m*, (fB)+fn) | (b+n)t.

Hence for any n € N*, f(a) + f(n) is the common divisor of
(a +m)* and (b +n)*.

Now take a prime number p > max{a, | b —a |}. Letn = p —a.
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Since
(a +n,b+n) =(a+n,b—a) =(p,b—a) =1,

We have ((a +n)*, (b +n)*) = 1. Consequently, f(a) +f(n) =1,
which is contrary to the fact that f(a), f(n) are both positive
integers. Therefore f is an injective mapping.

Next, for anym € N*, let’s prove that | f(m +1) — f(m) | =1.

Applying the result of (m, n) and (m +1, n) to O, we have

(fm) + fm)) | (m +ndk,
(fm +1) + f@) | m +1+n)k.

As(m +n, m +1+n) =1, it follows that
(fm) +fn), fm +1) + f(n)) = 1.

Moreover when m is fixed, for anyn € N*,
(f) + fm), flm +1) — f(m)) = 1. @

If | fGm+1) —f(m) | 1, then there exists prime number p such
that p || f(m +1) — f(m) |. Now takea € N* such thatn = p* —m
is a positive integer. Then it can be inferred from @ that f(n) +
F(Gm) | p** and thus, f(n) + f(m) = p', where is a positive integer.
Consequently,

(fm) + fm), fm +1) — fm)) = (p', fFln +1) — f(m)) = p.

This is contrary to @.

At last, for anyn € N*, let’s prove that f(n) = n.

We can deduce from the previous result that for any m € N,
there holds f(m +1) — f(m) =1or fGn +1) — f(m) =—1. If these
two situations occur in the same function f satisfying the conditions,
then there existsm € N* such that (f(m +1) — f(m), f(m +2) —
fGn +1)) =, —1)or (—1, 1). Either of the two results leads to
the equation that f(m +2) = f(m), which is contrary to that f is an
infective mapping. Therefore either of the formula that f(m + 1) —
fm) =1or fGn +1) — f(m) =—1holds for anym € N”.
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Since f is a function from N* — N*, it can only hold that for any
m € N, fGn +1) — f(m) = 1, Therefore for anyn € N*, f(n) =
n +c (wherec = f(1) —1 =0).

If c > 0, we can take a prime number p > 2¢. By @, we have
D) +f(p —1) ]| p*. Then p +2¢ | p*, which needs p +2¢ to be a
power of p. Thus, p | p +2c. Then p | 2¢, which is contradictory.
Hence ¢ = 0.

In conclusion, only the function f(n) = n meets the condition.

11 Choosing a Proper Span

From this section on, in the following four sections, we will introduce
some common techniques that may be used in proving questions by
mathematical induction.

Logic Structure Let P(n) be a proposition (or property) about
(of) positive integer n, £ a given positive integer. Suppose that

(1) PQ1), P(2), ++, P(k) are true;

(2) it can be inferred from the validity of P (n) that P(n + &) is
true.

Then for anyn € N, P(n) is true.

Here k is a span. When £ = 1, this is the first form of mathematical
induction. For some questions, it is more convenient to choose a larger
span.

Example 1. For any positive integer n = 3, prove that there
exists a perfect cube, that can be written as the sum of the cube of n
positive numbers.

Proof. We can have an understanding of the background of the
question by comparing it with the resuit that the indeterminate
equation =’ + y> = 2’ has no positive integer solution.

When n = 3, from equality 3° +4* +5° = 6, we can deduce that
the proposition is true for n = 3;

Whenn = 4, from equality 5° +7° + 9> +10° = 13* (which was
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discovered first by Euler), we can deduce that the proposition is true
forn =4,

Now suppose that the proposition is true for n(= 3), i.e., there
exist positive integers z; << x, < - <x, <y, satisfying that

x} +x3 e Fax) =y,
Then by equality 6° = 3*> +4° +-5°, we have

(6y)* = (6x,)? + o+ +(6x,)° + (6x,)°
= (6x,)° + o+ (6x2)* + Bx)?® + 4x)* + Bx, )3,

This shows that the proposition is true for n + 2.
Therefore for any » = 3, the proposition is valid.

Example 2. Letn be a positive integer no less than 3. Prove that
an equilateral triangle can be divided into n isosceles triangles.

Proof, Whenn = 3, let O be the excentre of equilateral triangle
ABC. Then ANAOB, ABOC and ACOA are all isosceles triangles.
Hence the proposition is true for n = 3,

Whenn =4, let D, E, F be the middle point of BC, CA, AB.
Then NAEF, AFBD, ADCE, and ADEF are all isosceles triangles.
Hence the proposition is true forn = 4.

Whenn =5, as shown in Figure 6, let O be 4
the excentre of equilateral triangle ABC, and D,
E the middle point of BC, CA, respectively, and E
F the middle point of BO. Since the bisector is
half of the hypotenuse in a right triangle, 4
ANABO, ABFD, AFOD, ADEC, and AADE B D ¢
are all isosceles triangles. Hence the proposition Figure 6

is true forn = 5.

Now suppose that any equilateral triangle can be divided inton (=
3) isosceles triangles (i.e., the proposition is true for »). Then for
equilateral triangle ABC, let D, E, F be the middle point of BC, CA,
AB respectively. We can divide equilateral triangle AEF into »n
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isosceles triangles. Then combining these n triangles with ABDF,

ACDE and ADEF, we divide equilateral triangle ABC into n + 3

isosceles triangles. Hence the proposition is true for n + 3.
Generalizing all above, the proposition is true for any n = 3.

Example 3. For anyn € N*, prove that there are infinitely many
positive integer solutions to the indeterminate equation

x? +y? = 2", 6)

Proof, Whenn =1, foranyz, y € N*, (x, y, 2> +y*) isa
positive integer solution to D; whenn = 2, takingm >n =1, m, n €
N* and lettingz =m? —n?, y =2mn, 2 =m?’ +n?, we have x> +y* =
z*. Therefore the proposition is true forn = 1, 2,

Now suppose that the proposition is true for n. For positive
integers x, y, 2z, if 22 +y2 = 2", then (x2)? + (yz)* = 2", Hence
there are infinitely many positive integer solutions to the indeterminate
equation x? +y? = 2"*2, Noting that the proposition is true forn =1,
2, we have that the proposition is true for anyn € N* .

Explanation. This question can also be solved this way: let z =
a +bi, wherea, b € N“ and () <argz < f (there are infinitely many

pairs of a, & such that the values of a* + b? are distinct). Then by the
Binomial Theorem, we have 2" = (@ +01)" = x +yi, x, y € Zand
zy # 0 (since arg 2* € (0, n)). Taking the modulus of both sides, we
get ( Jat + b2 )n =z +y*,ie 22 +y* = (a*+b)". Hence (| z |,

n

| y |, a®> +5b?) is a positive integer solution to z? +y*> = z".

Example 4. Find all of the functions f: N — N satisfying that
(1) For anym, n € N, there holds that

fm?+n* = fm)? + fn)?*;

(2) (1) >0.
Solution, Lettingm = n = 0in (1), we have f(0) = 2f(0)°.
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Then £(0) =0or % Since f(0) € N, f(0) = 0. Hence, by (1), we

have that f(m?) = f(m)? holds for anym € N.

First let’s find the value of f(n) forn € {1, 2, -, 10}.

From the condition and the previous result, we can deduce that
fQ) = f£(1*) = £ Since f(1) >0, f(1) = 1.

Moreover,

FQ2) =1 +13) = fP+f)? =1+1 =2;
F = f(2°) = f(2)* =4;

f(5) = f(2° +12) = f(2)2 + f(1)* =5;

f(@ = f(22 +2*) = f(2)* + f(2)* =8.

Noting that

25 = f(5)* = f(5°) = f(3 +4°)
= f(3)? + f(4)?* = f(3)* +16,

and that £(3) € N, we have f(3) = 3. Therefore,

(9 =f@G3)3* =9,
FU0) = (3 +17) = f(3)* + f(1)? = 10.

We can find that f(7) = 7 with the help of condition (1) and the
fact that 72 +12 =52 +5°. Then by the fact that 10> = 6> +8?, we have
F10)? = f(6)> + f(8)* and f(6) = 6.

Hence, for any 0 <<n <10, f(n) = n.

Now let’s prove by induction with step length of 5 that for anyn € N,
fn) =n.

For this purpose, we need the identities below.

5k +1)2 +22 = (4 +2)> + 3k — 1)?;
5k +2)% +12 = (4k + 1) + Bk +2)%;
(5k +3)2 +12 = (4k +3)? + Bk +1)%;
(5k +4)? +22 = (4k +2)2 + Bk +4)%;
(5 +5)2 = (4k +4)% + (3k +3)2,

Each term on the right side of the identities is less than the first term
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on the left for £ = 2. Thus, by condition (1) and the inductive
hypothesis, we can determine the function values of the first terms on
the left side of the identities. That is, the proposition is true as we
make use of induction every five numbers.

Therefore, for anyn € N, f(n) = n.

Explanation., From the example above, we can find that proving
that P (n) is true by induction with step length of % is essentially partitioning
{P(n)} into & sets of propositions and proving them respectively. It is
certain that we can combine this idea with the second form of
mathematical induction and make use of one set of propositions to
prove another. This idea is shown in the example above.

12 Choosing the Appropriate Object for Induction

Statements that are relevant to positive integers will sometimes involve
multiple variables. When we deal with them using mathematical induction,
we need to decide which of the objects is the right one to conduct

mathematical induction on first.

Example 1.  Suppose thatm, n € N* . Prove that for any positive

real numbers z,, **y T,5 yis ***y Yaus if
X by =1y i =1, 2, oy 0,
then (1 —zyo2,)™ + (1 —y) (1 —y3)e(1 —y7) =1, @

Proof. @ We make use of mathematical induction on n. When

n =1, from the given condition, we know that
A=x))" +A —y7) =37+ —y7) =1,
So @ holds true forn = 1.
Now we suppose (D is true for some n —1(n >=2). We consider .
A~z )™+ U —y7 )1 —y7)

=1 -z vz, 11—y, )"+ —37) -1 —y})
2(1 T Xt 1 +x1"'xn71y,,)"‘ +(1 - (] —x1'"xn_1)m)(1 _ynm)-
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Let us denotea = 1 —xy+*x,4» & = y,. From the above equations,
we know that in order to prove (D to be true for n, we only need to
prove:

(a+b—ab)"+U —a™>A —b") =1
holds true for anya, & € (0, 1). That is to prove
(a +b —ab)” =Za™ +b6" —a™b™. @

To deal with @, we proceed by inducting on m.
Whenm = 1, obviously @ is true. Now we suppose @ to be true
for some m — 1(m = 2). Then,
(a +b —ab)™ —a™ —b™ +a™b™
=@+ —a™ 0™ ) (a +b —ab) —a™ —b™ +amb”
=2a"b™ +ab™t +ba™! —a™h™ ! —a™ 'b™ —a™b —ab™
="' =b")(a—a™) +@ " —a")b —bm).

We notice thata, b € (0, 1), so
b" ' =b", a =a™, a™ ' =a™, b =b".
Therefore,
(a +b—abd™ =za™ +b™ —a™b™,

i.e.,» @ holds true for m.

From this, we know that (D) is true.

Explanation.  This is a problem involving two variables that are
both positive integers. It naturally comes to mind that we induct with
respect to n while treating m as a constant, because the second addend
on the left side of @ seems easier to deal with while in the process of

inducting on =,

Example 2. Prove that for anym, n € N*,
SR Qi+ Dy
om0 =33 (10 505

i=()

is a positive integer.
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Proof. We choose n to be our object of induction.

2m
Whenn =1, S(m, 1) = (tan %) = 1, so the statement is true

forn =1forallm € N*.
Now we suppose the statement is true for some n — 1 for alim €
N*. We consider the case for n.
1 —tan’a

From cot 2¢ = ————— = l(cota —tana), we know that
2tan o 2

tan? <% ‘20() = %(cota —tang)? = %(tanﬂz + cot?’a —2).

So, we rewrite the summation as a pairing of the beginning and
ending terms of the original sum (i.e. the paired sum of the i™ and
(2" —1 —4)™ terms) to see that:

] 1l 4 -
S, m =13 (et GLEDT e Q@7 Z1 20 F D)
i=0
27141*1 .
-1 (21 + D= 2(m _ (2i +Dn
=3 2 (tan St + tan’ <2 o >>
2"71_1 . -
! (2i + 1) Qi +1)
=5 Z (‘[anz%c +C0t2—~lw—7—t)
=0
174! Qi + D=
= = 221 +Dx
7 2 <4tan 5 +2>
=y i i1
=2 Z tan? *ZZT—TE 41
i=0
27172___1 . L .
=2 (tan2 (2 ;;l)n + tan? (2C2 ;n i) +1)n>+2n—1

i=0

=2 lz:;? (tanz—-m(Zi ;1)7( + tan’ (TC — 2i £ D ;;1)n>)+2"71

272 .
=4 > @ EDT Lo a5, n -1 42
=0

SoS(1, n) € N".
Next, we suppose S(1, n), S(2, n), ===, S(m — 1, n) are all
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positive integers. Thus, we consider S(m, n) noting that for all £ €

N, we have
(x +2 ™) =Cla*t +2*) +Ciat +27% D) +oey )

by the Binomial Theorem.
Therefore,

1 -1 _nY"
<4(x +x 2))

= I3 @+t (-
4 k=0

= Zl,;((x”‘ +zT) b (2" ) A b (2T 04D,

as from O, where b,, ++, b,, € Z.
Letx = tan’ £212++11)“ for the above equation, and we sum the
terms up for: =0, 1, 2, -=-, 2°2 — 1. By making use of calculations

similar to S(t, n) we may know that

SGn, n—1) = 4im<s<m, n) +6,:SGn —1, n) 4+ +b,,SU,s n) +5,),

then we have
Sm,n) =4 «Sm,n—1) —6,Stm —1,n) —++ —56,,SU, n) —b,,.

Therefore, S(m, n) € Z. Since every term of S(m, n) is greater than
zero, we have S(m, n) € N*.

Generalizing from above, for anym, n € N*, all SGn, n) are
positive integers. The statement is thus proved.

Explanation. Essentially, we adopted a method of inducting with
respect tom, a second variable, during the process of inducting from
n — 1 ton. In statements where two variables are involved, the method
we have used is one of the common ways that we follow when using the

principles of mathematical induction.

Example 3. Suppose the non-negative integers ai, az, ***» a,
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satisfy
a; ta; <ay;, <a; ta;, +1,

where 1 <7, j <t, 1 +j <t
Prove that there exists x € Rsuch that for alln € {1, 2, =, ¢},

we havea, = [nx].

Proof. Denotel, = [C;—”, M), forn =1, 2, -, t. We need
13
to prove that there exists a real number z € N 1,. )
Let L = max ", U = min & + 1. If we are able to prove L <<U,
1<nse N 1<n<e n

1
then @ is true since QI . = [L, U). In the meantime, in order to

prove L < U true, we only need to prove the following: for any m,

a,, +1

n €{1, 2, ---,t},wehavei—"< , namely,

ma, <na, +1). )

Next, we prove @ true by inducting onm -+ n.

Whenn +m =2, we havem =n = 1. Then ) is obviously true.
Suppose @ holds for all positive integer pairs (m, n) which satisfy n +
m < k. Then whenn +m =% +1, if m =n, then @ is obviously true.
If m > n, then we know from the induction hypothesis that (m —n)a, <
n(a,—, +1). We known(a,—, +a,) <na, froma; +a; <a.,; by the
given conditions. Therefore, ma, < n(a, +1),i.e., @ is true. If
m <n, then we know ma, ., < (n —m)(a, + 1) by the induction
hypothesis. We may deduce that ma, <m(a, +a,-, +1) froma;; <
a; +a; +1 given by the conditions. Soma, <n(a, +1),i.e., @ holds
true.

Generalizing all above, for anym, n € {1, 2, -+, ¢}, @ is always
true.

Explanation. Generally speaking, for anyx € R, ¢, j € N*, it is
always true that [ix] + [jx] < [(G +j)x] < [iz] + [jx] + 1. This
actually is a property of the greatest integer function, and we come to
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the conclusion of this problem when we discuss it the other way
around. Please be aware that the conclusion from this problem is only
valid for an arbitrary number of finite terms and we are not able to
find an x which satisfies the requirement for an infinite sequence a;,
a,, *-+ with properties described by the problem.

From a point of view regarding methodology, the strategy of

inducting with respect m +n is convenient and appropriate.

Example 4. Suppose m, n are distinct positive integers. A sequence
comprised of integers satisfy the following condition: the sum of any
consecutive m terms is negative, while the sum of any consecutive n
terms is positive. Please state at most how many terms this sequence
has.

Solution. Suppose (m, n) =d, m =mqd, n =n,d, then Gm,,
n,) = 1. We also suppose that the sequence a;,, -, a, satisfies all
conditions. Denote A; = ag—at T * Fauws i =1, 2, -,

On one hand, if ¢t = (m, +n, —1)d, we consider the following

number array
A19 Az’ "t Am1;
AZ’ A37 *tty Am1+1;

A s Aty s As i .

From the given conditions, the sum of all numbers on each row is
negative, and the sum of each column is positive. Note that the sum of
all the numbers in this array should be negative if by row but the sum is
positive if by column. This is self-contradictory. Thus, we may deduce
thatt < (m, +n, —1)d —1,l.e.,t <m-+n—Gn,n) —1.

On the other hand, we need to prove: there exists an integer
sequence with length of m +7n — (m, n) — 1 that meets the requirements.
For that, we need to prove the statement below:

Proposition, Suppose d € N*, and s, ¢ are distinct positive
integers such that (s, ¢) = 1, then there exists a rational number
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sequence of length (s +¢ — 1)d — 1, the sum of whose arbitrary
consecutive sd terms is a negative number, and the sum of whose
arbitrary ¢d terms is a positive number. (Attention: If we multiply
every number of this sequence in this proposition by the common
denominator of all numbers in sequence, then we can get a desired
integer sequence. )

We use mathematical induction in terms of max{s, t} = r.

When max{s, ¢} = 2, without loss of generality lets =2, ¢t =1
(otherwise, we may multiply every number in the sequence by — 1),
then we may take arbitrarily 24 — 1 positive rational numbers so that
we may get a sequence which satisfies the proposition.

Suppose that the proposition is correct for max{s, ¢t} <r (r =3),
then we consider the case max{s, ¢t} = r.

Without loss of generality, we may let s > ¢, and notice that
(s —t, t) = 1. Then, by the induction hypothesis, there exists a
rational number sequence &1, b5, ***, b 1ya—1 » Whose sum of arbitrary
consecutive (s —t)d terms is a negative number, and the sum of whose
consecutive td terms is a negative number. We prove that there exist
rational numbers a,, a,, ***, a, such that the system of inequalities
below holds:

a g+ +"‘ +a1 +b1 +'°' +b(571)(1‘1 <0,
gz T Fay b e b e <0y

................................................... @
A+ taqy by e Fhna <0
and,
A+ +ay >0,
Ay ++a, +6, >0, @

aq +b1 +"' +btd71 >O.

Then, the sequence a,s» aw—1s ***s> ars b1s 5 benan IS a

sequence that satisfies the proposition with length (s +¢ —1)d —1. So,
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the proposition is proved.
As a matter of fact, if the systems of inequalities are to hold
simultaneously, we only need to choose rational numbers a,, a,, ***,

agq» such that

ay >—(by + +bua)y ar >—(ag +b; + +bus)s -,
ag > ‘—(ad71 + e -|—a1 +b1 + e +b(£_1)d),

then we take a, such that it is a rational number satisfying

—(ayg +tay by T F b)) <aam

&)
<—(ag ++a; +by + Fbenao).

Note that the right-hand side of (@ when subtracted from it the
left-hand side will equal — (b¢—15q ++** +b(—a—1) >0 (here we used the
induction hypothesis). Therefore, an a, satisfying the conditions
does exist. Then we can deduce in the same manner rational numbers
ai, **+, a, satisfying the systems of inequalities @ and @ exist.

We go back to the original question. The integer sequence that
satisfies the conditions has at mostm +»n — (m, n) — 1 terms.

Explanation. The cases m = 11, n = 6 for this question once
appeared as a competition question. While the example for m = 11,
n = 6is easy to get, it is hard to find a generic example for m, n.
When this example appeared on a quiz in the China National Math
Olympiad Trainece Team in the year 2000, a very small number of

students correctly solved it.

13 Make Appropriate Changes to the Propositions

When we use mathematical induction to prove propositions, we sometimes
need to deal with them by strengthening conditions, making use of

auxiliary propositions, or making the proposition more general, etc.

Example 1. For any positive integer n, we have
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2n —1 1
< . @©
2n /3n

Proof., If we deal with it directly using weak induction, during

1.3, ...
2 "7
the inductive step we would need to show that the inequality

1, 1 _ 1
20+ 3p o B+ D)

is true, which requires (n + 1)(2n + 1)* << n(2n + 2)?, and this is
equivalent to (2n + 1) << n(4n + 3). However, this inequality is not

true. So it is hard to prove ) to be true by directly applying mathematical
induction.

We instead prove a strengthened proposition of @D

1.3, .m0 1 ®
2 4 2n V3n +1

When n = 1, the left-hand-side of @ is equal to % , and the right-

1
2

Now we suppose @ is true for some n, then for n +1, we have

hand side is equal to =. So @ is true forn = 1.

1,3 .21 2241 1 2n+1
2 4 2n 2(n+1) T 3+ 2+ 1)

In order to prove  is true for n + 1, we only need to prove that

1 2nt1_ 1
V3n F1 2n+2 /3y 4

That is to prove

Gn +4Cn +1)* < Gn +1)2n +2)° ®
We note that (3 is equivalent to

3C2n +1)* < Gn+ D2 +2)2 —2n + 1) = Gn + 1D En +3)
S12n2 +12n +3 < 1202 +13n +3
on =0,



110 Sequences and Mathematical Induction

So, @ is true. Therefore @ is true for n +1, that is to say, for an
arbitraryn € N*, we have @ holds true.

Considering +/3n +1 > /3n , we know that (D is true for anyn €
N*.

Explanation. It is sometimes difficult to realize the inductive step
fromn to n + 1 when using mathematical induction for proposition
P(n), where n is a positive integer. However, it is sometimes easier
for a strengthened proposition Q(»n) to be proved using mathematical
induction. Therefore, we sometimes need to strengthen the proposition
ourselves. Of course, when we do that, we need to make appropriate
choices under the premise of getting the essence of the proposition.
The aim is to help realize the inductive step for induction.

Example 2. Suppose A,, A,, *»-, A, is an arbitrary r-partition

for N* (i.e., intersection of any two from A,, ---, A, is an empty set

and _L:JlAl- =N~ .) Prove: There is a set A among A, , ---, A, which has
the following property: There exists anm € N* such that for any k2 €

N* such that we can take # numbersa;, -+, a, from A, satisfying that
for1 <<j <k —1,wehavel <a,,, —a; <m.

Proof. Suppose that P = N* . If there are connected segments of
positive integers of arbitrary lengths in P, then we call P a Long
Subset.

We will strengthen the proposition as follows:

For any Long Subset P, any r-partition A;, A,, *=-, A, on P must
have one set A which enjoys the property required of the problem.

We apply mathematical induction with respect to r.

When r = 1, according to the definition of Long Subset, we know
that the proposition is correct by takingm = 1.

We suppose the proposition is true for the case » =n. We consider
the caser = n +1.

Suppose P = (A; UA, U--- UA)D UA, L, Q=A, UA, U-- U
A,. If Q is a Long Subset, we know that the proposition is correct by
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the induction hypothesis. If Q is not a Long Subset, then there must
exist an/ € N” such there is no consecutive positive integer segments of
length / in Q. Since P is a Long Subset, for any %2 € N*, there exists a
consecutive positive integer segment of length %2/, within which there
are at least # numbers which belong to A, ;. Now we take out the least
k numbers belonging to A,;, from this consecutive positive integer
segment of length 2/. Then the difference of two consecutive numbers
in P is no bigger than 2/. Then, we take m = 2/, and the set A,
enjoys the property required of the problem.

For all above, the strengthened proposition is proved true. Since
N* itself is a Long Subset, the original proposition is correct.

Explanation. The problem essentially requires to prove that for
each r — Partition of N* , there exist sets A andm € N*, such that after

we partition the numbers in N* into continuous integer segments of
length 1”2_, for any £ € N*, there are adjacent £ “consecutive integer

segments” such that each of the “consecutive integer segments” has
within it a number that belongs to A. Hence, if the union set of other
subsets does not contain consecutive integer segments of arbitrary
lengths, then we can find 2 numbers that satisfy the given conditions
within A. By this we thought of introducing the concept of “Long
Subset”, and then appropriately strengthened the problem.

Example 3. Prove that: there exist infinitely many » € N* such
that

n| (2" +2). )

Proof, n = 2 satisfies . The next integer that satisfies D is
positive integer n = 6. The relationship between them is 6 = 2° + 2.
This hints us to deal with this problem using the following method.

Suppose n(> 1) is a positive integer with property @D, if we are
able to prove: (2" +2) | (22'*2 +2), then we may deduce in this manner

that there are infinitely many positive integers » that satisfy .
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We note that (271 + 1) | (2¥*' + 1) holds under the condition
(n —1) | (2* +1). We deal with it by adding one more requirement.

Noting that n = 2 enjoys the property, now we suppose n( = 2)
enjoys the above property. Let m = 2" + 2, we are to prove m also
enjoys the above property.

As a matter of fact, since (n —1) | (2* 4+ 1), and 2" +1 is an odd
number, we may suppose 2" +1 = (n —1)g, where g is an odd number.
Then

2 +1 =21 1 = (277 +1
=27+ D@THT = (@27HT? + - D,
s0 (2" 1 4+1) | (27" +1), and also (2" +2) | @™ +2),i.e.,m | (2" +2).
On the other hand, by (n —1) | (2" +1), we know thatn —1 is an
odd number so n is an even number. Thus, by n | (2" +2), we may

assume that 2" + 2 = np, where p is an odd number (here we use
4 4(2" +2)), then,

2" 1= (27 +1 = (2 D@D = (@) 4 41,

i.e., we have (2" +1) | (2® +1), and that leads to (m —1) | (2™ +1).
Generalizing above, we know that the proposition is true.
Further thought:

If the problem is like follows: Prove that there exist infinitely
many positive integers n( > 1) such thatn —1 | 2" +1. Do we still need
to strengthen it to be proposition @?

Example 4, Find all the functions f: Z — Z such that for any «,
v, z € Z, we have

f@® +y> +2°) = f(2) + () + f().
Solution. It’s not hard to see that the following three functions
f(x) =0, f(x) =z, f(x) =—=x

satisfy the conditions in the question.
Next, we are to prove that they are exhaustive.
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Take (x, v, 2) = (0, 0, ®), we get £(0) =37(0)*. This equation
of the third degree about f'(0) has only one integer solution. So f(0) = 0.
Then we take (z, y, 2) = (x, —x, 0) and we may get f(z) =— f(—z),
so f(x) is an odd function. Meanwhile, we let (x, y, z) = (1, 0, 0),
and we may get (1) = f(1)°, then f(1) € {—1, 0, 1}.
Next, we are to use mathematical induction to prove:
For any x € Z, we have f(x) = f(1)x (Then by considering the
value of (1) we complete the solution of this problem.)
We conduct induction with respect to | = |. Let (x, vy, 2) =
(1, 1, 005 we have f(2) =2f(1)* =2f(1). Let (x, y, 2) = (1, 1,
1) and we have f(3) = 3f(1). Then considering the fact that f(z) is
an odd function, we know that the conclusion D is true for | x | < 3.
Now we suppose that f(x) = f(1)x is true for | x | <k(k € N,
k >3). We discuss the case for f(£) and f(—#%). Since f(— %) is an
odd function, we only need to prove f (k) = f(1)k.
For this aim, we need to use the auxiliary proposition below.
Proposition, For anyk € N*, £ >=4, the number £° can be expressed
as the sum of five cubes, and every term of the five addends has its
absolute value less than £°.
As a matter of fact, from
£ =3 +3 +2 +1 +1°,
5 =4 +4 + (1D + (=D + (=13,
6 =5 +4 +3 +0° +0°,
7 =6 +5 +1 +1 +0.
For odd numbers that are no less than 9, namely, 2m + 1(m €

N*, m 24), WehaVe

Qm+1 =0Cm —1)*+m +4)° +4 —m)> +(—5)° +(—1)°.
)

So, the proposition is true for £ = 4 or 6 and odd numbers that are
no less than 3.
Note that for any 4 > 3, & € N*, there exists the factored form
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k =my, wherem € N*, y =4 or 6 or an odd number bigger than 3.
By what we proved before, there is an expression y* = yi +-++y2, in
which | y; | <y, 1 <7 <5. Thenk® = (Gny,)* + -+ + (mys)*, and
| my; | <<my = k. So, the auxiliary proposition holds true.

By the above proposition, for any 2 >3, & € N*, we may know
k* =x1 +++ +2%, | x; | <k. So we know from conditions that

FEY + f(—z) + f(—x5)° = f(2)° + f(x2)” + fx3)°.

Combining the induction hypothesis, f(x;)} = f(Dx;, f(—x;) =
— f(1Dx;, we have

5

5
fG =20 f(@)? = (1 2 xl =R f(1)?,

i=1

so f(k) = f(1k.

So the conclusion D is proved, and the problem is solved.

Explanation.  This problem essentially was made from the identity
@. In the process of proof, the method of introducing an auxiliary
proposition is sometimes used for the sake of realizing inductive step
for induction, but this is not only intended for proving propositions by
mathematical induction. A math problem, no matter how hard it is, is

often integrated by creatively combining some simple conclusions.

Example 5. There is one black and one white ball in a jar. We
also have another 50 white and 50 black balls. We conduct the following
operation for 50 times: Randomly pick out a ball and then put in two
balls that have the same color as the one picked. Finally, there are 52
balls in the jar. What is the most likely number of white balls in the jar
at the end?

Solution. We prove that for any 1 < 2 <51, the probability of

having £ white balls is always 5—11

We make the problem more general. After n operations, the
probability of having & white balls is P, (2), 1 <<k <{n + 1.
Next, we are to prove that
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1

P,,(l) :P,,(Z) el :P,,(n +1) :m.

When n = 1, the above proposition is obviously true. We suppose
the proposition to be true for n, then we consider the case n + 1. We

note that the following recursive formula holds.

n+2—

_k—1 _ k
P"+1(k)—_n+2Pn(k 1)+ P P,(k),

where 1 <<%k <<n + 1, and P,(0) = 0. (The recursive formula is
obtained by conducting classified discussions for the number of white
balls ( £ —1 and # ) in the jar before the n + 1" operation. )

Then, through P, (1) = P,(2) =+« =P, (n +1) = (induction

1
n+1
hypothesis) we know that

Pn+1(1):P"+1(2):"':Pn+1(7l+l):n+1 1 . 1

n+2 nt+l n+42

nt2
By combining the fact that EP,,+1 (k) = 1, we can prove that

k=1
1
n—+2

So, the proposition holds true.

P,,+1 (n+2) =

Explanation. To make the proposition more general is only a
means to an end. Here we do it because we want to make use of the recursive

method. Idea and connotation determine the form we present.

Example 6. Prove that there exist positive integersn; <<n, <+ <<
nso such that

n, +S(n1) ] +S(nz) =ttt = Ny Jrs(ns()).

Here S(n) represents the sum of the digits of the number as
represented by the decimal system.

Proof. We make the proposition more general. We use mathematical
induction to prove the conclusion below.

For any £ € N*, k£ =2, there exist positive integersn; <n, < -+ <C
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n, such that
n1+S(n1) =N, +S(7’12) =ttt =N, +S(nk)27(m0d9). CD

When £ =2, we taken, =107, n, =98, Noting that 107 +8 = 98 +
17 = 115 =7(mod 9, we know that the proposition is true for k& = 2,

We suppose that the proposition is true for k(== 2), and we also
suppose thatn, <<n, <:-- <n, satisfies 1. We consider the case £ + 1.

Letm € N*, and we make9m —2 =n; +Sn,;), 1 <i <k, We
take positive integer n’; = 9 X 10" 4n,, 1 <i <k, ng1 =899, then

m

n] (1 <i <k +1) are all positive integers withm +1 digits, (Be careful
that, for 2 = 2, it is obvious that for £ in the induction hypothesis, we
have n, < 10", son’ is a number withm +1 digits, 1 <i <k), and that
for1 <7 <k, we always have

i+ S =9%x10" +n; +(O +Sn;)) =9 X 10" +9m +7;
At the same time,
N1 +SGhn) = (9 X10" —1) +(8 +9m) =9 X 10" +9m +7.

S0, n1+Sn") =+ =0+ Snhs) = 7(mod 9), and we can
conclude from induction hypothesis and the made structure that nj, <
nt <nh< -+ <n}. Therefore the proposition is true for # + 1.

By all above, the proposition holds true.

Explanation. Here in O, n; + S(n,) = 7(mod 9) is required
because it is important to find n'4 for the inductive step. It is a
necessary strengthening found when in the process of structuring the

induction.

14 Guessing Before Proving

Guessing before proving is a basic procedure for math discoveries. If
the guessed proposition cannot be proved then it becomes a mathematical

conjecture. By first using case study on small examples to examine a
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proposition in terms of positive integers n, then using methods like
analogy and incomplete induction, we may guess a general conclusion,
and attempt to prove it through mathematical induction. This kind of

process often occurs in our problem-solving experiences.

Example 1. We have a function defined by f: N* —N, and f (1) =
0. For anyn € N*, n =2, we have

£ = max| FG) + fn—j) 45 |5 =1, 2, =, [%]

Find the value of f(2004) and prove it to be correct.

Solution. Let’s try calculating the values of f(n) for small values
of n, and we may find the following results: f(2) =1, f(3) =2, f(4) =
4, f(5) =5, -, During the process of calculating these values, we

may find that when1 <<j < [%:} , the maximum value of f(j) + f(n—

n

j) +j is reached when; = [2

}. Therefore, we may guess

fQ@n) =2fn) +n, fCn+1) =fw) +fn+1) +n. )

Next, we will prove (D to be true by mathematical induction.

Whenn = 1, we know from the above discussions that D is true.

Now we suppose that (D is true for 1, 2, *-, n — 1. We consider
the case n.

We first find the value of f(2n).

fCn) =max{f(G)+fln—j)+; | 1<j <n}
=) +fQCn—n) +n
=2f(n) +n.

Hence, we only need to prove that f(2n) <<2f(n) +n.
- Now we discuss the cases 1 <{j <{n, and separate the cases when j
is even or odd.

Whenj =2£, 1<k < [%} ,» by induction hypothesis, we have the
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following:

fFGY+fCn—j)+5 =fQRk)+fQ2n—Fk)) +2k
= QfGE) +R)+QRf(n—k) +n—Fk) +2k
=2(fk) +fn—k) +k)+n <L2f(n) +n.

The final inequality is obtained through the definition of f(n).

n+1
2

Whenj =2k —1, 1 <k < [ ], we know from induction

hypothesis that

fG)+fQCn—j) +j
=fQRk—1) +fQRn—F%k) +1) +2F —1
=(fE)+fE—D+E—D+(fn—k)+fn—k+1)+n—k) +2k —1
=(f—-D+fa—Gk =1 +E—D+(FE) +fn—Fk) +k) +n—1
<fm)+f) +n =2fn) +n.

Here we deem f(0) = 0. Whenn is even, [n ;—1] = [%J, When
n is odd, assume n = 2m + 1, then whenk = [n ;1}

[ +fn—k)+Ek=fm+1)+flm)+m+1<f(n) +1,

so the deduction of the above inequality is correct. Therefore f(2n) <
2f(n) +n.
When we try to evaluate f(2n + 1), similar to the above discussions,

we know that we only need to prove:
fOn+1 < f) +fn+1) +n.

Similarly, we discuss the cases 1 < j <Cn, and separate the cases

when j is even or odd.

Whenj =2k, 1<k <[ ], by induction hypothesis, we have the

n
2
following .

FGY + FQn+1—5) +
= FQ2k) + fQn +1 —2k) +2k
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= Qf()+E)+(fn—k)+Fn—k+1) +n—Fk) +2k
=(fR)+fn—k)+Rk)+(fR)+Ffn+1—k)+k)+n
< fn) + fn+1) +n.

n+1
2

Whenj=2kf1,1<k<{: J,wehave
fGOr+fCn+1—35) +j

= f(2k —1) + fQ2n—2k +2) +2k —1

=(fk—D+fY+E-D+Qfn—k—1D+n—k+1D +2k—1

={(ftk—D+fa—G,—1)+k—1D+(fk)+f(n+1—k)+k)+n

< f) +fln+1) +n.

Therefore, f(2n +1) << f(n) + f(n +1) +n.

Using all of the above, for anyn € N*, (D is always true.

Now we make use of (D to recursively calculate in turn and we can
get the following:

f2) =1, f(3) =2, f(4) =4, f(7) =9, f(8) =12, f(15) =
28, f(16) =32, f(31) =75, f(32) =80, f(62) =181, f(63) =186,
f(125) =429, £(126) = 435, f(250) =983, f(251) =989, f(501) =
2222, £(1002) = 4945, f(2004) = 10892,

The value in question is thus f(2004) = 10 892,

Explanation. When we make guesses, it might be not very rigorous.
But when we are doing the deductions or proofs, we must be very
careful, otherwise, it is very easy to come to wrong conclusions and it

is harmful as a scientific attitude and habit.

Example 2.  For positive integers £ = 1, we let p(k) be the
smallest prime number that cannot divide 2. If p(&£) > 2, we denote
g{k) to be the product of all prime numbers that are less than p (k). If
p(k) =2, then we let g(k) = 1.

We define the sequence {x,} as follows: x, = 1, and

P (x,)
:w,n =0, 1,2, -

Xt
g(x,)
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Find alln € N* such thatx, = 111 111.

Solution. We try calculating some initial values of x, and is tabulated
below.

If we write n as a binary number, then according to the above
data, we may know that the number of 1s in the binary system for n is
the number of prime numbers whose product is x,. Taking a step
further, we arrange the prime numbers from the smallest to biggest,
assuming po < py << p, << -+, Checking it with the data in the above
table, it is not hard to come to the conjecture below:

For anyn € N”, we suppose under the binary system,
n=2" 27 4+ +2%, 1y >y > > 20,

That is, the binary number that corresponds to n has altogether
(ry +1) digits, among which the elements on the digitsr, +1, r,—q +1, ==+,
ry + 1 are 1s, on other digits the elements are all zeros. Then x, =
pr br,Pr, » Where p,. represents the r, +1th largest number among all
prime numbers. O

We are to prove the above conclusion by inducting with respect to n.

Whenn =1, fromx;, =2 = p, we know that O holds.

Now we suppose the proposition is true for some n, i.e., x, =
pr Pr, by, . Consider the case n + 1.

If . =1, that is, the last digit of the binary expression of n is 0, then
n+1 =271 +2% +.+2% +2° At this time, x, is an odd number, so
p(x,) = 2 and further, ¢g(x,) = 1. By the induction hypothesis,
we know

. p(x,) T, 0P
L+t — q(xn) = 1 - :Pq".PV};p()-

If r, =0, suppose i is the largest positive integer that makesr,_, >
r: +2,1.e., if we count from the second to last digit of the number in
binary corresponding to n towards the left, among all the binary
digits, only the (; + 1)th digit is the first, whose binary digit at the
left-hand side contains at least one 0. That is,
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n= 1 00 1 00 1 0.0 1 11---11.
7 +1th ryHith ri_yHith rtth T

digit digit digit digit 7y ltems

At this time, 7, ; = j, where 0 <{j <<%k —{. Then
no1 =20 2 e 2 420
( If 7 does not exist, thenn +1 = 21%"),
At this time, we know by induction hypothesis that p (x,) = p. + , so

q(x,) = popi*p.. = popr* Pri = Pr,Pr. " Dr.-

i

So

_ P(JC,,) _ P” “.priﬂpnﬂpri '"prk
Tt T T () b p

= prl '.'pr171 pri+1-

So, @ is correct forn +1, i.e., foranyn € N*, (D holds.
Now from

111111 =3 X7 X 11 X 13 X37 = pipspapspis

we can get the binary expression for the positive integer n which
satisfies x, = 111 111 as follows,

n =2"+2°+2" +2° +2 = 2106.

So, the number n we look for isn = 2106.

Example 3. The integer sequence {a, } is defined as follows:

ar =2,a, =7, —% < aph *% <%, n =2, 3, .

Find the explicit formula of the sequence {a, }.

Solution. It is not easy to find a, at first glance of the recursive
formula given by the question. Can we get the linear recursive formula
with constant coefficients from the condition? We may boldly guess
any1 = pa, +qa.—, Where p, g are constants to be determined.

Let’s try calculating the initial few terms and geta, =2, a, =7,

as; =25, a, =89, -, We may calculate the coefficients by using these
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initial terms and come to a conjecture: a1 = 3a, +2a,, n = 2.
Next, we are to prove the above conjecture using mathematical
induction.
The above conjecture is correct forn = 2, 3.
Suppose for £ <<n, we havea,y = 3a, +2a,—. Then for the case
k =n +1, we have
2

a’zlj —_ At (3an +2an—1) — 3a " +2a +2<an+1an—1 —an>

ay ay an

Notice that

2

Apt1 —

’2(an+1an—1 *aff)‘ _ ’261"—1

aﬂ

an n—1

~—=
2| an

<i{ 2a,,71 .

By the induction hypothesis, we know a, > 2a,—. So

2
‘3an+1 +2an — Gat <i.
a 2

n

2
Ant1

A nt2

Since a4, is an integer, and < % , we get

n

‘ Auy2 — (3an+1 +2an) '

2
A ntt

2
dett — 3q,4 +2a,)

n

+

A nt2

n

+- =1

1
< >

1
2
So a2 = 3a,y +2a,. Then the conjecture is true for the case £ =
n +1.
Generalizing all of above, we know the sequence {a,} satisfies
a, =2y,a;, =7, a, = 3a,~ +2a,», n =3, 4, ---. By utilizing the
characteristics equation of recursive sequences, we solve the linear

recursive formula with constant coefficients and get

o 17+658m<3+2/ﬁ )"+ 17—658m<3—/ﬁ)".

2
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Example 4. The function f: N* —N~ is defined as follows. f(1) =
1, forn € N*, the number f(n + 1) is the greatest positive integer m
that satisfies the following conditions: There exists an arithmetic sequence
ais azs v, a, comprised of positive integers (here a sequence with
less than 3 terms is also regarded as an arithmetic sequence) , such that
a; <a, <+ <a, =n,and f(a,) = fla;) =+ = f(a,). Prove that
for any positive integer n, we have f(4n +8) =n +2.

Proof. The question does not require us to evaluate each function
value at n. But if we look at the definition of f, only when each
previous value of f(n) is found can we easily find the next one.

We do calculations for initial values by using the definition of f so
that we may know that:

Q) =1, f(2) =1, f(3) =2, f(4) =1, f(5) =2, f(6) =2,

D =2, f(8) =3, f(9 =1, fAA0) =2, fAD =2, f(12) =3,
FA3) =2, fQ4) =3, fU5) =2, fU16) =4, fA7D =1, f(18) =3,
fA9 =2, fQ20) =5, fQ21 =1, f(22) =2, f(23) =2, f(24) =6,
fQ@25) =1, f(26) =4, fQ27) =2, f(28) =7, f(29) =1, f(30) =4,

fGBD =2, f(32) =8, f(33) =1, f34 =5, f(35) =2, f(36) =9,

These listed values show that when1 <{n <(7, we have f (4n +8) =
n + 2. Further, it pushes us to guess that when n > 8, we have

fldn +1) =1; f4n +2) =n—3;

fUn+3) =2; fUn +4) =n + 1. @

Next, we want to prove that when n > 8, (D is always true by
inducting with respect to n.
Whenn = 8, we know that (D is true by using the listed values
above.

Now we suppose that @ holds true for 8, 9, ===, n — 1. We consider

the case n( = 9).

By making use of the calculated values from f(1) to f(36) together
with our induction hypothesis, we may know that f(4n) = n is the
maximum value among (1), f(2), =+, f(4n). So f(4n +1) = 1.
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Now we study the items that are equal to 1 from f(1) to f(4n +
1), and we find f(17) = f(21) =+ = f(4n +1) = 1. Combined with
the definition of f we come to f(4n +2) == n —3. On the other hand,
for the arithmetic sequencea; <a, <<+ <a,(=4n +1) with4n +1
as the ending term, if f(ay) = - = f(a,) =1, then the common
difference of this sequence d = 4, for if d << 3, then at least two of
fldn—2), fU4n — 1), f4n), f(4n + 1) should be equal to 1;
however, by the induction hypothesis, there is only f(4n +1) =1. If
d > 4, then by the induction hypothesis and the values shown from

1+(4n +1 —1

3 <n—3.

f(1) to £(36) we know thatd =8. So, m <

Hence, f(4n +2) = n—3.

Then we evaluate the values from /(1) to f(4n +2), there is only
fdn—12) = f(4n +2) = n — 3 (Here we made use of n = 9),
therefore f(4n +3) = 2.

Finally, by a similar manner of discussing the value of f(4n +2),

we may know that
fdn +4) =n +1,

So, for anyn € N* (n = 8), (D always holds. Furthermore, for
anyn € N*, we have f(4n +8) =n +2.

Explanation. To guess the result from a regular pattern, the number
of initial values we need to calculate can be different for different

problems. In this case, carefulness and confidence are both important.

Example 5. For anyn € N*, denote p(n) to be a non-negative
integer k that satisfies 2¢ | #» and 2" t n. The sequence {x, } is defined
as follows:

xy =0, 1 14+20(n) —xy1s m =1, 2, oo,

TLn

Prove that every non-negative rational number will appear exactly

once in the sequence x, x4y, **°.
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Proof. If we write x, :& (Pus g, €EN", (p,, q,) =1), then

q n

the condition will be

D _ (4 b2ty =2
p" anl
It is the most convenient to eliminate the denominator when p, =
g.—1. This guess brings out the following proof.

Define the sequence {y, } as follows:
yi=y2 =1, Yoo = (1 +20n) Y1 —yur m =1, 2, ==,
We come to the following conclusions in turn.

Yn

Conclusion 1. For anyn € N*, we always have x, = —.
Vat+1

We will prove it by inducting with respect to n. The inductive step
for induction could proceed as follows.

1420+ 1D —x, = 14200 +1) — ="
X i Yatt

= yjﬂ q¢! +2p(n I Yer1 —Yn)
_ Yut2
ynﬂ-
So Tp+ty = qu.
Yaut2
Conclusion 2. For anyn € N* , we always have y2.1 = Yyt TYa>
Yo = Yn.

We will induct with respect ton. As a matter of fact, if Conclusion 2
is true for n, then

Yotz = (142020 + 1)) yout1 — Yo = Yoautt —Yn = Yutis
Yotz =1 +202n +2)) you2 = Youta

=(1+200 +pn DN yotz — Yaurt

=2y, + A +pn 1)y — (a3

=yunn + 1+ +1)yu1 — ya

=Yatt T Yuio.
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By this and the initial conditions, we may know that Conclusion 2
is correct.

From Conclusion 2 combined with mathematical induction method, it
is easy to prove for anyn € N*, we always have (y,, y,.1) = 1.

Conclusion 3, For any p, ¢ € N, (p, ¢) = 1, there exists a
unique n € N* such that (p, ¢) = (y,» V).

We will prove by inducting with respect to p +¢. When p +¢q =2,
p =q = 1. At this time (p, ¢) = (y,, y2), while from Conclusion 2
we know that when n = 2, at least one from y, and v, is bigger than
1. S0y (yns yur1) # (y1» ¥2). Therefore, Conclusion 3 is true for
ptqg =2

Now we suppose Conclusion 3 is true for all positive integer pairs
(p, @ satisfying p +q <m (m =3, m € N*) and (p, ¢) = 1.
Consider the case p +¢ = m. At this time p # g, and we may discuss
under two cases, p <<qg and p > gq.

Case 1. p <q. From(p, ¢) =1 we know that (p, g —p) =1,
however, (¢ — p) +p = q <m. By induction hypothesis, there exists
a unique n € N*, such that (p, ¢ — p) = (y,5 y.+1). Then(p, @) =
(Vs Yo T ¥ur1) = (Y2us Your1). (Here we used Conclusion 2.)

On the other hand, if there exists £ <</, k£, [ € N*, such that
(ps @) = (s yirr) = (yis yim)s theny, =y yer1 = yin. At this
time, if 2 and / are both even numbers, then by Conclusion 2 we know
that (p, g — p) has two different expressions, which is contradictory
to the induction hypothesis. But when % is odd, y, > y.41, and this is
contradictory with p < q. So % is an even number. By the same
reasoning [ is an even number. Therefore, there exists only one n &€
N* such that (p, ¢) =y, s Yur1).

Case 2. p > q. Discuss in a similar manner as Case 1.

By all above, Conclusion 3 holds.

By Conclusion 1 and 3, and x, = 0, we may know that the proposition

1s true.
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15 Problems Regarding Existence with Sequences

Problems regarding existence appear on all branches of mathematics.
They also showed up in previous sections of this book. Here we
dedicate one section to discuss the existence problems of sequences
with the aim of stressing it and bringing it attention. We discuss the

ways to handle this kind of questions in the form of examples.

Example 1. Suppose a, 6 are integers that are bigger than 2.
Prove that there exist a positive integer £ and a finite sequencen,, n,, =+,
n; of positive integers such thatn, = a, n, = &, while for 1 <i <
k —1, it is always true that (n; +n.4,) | 7m0

Proof. We use the notation “a ~ 4” to imply that the positive
integersa, & can be “connected” by the above-like sequence, then “if
a ~ b holds, thenb ~ a also holds”.

A natural idea is to prove: for any two adjacent positive integers
(both bigger than 2), they are “connectable”. We can meet this
objective by use of the following two conclusions.

Conclusion 1. For anyn € N*, n =3, it is always true thatn ~
2n.

The following sequence shows that Conclusion 1 holds.
n,nn—1, ntan—1Dn—-2), n(ln—2), 2n.

Conclusion 2. For anyn € N*, n =>4, it is always true thatn ~
n—1,
We use the sequence

n,nn—1,nn—1Dn—-2), nn—1Dn—-2)n—3), 2n—1D(n—2).

Combining Conclusion 1 from which we know that 2(n — 1) (n —
2) ~(n—1Dn—2), with(n—1)(n—2) +(n—1) = (n—1)%is a divisor
of (n—1)((m—2) « (n—1), we know that Conclusion 2 holds.

For integers a, & that are greater than 2, without loss of
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generality, supposea <<b. Ifa =&, thenusinga ~a +1 ~b(=a) we
know that the proposition holds. If a <4, then usinga ~a +1 ~a +
2 ~ ++ ~ b we also know that the proposition holds.

Explanation. The key to solving this problem was the direct
construction of Conclusion 1 and Conclusion 2. This is the most natural

way of thinking when dealing with problems of existence.

Example 2, Supposem € N* . Tell whether there exists a polynomial
f(x) of degree n with integer coefficients such that for anyn € Z, any
two terms from the sequence {a, } defined by the following method are
coprime: a; = f(n), ar = flar)s &k =1, 2, ===,

Solution. Whenm = 1, this kind of polynomial does not exist.

As a matter of fact, if there exists a function f(x) = ax + b that
meets the requirements, without loss of generality, suppose a > 0.
Then for anyn € Z, we have

ay, =at «n+ @+ +1)b. @

This conclusion could be reached by inducting with respect to .

If & = 0, then for any positive integer n that is bigger than 1, we
may know from (D that every term of the sequence {a; } is a multiple of
n; therefore, there are no terms that are coprime.

If & # 0, since a is a positive integer, we know that there exists a
£ € N* such that | (a* ' ++--+1)6 | > 1. Denotec = (a* ' ++++ +1)b.
We take n as a prime factor of | ¢ | , then the a, corresponding to this n
is a multiple of n. From @O we know that

an =a* en+ @+ +1b
=a* en+ @ +1) @+ +Db
=a%* en +(a* +1ec.

So n is also a divisor of ax , which makes a, and a, not coprime.

So, whenm = 1, there does not exist a polynomial with integer
coefficients that meets the requirements.

Next, we are to prove that when m = 2, this kind of polynomial
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always exists.

We will prove: When f(z) =x""'(x —1) +1, for anyn € Z, any
two terms from the corresponding sequence {a,} are coprime.

We notice that for any k2 € N*, we havea, =ay '(a, —1) +1=
1(mod a, ), and also,

are =alfd (ap —1) +1=1""1+0+1 =1 (moda,).

Following this, we may know by mathematical induction that, for
any positive integer¢ > &, it is always true thata, =1 (mod a;). So,
any two terms from the sequence {a,} are coprime.

From all above, when m = 1, this kind of polynomial does not
exist. Whenm == 2, we can always find such polynomials.

Explanation. For the case m = 2, we take an arbitrary polynomial
g (x) of degree m — 2 with integer coefficients.

Let f(x) =x(x —1)g(x) +1. By a similar method as above, we
may prove that for n € Z, any two terms from the corresponding

sequence {a,} are coprime.

Example 3.  Suppose g is a given real number which satisfies

%@ <. q < 2. The sequence {p,} is defined as follows: If the

binary expression of a positive integer n isn = 2™ +a, » 27 + - +
a, » 2 +ay, wherea; € {0, 1}, then

Pu =q" Fapy o q" "+ day e q tag.

Prove that there exist infinitely many positive integers £ such that
there does not exist a positive integer [ which satisfies p,, <<p;, <<pown.

Proof. Form & N*, suppose under the binary system,

2k = (10---10),.
S

m items

We prove that there doesn’t exist an / € N*, such that p,, < p;, <

Do+
As a matter of fact, for this kind of # € N*, we have
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Pu =q¢7 ¢ e gy pun = pu T L

If there exists an/ € N*, such that p,, < p, < paut, then we

suppose the binary expression for/is! = Zai «2', wherea; €{0, 1},

i=0

a, = 1, thenpl = Eai . qi.

i=0

(1) If m =1, thenq <p, <<g +1. At this time, ifz =2, then p, =

qg> >q+1 (since% < q <2, we haveq +1 << ¢? ) This causes

a contradiction. If z = 1, then p, = g, or ¢ +1, also contradictory.
(2) Suppose when it is m — 1 (m = 2), we may come to a
contradiction. Consider the case m.
If : = 2m, then

Pz >q2m > q2m71 +q2m—2 >q2m-—1 +q2m—3 +q2m‘4 > oo
>q2"‘_1 e +q +1 = Poeta.

Contradiction.
If : <2m —2, then

P <@ AT A 1
= (g7 2 4¢3 + (g™ +g*™ ) + -+ (¢ +¢) +1
Lgm " g 4 g7+
< gt 4 +q° +q = pu.

Contradiction.
During the above reasoning process, we have used ¢ >¢'"* +¢*,
1 =0, 1, 2, -,

t—1

Sot =2m —1. At this time, we denote /’ =1 —2>"" = >'qg, « 2%,

i=0
Furthermore, we have py = p, —q¢**'. Then, from py <p; <Pt s
we know that

Pren = @77+t @ g <pr < paen T

This is inconsistent with the induction hypothesis.

From all of above, the proposition holds true.
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Example 4. State whether there exists a sequence {a, ; of positive
integers such that every positive integer appears only once in this
sequence, and that for any 2 € N*, we have £ | (a; + -+ +a).

Solution. There exists such a sequence.

We construct such a sequence by a recursive method. Takea, =1,
and we supposca; s as» ***, a, (all different) are already chosen. Let:
be the least positive integer that doesn’t show up ina,, ***» a.. Since
(m +1, m +2) =1, then by using Chinese Remainder Theorem, we
may know that there exist infinitely many positive integers  such that
(Denotes = a; +++ +a,)

s+r=0C(modm +1),
s+r+¢t=0(modm +2).

Take such an » which makes» > max{ais ***s dms £}. Leta,g =
rs anz =t. A sequence defined like above will meet all requirements.
Explanation. The recursive method applied to solve problems of
existence, in essence, is a technique of direct construction. The
sequence we defined could be 1, 3, 2, 10, 4, ---. Every time we have
two more terms and this practice will make sure that the sequence

covers all positive integers without repetition.

Example 5, A sequence {a, ) of all integers satisfies the following
conditions. For any subscript £ =2, we have 0 <{a, <<k —1, and also
a; ++++a, =0 (mod k). Prove that no matter what initial value a, is
chosen, there exists a positive integer m, such that for this sequence,
starting from the mth term, all the terms are constants.

Proof. The starting point is to prove that for any «; € Z, there
exists a subscript £ such thata; ++-- +a, =dk, where 0 <<d <k. @

If the above conclusion is successfully proved, thena; + <> +a; +
d =d « (k +1). Note that a,, is the only integer that satisfiesa;, +--+ +
ar1 =0 (mod & + 1) in the set {0, 1, 2, =+, k). Then a,y = d.

According to this and reason recursively, we can prove that whenn >
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k +1, we always havea, = d.

Now we will prove that (D holds true. If this is not true, suppose
there exists an a; such that the subscript £ that satisfies (D does not
exist. Since when a; < 0, if for the sequence {a,}, there is no term
starting from which all terms are all zeros, then there will be infinitely
many terms in the sequence {a,} that are positive integers. Hence,
there exists anm € N* such thata; +++- +a, =0. Hence, without loss
of generality, we may suppose a; > 0. (Attention: If a; = 0, then we
can know that for anyn € N*, we always havea, = 0. ) At this time,
for anym € N, it is always true thata, +a, ++- +a, >0.

By the conditiona; ++-- +a,, =0 (modm), we may suppose a; + -+ +
a, = d, + m. Combining the counter-hypothesis that there is no
subscript % that satisfies D, we know that for anym € N*, we haved,, >
m, hencea, + - +a, =>m?. Whenm =2, we havea,, <m —1, then

m? <a, +ta, <ar+1+2++0m—1) =a, +&mz:i)._

This leads toa; >m(_m2+_12

N* . The contradiction we arrived at shows that (D) is true.

, and it is not always true for allm €

From all above, we know that the proposition holds true.

Explanation. Proof by Contradiction (and Drawer Principle or
the Pigeonhole Principle) is a basic indirect method to solve problems
of existence. It is more common to use this kind of method to deal

with non-existence problems.

Example 6. The sequence {a, is defined as follows: If a positive
integer n under the binary system, the number 1 appears for even number
of times, then leta, = 0, otherwise let a, = 1. Prove that. there do
not exist positive integers 2, m such that for any; € {0, 1, 2, *=-, m —
1}, it is always true that

Apti = Artmty = Qrtomt» @

Proof. By making use of the definition of {a,} we know that
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ay =a,(mod?2),

@
Aoyttt = A2y +1 =da, +1 (mod 2).

If there existk, m € N* such that forj € {0, 1, -, m—1}, @D is
always true, then by Principle of the Minimum Natural Number (the
Well-ordering Principle), we may suppose (&, m) is the positive
integer pair that makes the sum %2 +m the smallest.

Case 1. m is an even number. Then we supposem =2¢, ¢t € N".

If £ is an even number, then we takej; =0, 2, ==, 2t —1) in @,

where()éjz <t —1, and

Aptj = Aptmt; = Art2mts»

. . . . E my.
From (@ we have atyl =aki i =aktys. This shows that (5 ) —2~> 1s

also a positive integer pair that makes @ true for 0 < j < % -1,

contradicting the previous conclusion that £ +m is the smallest.
If £ is an odd number, then we take; =1, 3, -+, 2t —1in @D. By

similar discussions as above, we have

e L e
. Ek+1 m . m
which shows that (—2— , 5) also makes (D true for 0 << j <C 5 1,

contradicting the previous conclusion that 2 +m is the smallest.

Case 2. m is an odd number.

When m =1, it is required thata, = a;+1 = a2. At this time if £
is an even number, then a,, = azn =a, + 1 (mod 2), contradicting
what we know. If £ is an odd number, then we letk =2n +1, and we
have azp = azs = azep2 +1 (mod 2), also contradicting what we know.

Whenm =3, let; =0, 1, 2in @, then we have

Ap = Qptm = Qki2m s

A1 = Qrtmtr = Qitomt s

©® e

Apty = Aptmt2 = Apt2mi2.



134 Sequences and Mathematical Induction

If £ is an even number, letk = 2n, m = 2t + 1, then from @) we
know that a,+1 7 ars dsimt1 7 Aetmiz. Then by combining @, @ and

® we can know that
Ar = Qptmt2 = Apt2. @

(Attention: every term in the sequence that we use is either 0 or 1.)

Now, if n is an even number, letn = 2¢, then
Apir = Auir = Ay =day +1=a, +1=a, +1 (mod?2),

contradicting ®; If n is an odd number, then from the fact that m is
an odd number we get £ +2m = 0 (mod 4). By similar discussions we
have ay o, 7 Qitomtz » cOmbining @, & and & we come to a contradiction.

If % is an odd number, combining the fact that = is an odd number
and from @ we know thata, i, 7 artmt1s arp # arw. By referring to

®, @ and ®, we have

Ap = Qptm — Apt2. @

Now, if £ =1 (mod 4), then we can come to a contradiction from
ar = az2 in @. If & =3 (mod 4), then by the fact that m is an odd
number we can know thatz +2m =1 (mod4), S0a@s12m FZ Aptomizs 1-€. s
a, # ar» contradicting @.

From all above, the proposition holds true.

Exercise Set 2

1. Suppose S is a set with 2011 clements, and N is an integer
satisfying 0 << N < 22",

Prove that we can dye every subset of S into black or white
such that

(1) the union of any two white subsets is still white.

(2) the union of any two black subsets is still black.

(3) there are exactly N subsets that are white.

2. Place 2048 numbers on a circle, which are all +1 or — 1. Now
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we multiply each number by its right neighbor and we replace the
original number by the product we get, giving a circle of new numbers.
Prove that after a finite number of operations like this, all numbers on
the circle will become + 1.

3. Suppose x,, '+, x, are any real numbers. Prove that:
; 1 +xf + -t <J_
4. Supposen € N, and the complex numbers z;, ***y 2,5 w1 ***s
w, satisfy for any vector (e, ***s e, e €{—1, 1}, 71 =1,2, =+, n

it is always true that
‘6121 +- e +e,,z,, l<| €1w1 + oo +e,,w,, ‘

Prove that | z; |2+ +| 2z, > <{w, |2+ 4| w0, |2

5. Suppose P(x1, x,, ***» x,) is a polynomial with n variables.
We replace all the variables in P by +1 or — 1, If there are even —1s,
then the value of P is positive. If there are odd — 1 s, then P is negative.
Prove that P is a polynomial with at least degree n. (Namely, there is
a term in P such that the sum of all degrees of the variables in this
term is no less than ». )

6. Suppose ai, °*, a, is a sequence of all non-negative real

numbers(not all of them are zeros). Define

Apity T apiq2 T Fa
m,; — max kit kljﬂ k,k:1, 2y =y m
1< 1

Prove that for any positive real number ,, the number of
a; +a; -+ +a,

B .
7. (Jensen’s Inequality) Suppose f(x) is a convex function on

subscripts £ that satisfy m, > 4 is less than

La, b] (namely, for any z, y € [a, b], we always have f(x ;Ly><

%(f(xwf(y))).

Prove that for any n» numbers x,, ***, z, € [a, b], it is always
true that
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<x1 +n +xn)

f <711—(f(x1) Foeee ot fl)),

8. Suppose the real numbers x, ***5 z, satisfyz; + - +x, =1,
wheren € N*, n =2, Prove that
. 1 in—zx
1+—)= —*
;LI; ( T ) g (1 — I )

9. The Fibonacci sequence {F,} satisfies: F;, = F, =1, F,p, =
F,. +F,. Prove that

>, 5;’ <2
i=1

10. Find the smallest positive integer £ such that there exist at
least two sequences {a,} of positive integers which satisfy the following
conditions:

(1) For any positive integer n, we havea, << a, i ;

(2) For any positive integer n, we have a,1» = a1 +a,;

(3)ay = k.

11. The Fibonacci Sequence {F, } is defined as follows: F; = F, =
1, Fotop = F,u +F,, n =1, 2, ---., Find all positive integer pairs (k,
m), m >k, such that the sequence {x,} defined below contains 1:

2z, —1 .
=r -, ifx, #1
xq :&, X nt 2{1*1" ,(nzl’ 2, =)

F.. .
1, if x, = 1.

12. Mr. Zhang takes randomly a number from {1, 2, ---, 144}.
Mr. Wang wants to know the number Mr. Zhang got with the following
game: Mr. Wang takes a subset M from {1, 2, -+, 144} and then asks
Mr. Zhang whether the number he took belongs to M. If the answer is
a Yes, then Mr. Wang will pay Mr. Zhang 2 RMB. If the answer is a
No, then Mr. Wang will pay Mr. Zhang 1 RMB. What is the minimum
amount of money Mr. Wang needs to pay so that it is guaranteed he
knows the number Mr. Zhang got?

13. The Fibonacci sequence {F,} satisfies F;y = F, =1, F,p, =
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Fn—H +Fn$ n = 19 29 b
Prove that for any positive integer m, there exists a subscript 7,
such that

m | (Fy —F, —2).

14. We call an infinite sequence of positive integers an F'-Sequence,
given that from the 3rd term, every term in this sequence is equal to
the sum of the two terms immediately before it. Is it possible to
decompose the set of positive integers into the union of

(1) finite number of (2) infinite number of F-Sequences?

15. Suppose the integersk, a;, ===, a, satisfy 0 <a, <a,— <+ <<
a; <k, and that for any 1 <i, j <n, itis true[a;, a; ] <*k.

Prove that for any: € {1, 2, -, n}, it is true that ia; < &.

16. Suppose thata, << a; <+ <a,, ag, ***» a, are all positive

integers. Prove that

1 1 1 1
+ T e ] —
[ao’ al] [01 » az] [anﬂa an:l = 2"

17. Define the sequence {u,},Z as; vy =0, u; = 1, and that for
anyn € N*, the number « 1, is the smallest positive integer that meets
the following conditions:

(1) foranyn € N*, w0y > u,;

(2) there are no three numbers from the sequence ug, w1, ***,
u 4+ that form an arithmetic sequence.

Find the value of wu .

18. The positive integersa, b, n (b >1) satisfy (5" —1) | a. Prove
that under base b, within the expression for number a, there will be at
least » non-zero numbers.

19. Supposen € N*, n > 1, and denote h(n) to be the biggest
prime factor of n. Prove that there exist infinitely many » € N* such
that h(m) <h(n +1) <h(n +2).

20. Supposen € N*, n >1, and denote w(7) to be the number of

distinct prime factors of n. Prove that there exist infinitely many n €
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N* such that w(n) <w(n +1) <w(n +2).

21. We use a, to express the sum of the initial » prime numbers.

Prove that for any n € N*, there is at least one perfect square
number within the interval [a, s @ .

22. Prove that for any positive odd number, we may always find a
positive integer such that the product of them, under the decimal
system, has every digit being odd numbers.

23. Denote A = {x | x € N*, z has all its digits not being zero
under the decimal system, and s(x) | =}, where s(x) denotes the sum
of all digits of x.

(1) Prove that there exist infinitely many numbers in A, whose
expressions under the decimal system have equal times of appearances
for the digits 1, 2, ===, 9.

(2) Prove that for any £ € N*, there is one term in A which is
exactly a positive integer with £ digits.

24. Tell whether there exists an infinite sequence comprised of
positive integers such that

(1) Every term is not a multiple of any other term.

(2) Any two terms from the sequence are not mutually prime, but
there is no positive integer greater than 1 that can divide each term of
the sequence.

25. Suppose p is an odd prime number, and a,, as, ***, @, IS a
sequence of positive integers satisfying for any ¢ € {1, 2, ==+, p —2},
it is always true that p fa,(a} — 1). Prove that we can take several
numbers froma,, a,, ***, a,- such that their product =2 (mod p).

26. Suppose f: N* —N" is a one-on-one correspondence.

(1) Prove that there exist positive integersa, d, such that

fla) < fla+d) < fla +2d);

(2) For any positive integer m that is no less than 5, tell whether
there must exist positive integersa, d, such that f(a) < f(a +d) < <
fla +md).

27. Prove that for any real numbers « € (1, 2], there exists a
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unique sequence {n,} of positive integers such thatn; <n,y, and

¢ = lim ﬁ(1 ).

m—=—toco =1 ny

28. Suppose m is a given positive integer, and that every term of
the sequence {a,} is a positive integer, and for any positive integer n,
it is always true 0 <a, —a, <m.

Prove that there exist infinitely many pairs of positive integers
(ps @), such that p <gq, anda, | a,.

29. Suppose S is a set of non-negative integers. We use r,(n) to
denote the number of pairs of ordered pairs (s1, s,) that satisfy the
following conditions: s, s, € S, s; # 52, and s; +s, = n.

Discuss whether we can partition the set of non-negative integers
into two sets A and B, such that for any non-negative integer =, it is
always true that 7, (n) = rg(n).

30. Prove that any integer bigger than 1 can be expressed as the
form of a sum of a finite number of positive integers that satisfy the
following conditions;

(1) the prime factors of each addend are either 2 or 3;

(3) neither of any two addends is a multiple of the other.

31. The functions f, g: N* > N* are defined where f is a
surjective mapping, while g is an injective mapping. For any positive
integer n, it is always true that f(n) = g(n). Prove that for any
positive integer n, it is always true f(n) = g(n).

32. Does there exist a sequence {a, } of integers such that0) =a, <
a; <<a, <+, and that it meets the following two conditions:

(1) Every positive integer can be expressed in the form of a; +a;
(i, ;7 2 0 and they can be the same value. );

n?

(2) For any positive integer n, it is true thata, > 16
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Solutions to Exercise Set 1

1. We induct with respect to n, the number of elements of this
non-empty finite set. Denote this set to be S,. Whenn = 1, its subsets
can be arranged as J, S, and the requirement is met. Now suppose
that the statement is true forn, i.e. , the subsets of S, can be permuted
asA;, A,, -, Ay, such that the number of elements for consecutive
sets differs by 1. Consider S, = {a1, ***+ a.+}. For its subset of »
elements S, = {a;, ***, a,), we have a permutation A;, *+, Ay,
which are all subsets of S, , which meets the requirement according to
the induction hypothesis. Then, the following permutation:

Ay ooy Ayrs Ay Udawa)s oy AL U {aw ).

is a permutation of all subsets of S, that meets the requirement.
Explanation. Within the permutation of subsets we constructed
here, the number of elements from any two consecutive subsets differs
exactly by one. This is even stronger than what’s required.
2. Whenk% =0, the statement is obviously true. For the case when

Qg

k

the corollary of the following statement; for £ = 0, we always have

k >0, the conclusion to be proved is equivalent to 5= << C;l—" , and this is
(k +l)ak <kak+1. @

We induct with respect to £ to prove that ) holds true. When
£ =0, froma, = 0 we know that (D holds true. Now we suppose @ is
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true for £, then we know from the conditions that

(k +2)ak+1 — Z(k +l)ak+1 “kak+1 <2(k +1)ak+1 _(k +1)ak
= (k +1)(2ak+1 —ak) < (k +1)ak+2-

So, (D is also true for £ + 1. The proposition is proved.
3. Whenn =1, a} <a, —a, <a:s soa; <1, and at the same

. 1 142 1 1 ..
time, a, <a, —a? = i <a1 AE) <? < > So the proposition

holds true forn = 1, 2. Now we suppose the proposition holds true for

2
n(=2), thena, <a, —a? = 1 (1 —a, | . Note that by induction
4 2

hypothesis a,, <~717 <%, SO we have% —a, >% —% >=0. Hence, a,1 <

1 /1 1N _1_ 1 _n—=1__1
4 (2 n> P |

true for n + 1. The proposition is proved.

s 1.e. , the proposition holds

4. When n = 2, the proposition is obviously true. Suppose the
proposition is true for n(Z= 2), then we consider the case n + 1. From
the induction hypothesis, we know that

aia3 +asai +- +‘aaty tanmal

4
> azat tazad ++ +aat taal —a.at +aaty taaat.

In order to prove that the proposition holds true for» +1, we only
need to prove that

4 4 4 4 4 4
aija, —a,al ta,amm ta,matl =aman taiana. @

For the sake of convenience, denotea; = x, a, = ¥, dpnt = 2>

then x <<y <z, and to prove (D true is equivalent to having to prove
xyt +yzt fzat —yxt — 2yt —xzt =0, @
Notice that, the Left Hand Side of @

=xy(y’ —x2%) +yz(2® —3*) —22(2* —2*)
=(xy —zax)(y® —x) + (yz —zx)(* —3y?)
= —x(z =Wy )G +xy +22) +2(y —2)(z —y)(&* +z2y +y7)
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=(y —x)(z —y(* +2%y +2y? —xy? — 2%y —x%)
=(y—x)(z =y (z —2)&* +zx +x2* +2y tay +y>)

Z—%-(y —x)(z = —)x+3y)?+(y+2)2+(z +2)?)
= 0.

So @ holds true. Furthermore, @ is true. The proposition is true
forn +1 and is proved.

5. By condition, we know thata, =a, + . Combining the

n—1
initial conditions and mathematical induction we may know that for
any n € N*, we havea, > 0. Therefore, forn =2, we havea,y; =a, +
1

An—1

>a,. Considering together with a; <(a, we know that for anyn €

N*, it is true thata, <a,+. So, whenn =2, we have

Appy = a, + 1 >a,,+i. ®

An— Ay

_aszay +1
a

From a; =3, we know thata, >+6, i.e., whenn =

3, we havea, > +2n. Now we suppose whenn =m(=3), itis truca,,

2
> +/2m. Then from () we know thataZ,, > (am +i> =gq2 +2 +ai2

m m

>aZ +2 >2m +2, 80a, > +2(m +1). Therefore, the proposition
holds true for m + 1 and hence is proved.

2
6. Whenn =1,from1—+;~‘L :%+a 22./% +a = 2 we know

that the proposition is true. Now we suppose the proposition is true for

1+a* 4+ +a* n+1
T R = » then we have

n,i.e.,

a +a’ 4+ +a?! o_n
1+4+a? ++a” n+1

We notice that
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14+a? 4 +a*"? a+ta® teFa!
a+a® 4 +a¥ 1+a% 4+ +a™

1 +a® +- +a>7? a+ta’®t-+a!
a(l+a?+--+a*) 14+a? 4 +a™
1+a*> 4+ +a*? +ala +d’° +-++a*™H)

a1 +a* 4+ +a”)

_ U +a®>+t-+a*) +a’Ud +a® + -+ +a”)
2l +a’ + - +a*)

2
IR R
a a
So,
14+a% 4+ +a2"? n__n+2

=2 — .
a +ta® + e +ag¥M n+1 n—+1

Namely, the proposition is true for n + 1. QED.
7. Whenn =2, since 2" > 1000, we havelg2 > 13 ik the proposition is
true. Now we suppose the proposition is true for n(n = 2). By the

Arithmetic Mean-Geometric Mean Inequality, we have H‘2J;—+" >

V1T X2 X Xn,i.e.,n+1>2(nD7. Then,

lg(n + D1 >1g((nl) » 2(n1))
—lg2 4" j1lg(n!)

>lg2+n +1 ><3_”(% +...+;11_>

10
>1%+3(n1o+1)(2 o)
_3n+1D
10 (2 +1>

So the proposition is true for n + 1. QED.

8. Whenn =1, a} = a?, whilea, >0, soa; =1, i.e., the
proposition is true for n = 1. Now we suppose the proposition is true
for1, 2, -y, n—1,1i.e.,a, =k, k =1, 2, -, n—1. Then,
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n—1

(E#)+a = Yat = (Fla)' = (Z#)+a)

k=1

Hence, a} =a? +n(n—1a,, and we solve it to geta, =0, —(n — 1)
or n. Consider alsoa, >0, we havea, =n. So, the proposition is true
for n. QED.

9. Without loss of generality, we may set a; << a, < - << a,.
Whenn = 1, the inequality ai > %al is true. Assume that the

2n+1

inequality is true forn, i.e., ai ++++a2 = (ay ++++a,),and

we consider the case with n + 1. We only need to prove

2n +3

aiﬂ = (a1 +oeeta,) t 3 Apt s

wherea, <<a, <<+ <a, <an,u, anda;, € N".

Noting thata, <a,u — 15 g, <a, —1<a,u —2, =5 a1y K<apn —

n, so we only need to prove thatazy, > %Z (@ns — k) +213i§a,,+1 ,

4n +3a +n(n +1)
3 nt+1 3

which is equivalent toaZ;, — >0, 1i.e., we only

need to prove that (a,.;. — (n + 1)) (a,m —%) = 0. This inequality
could be proved by making use of a,u = a; +n =n +1.

So, the original inequality is true for n + 1. QED.

10. From the recursive formula, we can know that a2, =
An—1Gmizs n = 2, 3, ++-. From the initial conditions with mathematical
induction, we can know thata, # 0. Then, we can turn the above into

a a 41
n+2 — nt , n :2’ 3, ee
Ant1Qn Ap,ayp—1

Using this recursively backward, we can know that Lni2

Ant1dy

a a :
Gatt L. = 3 =2,1.€.0Ant2 =2, 1Ans 1 =2, 3, **e. From the
a,a,— araq

recursive expression and thata,, a,, as; € Z, we can know thata, are
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all integers, and Z—"ﬂ = 2a, (Note that this equation also holds for
a1

n = 1.). We may know that for anyn € N*, 4ri2 is an even number.

A

Then, a, = ( Ca ) (a~”1>---(@)- a, and is the product of n even

a,— a,— aq
numbers. Hence, 2" | a,.
11. From the recursive formula, we may know that a,., — &k =
a.Ca, —k),thena, —k =a,-(ap1 — k) =an1an2{a, »—k) ==

Anarar(ay — k) = a,vary i.e.,
Ay = Ap*ay + k. @D

For anym, n € N*, m # n, without loss of generality, assume
m < n, and we know from O that

(ans Clm) = (a,,wx"'fh +k9 am) = (k, am).

Next, we prove: for anym € N*, we always havea,, =1 (mod %),

Whenm = 1, from a, = £ + 1 we know that the conclusion is
correct. Now we suppose it is correct for m, i.e., a,, =1 (mod k),
thena, =a2 —ka, +k =a2 =1> =1 (modk). So, for anym € N*,
we havea,, =1 (mod k).

By the above conclusions, we have (a,, ) = 1, and further we
get (a,, a,) = 1.

12. Refer to Example 5 of the first section. Try calculating the
first 21 terms of the sequence {a, }, and the results are in turn,

1, 2,3,5,7,9, 12, 15, 18, 23, 28, 33,
40, 47, 54, 63, 72, 81, 93, 105, 117,

among which a,, a», ass a4, ays ax are respectively multiples of 2,
3,5, 7, 11, 13. Hence, for any p € {2, 3, 5, 7, 11, 13}, there is a
term a, , multiple of p.

If as,+ =0 (mod p), then starting from a, we can find the next
multiple of p. If as,—; & 0 (mod p), then from the recursive formula

and a, =0 (mod p), we may know that as.y =as,m =as, = as,— (mod p).
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Denote the remainder to be » when they are divided by p. Discuss as
the example mentioned before, the 13 numbers below

Aogn—4s Aop-39 "y Ayyig

are congruent numbers with ag,—s s @o, 4 +7, ***5 ag, 4 + 127 under mod
p. Since p < 13, these 13 numbers cover at least a complete system of
residues for mod p. Then, starting from a,, we may find the next
multiple of p. Proposition proved.

13. Induct with respect to n. Note that

(rtD? n? G FD?
SVWE) = SR S R
k=1 k=1 k:anrl

2n
<ler-n 2 TR =

<0 ST

L. 1
2(n 1)+2nk;k
—Llor—n+ton+n
2 2
_ 1 2
2((71 +1) 1.

Then we can show the inductive step.
14. Whenn <<m, inducting with respect to positive integer & , it is
easy to prove £* < 2, then /2" < 4/2". At this time,

n

Su(n) < ] Bé =n +Z</ﬁ ~1) <n +2(kk2 —1D
=i
<n+mQi -1,
and the original inequality holds.
When n > m, we notice that for any 2 € N*, 2 >m, it 1s always
true that 1 < ¢ <kt < 2.
Here k% < 2 is equivalent to £ << 2* and can be proved through
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inducting with respect tok. Then S,,(n +1) = S,, (#) +1. Considering
how the inequality holds for n <{ m and mathematical induction, we

may know that for anym, n € N*, it is always true that S,,(n) <<n +

m(Y2" —1).

15. We use A, to represent the sets whose clements are the

integers from the sequence {a,}. We assert that for any £ € N*,
A, ={2"|m=0,1, 2, ---}. (i.e., A, is irrelevant of the concrete
value of £, and is formed by powers of 2.)

Froma, =1, we know that1 € A,. Next, we supposex € A,. We
will prove that among all the numbers in A, that are bigger than x, the
smallest one is 2x. According to this conclusion and by mathematical
induction, we may know that our earlier assertion is correct.

As a matter of fact, suppose x € A, i.e., there exists ann € N,
such thata, = z*, then for any subscript ;j that satisfies z* < q; <"z +
1%, we have ajy =a; +x,i.e., a1 =a;(modx). Froma,, we can
know that for this kind of j , it is true thata,., =a; =0 (mmodx). Now
we take the biggest ; that meets the above conditions, then at this
time, a; < (z +1D*, whilea,1y = (x +1*. Denotea;+, = (x +1)* +
m+, then froma;y = a; +x we know that 0 <Cm, <z, and because
ajyy =0 (mod x), it is true thatm +1 =0(mod x). Som;, = x — 1.
Subsequently, a;yy = (x +1D* +2 —1.

Repeating the above discussions, by adding x + 1 every time, we
get the terms in the form of (x +2)* +m,, where 0 << m, <n +1.
Fromx —1 = (x +2)* +m, =1 +m,(mod x +1), we may ascertain
m, = x — 2. Conducting the above process recursively, we ascertain
thatm, = x —i, ¢ =1, 2, +=-, x by making use of the congruence
m; =(x +1+1D* +m ., (modx +1), in general form.

Hence the next £th power will occur in the sequence {a,}, when
m; for the first time takes on the value of zero while i = x, i.e.,
the next £th power number is (x +x)* = (2x)*. That is to say, among
the numbers in A, that are bigger than x, the smallest one is 2x.
The problem is solved.
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16. From the recursive relationship, we know that for any n €
N*, z, >0. Furthermore, from2nx, =2(n —1)x,—, —x,— We can get
X = 2(n =1z, —2nx,. Taking the sum, and we get

nt1

X, T tx, = 2(2(/2 — Dz —2kzy)

k=2
= 22 (kxk - (k +1)l‘k+1)
k=1

:2(11 —(n +1)In+1)
=1-2n +Dx, <.

The proposition is proved.

17. From the conditions, we know that f(n +1) = (f(n) —
1) f(n) + 1. Thinking about mathematical induction and a; > 1, we
can get for any n € N”, it is always true that f(n) > 1. Then, by

taking the reciprocal, we have

1 _ 1 _ 1 1
Fn+1D -1 fUfn) -1 f)—1 Ff)

11 1
fy f)—1 fr+1—1

i.e., . By telescoping series, we have

Z”) t 1 1 -1 1
[y  fDH -1 fr+1 —1 fn+1 =1

k=1

Coming back to the recursive formula, we have

fr+1D —1=FfWU) —1D > —1D > 1) —D?
S > () — DT =2 =27 =02

n—1

n

1 1
P N
S, 27y 715

On the other hand, f(n +1) = f(n)*> —(f(n) —1) < f(n)*. So,

7

fn+1 < fn)? <f(n~1)22 < < f(DT =27,

n

and f(n +1) —1 < 2%, Further, Z L <1 *ln. The proposition
io SR 2

is proved.
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T 19
18. Denote xy = cota, y; = tanf, herea = o’ B = 3" Then,
2cos? L
1 +cosa 2 a
Xy = COta tcsca = - = = cot —.
sin ¢ 2

2sin = cos =
2 2

According to this and mathematical induction, it is easy to prove

that x, = cot % Similarly, we may prove y, = tan Therefore,

n—1"

whenn > 1, we have

a 1S b1 2
tan = CO

XnYn = COt t tan =
Y 2n—1 2n~1 2n X 3 271~1 X 3 ,

Since tan? € <(), tanzlg—) , namely, tan’

2 X3 2"7;<36<O’i>’it

is true that 2 < z,y, < 3. The proposition is proved.
19. From the given conditions, we may know thatc, —1 = (¢, —

n

1)29 thencn —1 = (C,171 _1>2 = (anz _1)4 == (C() _1)2" :32 s SO
cn = 3% +1.

(1 —a,)? A +a,)?
On the other hand, 1 Ay = W’ 1 +a,z+1 = —m%—,
1ian+1 — ]761'71)2
thena Tan, <1 Ta. ) moreover,
G ~a,,4>2 e (1_—&)2 _ (1)2"
1 +an 1 +a,,_1 1 +a() 3 ’
31
soa, = — .
3% +1

Noting that

2e0c1 vt e Cuy = B =DGHDG +1) e (3 +1)
n—1

= (3 DB +1) e e (3 +1)
= eee =32 1,
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So the proposition is true.

(a —b)ab —n?)
abn ’

we know that the function f(x) is a decreasing function on the

20. Denote f(x) = f +—Z— , then from f(a) — f(b) =

interval (0, n].

Next, we are going to use mathematical induction with respect to

n. Firstly we are to prove vn < a, < —————, n > 3. Noting that
vn—1
a; =1, we know thata, = 2, a; = 2. Then when n = 3, the above
inequality is true. Furthermore, suppose vVn <a, < " o n = 3.
—
From monotonicity we know that f(a,) < f(/n) = n_—i—l’ i.e.,
n
+1
A1 < nﬁ , and
n n
= fla) > (— = > /n+1.
= o 2 ) =
So for anyn € N*, n =3, it is always true that
Jn <a, < —"L—.
n—1
Next, we are to prove that whenn =4, a, < vn +1.
As a matter of fact, since when n = 3, a,oy = f(a,) >
n n n—1
———)= ———. So when n = 4, we have a, > ———.

f( /m—1 ) n—1 Jn—2

Further, whenn > 4, we have

n—_1 (n—1D? +n*(n—2)
MITEES 2) < = < vn +2.
an = fa <A T ) = O S <

(The last inequality is equivalent to 2n*(n —3) +4n—1 >0. ) And

it is evident thata, = 1—63 </6.

Then, when n = 4, it is always true that vn < a, < +/n +1.
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Hence, we have [a?2] = n.
21. If there exists ann € N*, such that (a + va?> — 1)+ + (a —
V/aZ —1)7 is a rational number, while denoting r = (a ++a® —1 )

y = (a — Ja* —1)v, then = + y is a rational number, and x* +y" =
2q is an irrational number.

We will prove this by inducting with respect tom. If x +y € Q,
then for anym &€ N*, it is always true that ™ +y” € Q. )

Noting that x> +y* = (z +y)* —2xy = (= +y)* — 2, together
with x +y € Q, we may know that whenm = 1, 2, @ is always true.
Now suppose x” + y™, ™' + y™™ € Q. Then from " + y™? =
(z + )™ + ™) —zy(x™ 4+ y™), and the fact that both x + vy,
xy( = 1) are rational numbers, we know that z™"? +y™2 € Q. Then D
is true.

By @ we know that z* + y" € Q, and this is a contradiction. So
the proposition is true.

22. Ifr >1, thena, < 0. By this and mathematical induction, we
may know that forn =2, it is always true thata, <0, soas; 7 0; If
t << 0, by the same reasoning as above we can know that whenn =1,
it is always true that a, < 0, and there is no chance that a,:;; = 0.
Hence, the ¢ that makes as, = O satisfiesz € [0, 1].

Now we may suppose: = sin’q , Where 0 <q < % , thena; = sin’q.

Ifa, = sin®>(2" 'a), then a,y =4sin? (2" 'a)cos® (2" 'a) = sin®(2%a).
Then, from principles of mathematical induction we know that for any
n, we havea, = sin’ (2" '¢). Hence, fromasy,; =0, we get sin® (2*"q) =

k

0, and hence 2¢ =kn,i.€.,a = a0 k € Z. Combining 0 <a <=,

2

we know that 0 << & << 2*”, Noting that the sine function is non-

negative on the interval [0, —725] and is monotonically increasing, we

know that there exist 22 + 1 distinct real numbers ¢, such that ax,, = 0.
23. The maximum is (1 +2 +--- +1005) X2 = 1011 030. It occurs

When xTK = 1()05, X, = 1004, s Tio0s T 1’ T 1006 :07 L1007 :‘1’ ttty
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Xopt1 — — 1005.
Now we will prove that for a sequence that meets the conditions,

it is true that

2011 2011

SVl x| =] Dla [<200 +2 4+ +1005). D
i= i=1

Notice that after we rearrange x;, ***» Zu, from biggest to
smallest, asyi, yz» ***s yom» for 1 <7 <2010, suppose y; = Xpms Vi =
x,. We may always find a subscript j, such that x; € {y,, ===, v},
Zitt € {yiris 0 Yoty Or ;€ {yirrs 0y Yoty i € {yis s
yi}. (This conclusion may be derived through proof by contradiction,
combining the two casesx; € {y,, =+, v,y andx; € {yip1s =5 yoo11}).
Without loss of generality, we suppose the former one is true, and also -

suppose that z; = y,, x;14 = y,, thenr <i, t =7 +1. At this time,

12z, —zjm 1=y, —y. |
=| (v =y + s =) oo H (i — i) Fo (v — 30 |
=y, —yett [y —yr2 [+ Fl oy =y [T+ v — 30 |
=y =y |

(Here we used the decreasing permutation of y,, =++y y.)

Hence, we still have | y;, — vy | <1
2011

Furthermore, without loss of generality, we suppose in < 0.
i=1

2011
< If Z x; >0, then we replace x; by —x; and then proceed to discussions. )
i=1

After the re-ordering, suppose yi =+ =y, =0 = ypi == 2= yourr
then °
2011

x| Zx

= T +yk) - (yk+1 e +yzm1) +<y1 e +y2011)
=2(y1 Ao Ayl

H
NMN

In order to prove that D is true, we only need to prove that
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yi b Ay <1 H2 e 1005, @

We deal with this with two cases.

Case 1. Ifk > 10067 thell fromy1 +..- +y2()1] <()’ we knOW that
yr Tt F oy < (v o yaon).

Noting also ys1 = yr — 15 *=*5s yan = yr — (2011 — k), we know
that

yi ety <K= Wy — 1D+ + (y, — Q011 —£k)))
— Q011 =Ry, +1+2 4+ (2011 — &)
<1 +2+-+Q011 —k)
<1+2+4-+1005.

Thus, @ holds true.

Case 2. If £ <1005, then by similar reasoning as above, we may
know that

vty < ep R (s (= 1) e (e D
= kypn F LA HE <12+ +k
<142+ +1005.

Thus, & also holds true.
By all above, the maximum value is 1 011 030.

24. We use proof by contradiction. If the proposition is not true,

then, there exists a positive integer N, such that for anyn = N, it is
always true that

1+a, <V2 «a,. @
Now we define a sequence {c, } of positive real numbers:

An—1

1 +a,

co =1, ¢, = Cnors = 1, 2, o=,

Then from D we may know that for anyn = N, it is always true
that

_1
Cn 2277 0 Oy @
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Notice that forn € N*, itis truec,(1+a,) =a, 1chasli.€. ¢, =
An—1Ca— —a,c,. By using telescoping series, we get

Ci T T, =ag —AnCn < ay.

This suggests that the nth partial sum sequence {s,}, where s, =
¢y + -+ +c,, is bounded.

On the other hand, from @ we can know that whenn > N, it is
true that

1 (L1
Cpue ® 2771 > Cu—p * 2 (n—1+n)
ey e 2 ()

=C « 2 ()

1 L .
Here C = ¢y » 27 (2+4%) is a constant.

For any 2 € N*, if 227" <<n << 2%, then

1 1
Lo e+

<t (gH)+ (5ot

5 3 +-..+(__1_+...+_1__>

2+ 2t —1

<1+ (F ) (G g ) (g e ) =

So, at this time, we havec, = C » 27#(2* 1 <n << 2%),
Now we suppose 27 ' << N <27, r € N*, then for anym >r, we
have

Coyr T Corgq F oo Femy
= (cor + v Featis) o (ept F o Fepmsy)
S (C e 27D) e 2r e £ (C o 270D) 4 2
_Cln—r)
s
Cln—r)
2
sy — =+ oo, contradictory to the conclusion that the sequence {s,} is
bounded.
So, the proposition is true.

This suggests that sp» 4 > . When m — + o, we have
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25. In condition (1), letn = 0, and we know that F'(0) = 0. For
n € N, suppose the binary expression for n isn = (nnpy-ny) =
ng o 2% - +ny+2°, wheren, = 1. And for0 <</ <<k —1, we have
n; € {0, 1}.

Now we prove through inducting with respect to 2: for any n &€
N, it is always true that

F(n) = npFy Y Foq o +noFy, @

Here the sequence {F,,} is defined as Fy = F, =1, F,» = F,qy +
F,.ym =20,1,2, - (It is defined by translating each subscript for a
Fibonacci Sequence forward by one unit. )

As a matter of fact, from F((}) = 0 and condition (3) we may
know that F'(1) = 1. Further, we can get F(2) =1, F(3) = F(2) +
1=Fy+F, F4) =F(Q)+F({1) =2 = F,. So, the proposition is
true for £ = 0, 1. Now we suppose that (D is true for 2 and £ +1. We
consider the case with £ +2. Now we may suppose n = (724157 414 *"*720 ).
If (s ny) = (0, 0, then from (1) we know that F(n) =
FlGppnin):) + F((no o ny),) = nppFey + o + 0 Fy +
NepFy o +n.Fy = npa (Fppy +Fu) 4+ +n,(Fy +Fy) +n,F, =
npoFpy +oo +n,F, +n.F, +n,F, (here we make use of n, = n, =
0, @ is true for k& +2; If (ny, ny) = (1, 0), then from (2) we know
that F(n) = F((npanp - naninb),) +1, where n; = n), = 0. Then,

F(n) :nk+2Fk+2 + .- +n2F2 +1

)
:nk+2Fk+2 4 e +n2F2 +nFy tngFy,

also holds true; if (n,, n,) = (0, 1, then F(n) = F((nypp+noming)s) +1,
where n{ = n{ = 0. By condition (1) and previous conclusions we know
that D holds true; if (n1, ny) = (1, 1), thenF(n) = F((ny2°+niny)) +
1, where n, = 0. By condition (2) and previous conclusions we know
that O holds true. So, @ holds true for anyn € N*.

Making use of (D we may know that the sufficient and necessary

condition for F(4n) = F(3n) is that within the binary expression for
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n, (nyng+"ny),, there are no two adjacent numbers who are both 1
(here we also use the definition of the sequence {F, }). For 0 <{n <
2", we denote the number of binary expressions with no adjacent 1s to
be f.. then fy, = 1, f, = 2. In the meantime, if we delete the last
digit n, from », then by classification according to n, = O or 1, we
have respectively f,— and f,— (since whenn, =1, it must be true that
ny =0). Sos f,, = fn—1 T fnu—. This suggests that for 0 <Cn < 2™, the
number n of F,.; (= F(2™)) satisfies the equation F(4n) = F(3n), so
the proposition is true.
26. From the recurrence formula, we may know that

)y < fn—D 2L <D +2(n—1) =2n—1.

So, f(n) —n +1 < n.

Hence, if the values of f(1), ---, f(n) are determined, then the
value of f(n + 1) can be uniquely determined. Therefore, there exists
a unique function f that meets the conditions. Now, let g(n) =

[‘1*—%15‘7& Denotea — - Zﬁ » theng (1) =1, and for any»n € N*,

we always have g (n +1) —g(n) = [a(n +1)] —[an] = [a +¢ ], where
e = {an} = an—[an].
On the other hand,
glgm) —n+1) =la(gn) —n+D] =[alan—e —n +1)]
‘ =[(® —a)n +al —e)] =n +[a(l —&) .
Here we use ¢® —a —1 = 0.
Note thate #2 —a = 35 (otherwise 1 = Lan] e = lan ] +2

2 a a

1, leading to a contradictory conclusion that « is a rational number).
We make use of the above conclusion and find that if 0 <e¢ <2 —«,
thena(1 —¢) >ala —1) =1, theng(gn) —n +1) =n +1. At this
time, 1 <qg +e <a+2—a =2,ie.,gln+1)—gn) =1;if2 —q <
e <1, thena(1 —¢) <ala—1) =1, theng(g(n) —n +1) =n. At this
time, 2 <q +e¢ <3,i.e., gln+1) —gln) =2,
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The above discussions show that g: N* — N* meets all the conditions
that f meets, and therefore for anyn € N*, we have f(n) = g(n).
This gives the answer (2) requires for.

Combining with O, we know that (1) holds. QED.

27. Suppose under base 2, for any n € N*, the total number of
appearances of 00 and 11 among all adjacent number pairs is denoted
as x,, while the total number of appearances of 01 and 10 among all
adjacent number pairs is denoted as y,. We will prove thata, = x, —
Yne @

As a matter of fact, whenn =1, x; = y; = 0, so @ is true for
n=1.

Now we suppose @ is true for the subscripts 1, 2, ==, n—1 (n =
2). Consider the case n.

If under base 2, the last two digits of » are either 00 or 11, then
n =0, or 3(mod 4). At this time, a, =a, +1, whilex, =x,+ +

(4] (5]

1, y. =Y[s7 So @ is true for n.

If under base 2, the last two digits of n are either 01 or 10, then

n =1, or 2(mod 4). At this time, ¢, =a,; —1, whilex, =z,
[2] [2]
Va :y[l] +1. So @ is true for n.
2

For all above, (D is true for anyn € N*.

Now we need to calculate among 2* << n << 2*'', the number of n
that makes x, equal to y, under base 2.

Note that, under base 2, n is a £ +1 digit number and let it be B,,.
When k2 = 1, subtract the next digit number, left to right, from every
digit number of B, , and then take absolute values for each digit. We
can then get a k-element array C, comprised of 0 or 1. (For example,
if B, = (1101),, then C, = (011),.) Note that every adjacent number
pairs 00 and 11 change into one 0 in C,, while 01 and 10 change into
one 1inC,. So, if x, = v,, then the numbers of 1s and Os in C,, are
the same. Conversely, for a k-element array C, = (C,C,---C,)
comprised of 0 or 1, under mod 2 we may find the sums of 6, =1 +¢,,
by =by tcys o0y by = b4y +b, whereb, = 1. Then B, = (byb,++b,);
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is a binary expression for the number n satisfying 2! < »n << 2*"'. This
suggests that B, and C, have a one-on-one correspondence.

So, the answer to the original question is equal to the number of
arrays, which are k-element arrays comprised of 0 or 1, that have
equal number of Os and 1s. Therefore, when £ is an odd number, the

k
answer is 0; when % is an even number, the answer is C}. (note: we
deem C) =1.)

28. We are going to prove: for anyn € N, it is always true that

Tspr1 = 5n +1, X502 =51 +4, 25,45 =5n +2, D

Tspts = 5n +59 Lspts = 57’1 +3.

(By making use of this result and £ =0, 1, or 4(mod 5), we may
know that the proposition holds true.)
As a matter of fact, whenn = 0, froma, = 1 we know that

a, =4, a3 =2, a, =5, a5 =3.

So @ is true forn = 0.

Now we suppose that Q) is true forn =0, 1, 2,, m—1 (m €
N*). Now consider the case n = m. From the structure of @ (as.q» ***»
as.+s 18 a permutation of 52 +1, ---, 57 +5), we know thata,, a», -,
as, 1s a permutation of 1, 2, -+, 5m. By making use of recursive

relationship we may know that
Aspt1 = Asm — 2 =5m + 1, stz = Aspprs +3 = 5m + 4,
Asmt3 = Aspyt2 —2 =5m +2, Asmt+s = Asput3 +3 = 5m +5,
Aspts = Aspra — 2 = dm + 2,
So, the conclusion (D is also true for m.

. T . . .
29. Using that g 1s an irrational number, we knowa;, a;, ***, a,

are n distinctive real numbers. To ascertain the value of the algebraic
expression, we will look for a polynomial of degree n witha,, *, a,
as roots.

Note that e’ = cos§ +isinf,e ¥ = cos § —isin §. Then, we have
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secl e? =1 +1itand, secf - e ? =1 —itanf. So,
1 +itand = (1 —itan §). @
Letw = €, then the polynomial Q, (x) = (1 +ix)" —w (1l —iz)"
hasn rootsa;s a2s ***5 a,. (This can be known from (), since the nth

roots of w are 2(?2%) | g =1, 2, «+, n.) Since Q, (x) is a polynomial
of degreen, a;, -**, a, are all the roots that Q, (x) have.
Denote Q, (x) = c,x" + +=» + ¢,. Then by Vieta’s formulas, we

may know thata, ++- +a, =zt sy agta, =(—1)" . o, So,
Cn n
a; ++ +a, — (— 1) . Cn—t
ai**a, Co *

We apply binomial theorem on Q, (x) and see that

n—1 __

Cp—m =N 1 wn(‘i)"“1 = ni"ﬂ“ _cu)aCo =1—w,

=ne+ (D"

thus 401" T

1t n
Considering that » is an odd number, we have
a) + ta, _
aa,

The problem is solved.

30. Whenn =1, just take P(z) = x. Whenn = 2, 2cos 2¢ =
(2cos ¢)* — 2, the proposition also holds true.

Suppose the proposition holds true for n = £ and £ + 1, namely,
there exist polynomials, f(x) and g(x), with integral coefficients
whose leading coefficients are both 1, such that

2cos kg = f(2cos @), 2cos(k +1)¢ = g(2cos ¢).

The degrees of /', g are £ and & + 1, respectively.
Next, we consider the case withn = £ + 2. Note that

2cos(k +2)p = 2cos[ (& + Do +¢]

=2cos(k + 1gcos ¢ —2sin(k + 1 gsin ¢. @
2cos kg =2cos[ (k + 1o —¢]
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=2cos(k + 1)¢pcos ¢ + 2sin(k + 1) g cos ¢. ®@
Add up @ and @, we can get
2cos(k +2)¢ +2cos kg = 4cos(k +1)gpcos ¢.
By making use of induction hypothesis, we can know that
2cos(k +2)¢ = (2cos ¢l g (2cos ¢) — f(2cos ).

So, we let h(x) = xg(x) — f(x) (it is easy to know that h(x) is
a polynomial with integral coefficients whose leading coefficient is 1)
and we have 2cos (k +2)p = h(2cos ¢).

The proposition is true for & + 2.

So, the proposition holds true.

31. Denote § = amn. Since « is a rational number, we know that
there exists n € N* such thatnf = 2kxn, £ € Z,i.¢e., cosnfd = 1. From
the conclusion of the above problém, we know that there exists a
polynomial with integral coefficients f(x) = x" +a, 12" + - +ay,
such that 2cos nf = f(2cos §). Therefore,

cos ™ +a, 1 Rcos®" " + -+ +a,(2cos ) +ay —2 =0.

This suggests that 2cos § (attention that cos ax € Q) is a rational
root of the equation below

" ta,qx " e Fax tay —2 =0. @D

However, the left-hand side is a polynomial with leading
coefficient 1. Therefore, the rational roots of D are all integers. So,

2cos § is an integer. Considering also | cos@ | < 1, we know that 2cos § €
{-2, -1, 0,1, 2}, and then we have cosax € (0, i%, +1}. (tis

obvious that for any value in the set, there is a value of « corresponding to
that value.)
32. Without loss of generality, we suppose the equation of the

unit circle is x? +y? = 1. Now we take § = arccos % , then cos § = é’— ,

4

sinfg = 5

. Consider the point set M comprised of P, (cos 2xn8, sin2nf) ,
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n :], 2’ ves
For anyi, j € N*, we have

| P,P; |* = (cos 2if — cos 2j8)* + (sin 2§ — sin 250
=2 —~2cos2(i —j)8
= 4sin’ (7 —5)4.

So, | P,P; | =2 sin(G —7)0 |.

‘We note that cos §, sinf € Q, sin(n +1)8 = sin nfcos § + cos nfsin §
and cos(n + 1) = cos nfcos § — sin nfsin . Combining mathematical
induction, we find it easy to prove that for any n € N”, it is always
true that sinnf, cos nf € Q. Therefore, the distance between any two
points in M are all rational numbers.

Now we still need to prove: M is a point set with infinitely many
points.

If this is not true, let us suppose M to be a finite set, then there
existm, n € N*, m # n, such that 2mf = 2nf + 2k=n, £ € Z. This

suggests that 0 =an, a € Q. Since cos§ = % € Q, from the conclusion

above, we know thatcosanx € (0, i%, +13. However, cos§ :% ¢

0, i%, +1). This is a contradiction. So, M is a point set with

infinitely many points.
For all above, there exist an infinite number of points that meet
all the conditions.

33. From the conditions, we may suppose
P(x) =a,(x +8)(x +8)(x +p.).

Herep;, 21,47 =1, 2, =, n, and a, # 0.

By making use of ¢} +a,a, = a2 +aya,—» we can know that

az(ﬂpi)z +a<Hﬁ)2 Bli — a2 +(H[3)<Zﬁ>a

Then
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Eﬁ—E— ®

ITs
. H@

i=1
Next, we prove the following statement using mathematical
induction, inducting with respect ton: whenpg;, =1, i =1, 2, -+, n,
it is always true that

n

=38 -
i=1 Hﬂ i=1 i=1

The “ =" sign holds when and only when there are n — 1 numbers

1
B:

equal to 1 within 8, ==+, 8.
Whenn = 2, if 81, 8, = 1, then the following relationship of

eduivalence holds:

1 1 1
B2 —‘E-B— = (B +,82)_<E1‘ +§;)

S =1 =2 (B +B2) (BB — 1)
S — D@ — DB, —1) =0

So, whenn = 2, the above proposition holds.
Suppose the proposition holds whenn = &, then whenn =% +1,
leta = B.Br+. By induction hypothesis, we may know that

k1

Hﬁ _k+1 (kz %1 l) a—;,
Hﬁi i=1 i=1 ‘81

i=1

where the “ =" sign holds when and only when there are 2 — 1 numbers
equal to 1 within 31, 825 == Bi1s a.
From the n = 2 case, we may know that
1 11

a*i:kk1_—*> p B —— .
a Bﬁ+ ,Bk,Blz+1 [8 B+ ﬂk ‘81%+1

Then ’
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T

k+1 k+1 k

1 31
Hp—gm— =208 2

i=1 =1 ,8
LLs
where the “=" sign holds when and only when there are # —1 numbers
equal to 1 withinB3, ***s B4, a» and one of 8, and 8,y isa 1. This is
equivalent to “there are £ numbers equal to 1 within 81, ==+, Bun.”

From the above conclusion and (D, we know that polynomials in
the form of P(z) =a,(x + 1" (x +8), a, # 0, B =1 are all the
polynomials that meet the conditions.

34. letxy =1, xpu =P,)yn=1,2, --. Forafixedn € N*,
n =2, denote x, —1 =M. Thenx, =1 =z, (mod M), therefore P(x,) =
P(x,) (mod M), i.e., x, = x,4 (mod M). Then by making use of
mathematical induction, we may prove that for any # € N*, it is

always true that
Ty = Zppp (mod M), @

From the condition, we know that one term from x,, x,, **-is a
multiple of M, therefore there exists ar € N* , such thatz, =0 (mod M).
From (D we know that the sequence {x, } is a sequence with period n —
1 under mod M. So, we may assume 1 <{r <{n — 1.

Now from P(n) >n we can know that x; <x; <+ <<x,, $0x,— <
x, —1 =M, Furthermore, x, <M. ButM | z,,s0z, =M ==z, —1,
and this requires thatr =n—1,i.e., 2, —1 =x,. SoP(x,—) = x, =
z,—1 + 1. Since this equation is true for any n = 2, as {x,} is a
monotonically increasing sequence, we know that P(x) = x + 1 holds
true for infinitely many distinctive positive integers.

SoP(x) =x + 1.

35. From the conditions, we get P(—x)*> —1 =P({(—x)* —1) =
P(x? —1) = P(x)* =1, s0 P(x)* = P(—x)?. Now we suppose P(z) =
A 7 Fayx® +e +aix +ao(any #0). Compare the coefficients
of all terms expanded for P(x)? and P (— x)? and we can geta,, =
an—n = *» =a, = 0. So, P(x) has only non-zero terms with odd-
number degrees, i.e., P(—x) =— P{(x). Therefore, P(0) =0, and,
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P(—1) =P —1) =P)? —-1=—1, PA) =—P(—1 =1,

Consider the sequence b; = 1, b,y = Vb, +1, n =1, 2, -
Notice thatb, < b, =+2. Now we suppose b, < b, thenb, +1 <b,y +

1, Vb, +1 < /b +1, i. e.5 by < bnp. From this and by
principles of mathematical induction we know that {4,} is an

increasing sequence.
Moreover, P(b,) = P(1) =1 =4,. Now we suppose P(4,) =b,,
then

P(bn+1)2 =P(bf,+1 —1) +1 :P(bn) +1 :bn +1 :bghq

So P(b,1) ==+ b,y. But if P(b,y) =— b,1, then P(b,,)* =
P +1=1-b,0 =1— Vb, +1 <0, and this is a contradictioﬁ.
So P(b,+1) = b,+1. Therefore, by principles of mathematical induction
we can know that for anyn € N*, it is always true that P(b,) = b,.

From all above, there are infinitely many distinctive real numbers
z, such that P(z) = z. So for any x, it is always true that P (x) = x.

36. From (2), without loss of generality, we suppose % is the smallest
positive integer number which makes f® (0) = 0. If ¢ > 3, then

LA | =] £ =0 =] fP0) = f0) [= -
>| f(k) (0) &f(kﬂ)(o) | :| f(kﬁ)(o) |’

while | £ | =] fEP0) —0 [ =] f®WO) — £ | =] £FO |.
So | f(O) | =] f*¥ P .
If F(0) = F*V(0), then £(f(0)) = f®(0) = 0. This is a
contradiction.
If £(0) =— F£*7V(0), then from (1) we can know that

| fCO) | =] fCO +0[=]f#W) = f“ |
<| f(k*l)(o) _f(kfz)(()) |< ee
<| fPO) = O |<] O —0]=] f(O .
So, the above “inequality” signs are all replaced by “equal” signs.

Noting that all following numbers £(0), -+, f%V(0) are non-

zeros. So, from the system of equations below,
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L2 — £ [ =] £ 1,
| O = f@O =] £ |,

| FEP) = £420) | =] £ |

We know that for2 <j <k —1, we always have ¥’ (0) — f9V(0) =
+ £(0). Then f@0) =20, f@W) € {f(O), 3£}, fFPWO) €
{2f€0), 4f(0)}. Conducting this recursively, we can know that
FE(0) is a positive integral multiple of £(0), which is contradictory
to f4(0) =— f(0).

From all above, the proposition holds true.

37. We build a combinatorics model: Use f(n) to represent the
number of strips of 1 Xz we have which are made of red cubes of 1 X1,
blue cubes of 1 X 1, and white cubes of 1 X 2.

By direct calculations, we can know that f(n) = >, %
Here the summation process is for all non-negative integer arrays
(i, j, k) satisfying: +j +2k = n.

On the other hand, we calculate the value of f(n) by a recursive
method and we get (1) = 2, f(2) = 5. While for the strips of 1 X
(n +2), with lengths of n + 2, if the first cube is red or blue, after
being removed, there are altogether f(n + 1) strips that meet the
conditions. If the first cube is white (whose length is 2), after being
removed, there are altogether f(n) strips that meet the conditions. So
fn+2) =2fn+1)+ f(m).

Comparing the initial values of the sequences { f(n)} and {p.},
noting the recursive formulas, we may know that for anyn € N* , it is
always true that f(n) = p,.

So, the proposition holds true.

38. Lemma: For anyn € N*, it is always true that

B B B :
{E +52' +"'+2—n ﬁi S {*1, 1}, 1 :1, 2, e N

= {2]_"‘] is an odd number, and | j |<2"}.
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The proof of the lemma can be conducted through inducting with
respect to n.

When n = 1, the lemma obviously is true. Now we suppose the lemma
holds for all positive integers less than ». Consider the case with n.

ForB;, € {—1, 1}, denotej = 2"7'B, +2"72B, + -+ +2°8,, then

2 '[; 2", and j is an odd number. Furthermore, we have
i=1
j B N i 51 1
== — | < -t = = =1—7 <1,
so |7 |<c2m.

Conversely, for odd numbersj, and | j | <2", we note that one of

Y R

5 > is odd, and the other is ecven. We suppose j, is the odd

+
number of these two numbers a d] s then | j,o | < (1 +17 D <

2

2r 7+ l. Concerning also that j, is an odd number, we know | j, | <

2
2"~'. Hence from induction hypothesis we know that there exist g3, ,
‘82, ey ‘8,,..1 e { 1 1}, Such that#?_‘i"& B Jo

2n—1'
LetB, =j —2jo, thenB, € {—1, 1}, and that

n ; . S .
B h ik s
P 21 2n 2n 2n

So, the lemma is proved.

(1) From the conclusion of the lemma and the structure of all

elements in A, , we may know that A, = {1 +Eh +%ﬁ ‘j , k is an
2 2

odd number, and | j |<C A, < ZF%W}. So, from +/2 being an

irrational number we may know that | A | =olad, ol51 = o,

(2) Denote S = > ab, then S :%(<Ea)2 — Zaz).

ay I)EA" aGA" aGAn
a<lb
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; J_ ., _k _ 1 __k 5
We pair the elements, 1 +2L%J +2FL2'T/§ and 1 NN zrﬂﬁ’ in

A, and sum them up. Making use of the conclusion of (1), we can
know that Ea = 2",

aCA,
Furthermore, we make use of the conclusion: if X, Y are both
finite sets, and > ,x = >,y = 0, then

x€EX yeY
DDAtz +y? = X [ Y I+ Y [« D22+ X | ) 52
z€X y€Y z€X yE€Y
Concerning the structure of A, , we can have
. 2
S (14 + )
d€A, jisodd  kisodd 22 2'z
<3 <ol 3]

f

n n 22, [ES k2 . 2]—%—]
=031, o3l L-2"_3. n 2—n—
Y g":dd 213 kgdd 7241
\j\<2L%J ‘k‘<2|__;f[
—on L AT ol(ods) —q)  lall oM1(0081 — )
= 3 22L%_J 22|“%1_1

E]

o 2 (L1
=2 +3 (3 23] AE )
=2 -1,
From all above, the answer to (1) is 2", and the answer to (2) is

é%(2h _ﬁsz +,1)

39. Lemma: Suppose n € N, and we may express it in the form
of a combination of several 3s and 4s. The ordered divisions of » can
be arranged in form of a matrix, then z, is the sum of all entries on the
first column of the matrix.

For example, when n = 15, we may get the matrix as follows.

4, 4, 4, 3

4, 4, 3, 4
4, 3, 4, 4
3, 4, 4, 4

3, 3, 3,

(O8]
OV
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Directly using the recursive formula, we can calculate and get x5 =
18, the sum of all entries on the first column of the above matrix.

The proof of the lemma: We will prove through inducting with
respect ton. Whenn =1, 2, 3, 4, we may know that the proposition
holds by direct verification. Now we suppose the lemma is true for all
subscripts less than n (= 5). We consider the case with n.

According to the ordered divisions of » into combinations of 3 and
4, we may classify the divisions into two categories by the last term
being 3 or 4. For the ordered divisions with last term 3, we remove the
last term 3 and we get all the ordered divisions of n» — 3. For the
ordered divisions with last term 4, we remove the last term 4 and we
get all the ordered divisions of n —4. Concerningn =5, if the division
is still possible, then at least there are two terms. Then we know that
the matrix comprised of the ordered divisions of » has the sum of all
entries on the first column z,—; +x,—, (here the induction hypothesis is
used). So, the lemma is true for n, and the proposition is proved.

Going back to the original question, we know when p =2, 3, zx, =
0, the proposition holds true. For prime numbers p (==5), suppose the
matrix we get by expressing p into ordered divisions of 3 and 4 is M.

Then the length [ for each row of M satisfies % <l < g

We analyze the sub-matrix T made of all the rows of the same
length in M : Suppose the sum of all elements on the first column of T
is S. Since for every row of T, 3 and 4 must appear at the same time
(when only 3 or 4 appears, then p is a multiple of 3 or 4, and then is
not prime). Hence the division of p by exchanging positions of 3 and 4
in this particular row is another row of T. This suggests: the sums of
elements on any two columns of T should be the same (since if the
numbers in corresponding positions of these two columns are different,
then there must be numbers obtained by one row intersecting with
these two columns that are just a swap of the numbers mentioned
before). Denote the sum of each column of T is S. Suppose the

number of columns of T is /, then the sum of all numbers in T is si,
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while the sums of all numbers in each row of T are all p, so sl is a
multiple of p. As% <l < %, we know that p | s.

By above discussions, we can know that for the sum of all
numbers on the first column of M, it is also a multiple of p, i.e.,
? | x,. The proposition holds.

40. Suppose a;, ***5 a, are the positive integers that meet the
requirements. Then by (1) we know that for 1 < k& < n, it’s always
true thata, > a,— (otherwise the left-hand side = 1, the right-hand
side <1). Therefore, it is true thata, > 1. Hence, from (2) we know

that — e = > Qb e G A Gk g S
ak(ak —1) a g+ —1 ap —1 ap a4 —1 ay =
i1 % Summing up fork =i +1, *, n—1, we have
ap _1 a p “‘]
&‘ +... _|_a"“1 < a; _ An—i +an71 < a; . @
ai+ a, a —1 a, —1 asy amp —1
n—t
. . 1 99 a; 1
=0 , <22 = L
Let: in M, and by (1)wehavea1 100 ;am <a1 3
soa; = 2. Similarly, takei = 1in D, also concerning (1), we have
1 199 1 1
—_— <_ Pl y
ar a1(100 a1> ar —1
49 1

and we have 1< » then we know a, =5. Repeating these

as \200 ar —1
discussions, and we take: = 2, 3in (D, then we can geta; =56, a, =
25 X 56% = 78 400. So,

“1_<1(£71 2 5 56 ):0’

< = _ = 2 Y
ds as

100 2 5 56 25 Xx56°

and as does not exist.

By all of above, only whenn = 4 does this kind of sequence exist,
and the corresponding a;, a,, as, a4 are 2, 5, 56, 78 400.

41. Letx, =ny,, n =2, 3, -, thenxs =2, z3; =3, and forn =

3, wehave n —2Dz,4 = R0?—n—Dzx, —(n—1)x,-1,1.¢.,
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Lpty — X

no oy —1) e En Tt
1 n—1) pa—— @
Let us use D and conduct reasoning recursively, then we can get:

Lnl — Xy — - . Lp — Ty — _ - o Lp— — Xn—
= (n—1 s n—Dn—2) R

— ... :(nfl)---2-@ =(—11,

and we get x4 —x, =n! —(n—1) 1. By using telescoping series, we
know that

n—1 n—1
Ty = a2+ D) (@ —xx) = a2, + D kL= (R =D
k=2 k=2
=z, +m—"D!I -1 =H~-1D!+1.

From Wilson’s Theorem which claimsn | (n —1)! +1 if and only if
n is a prime number, we know that the necessary and sufficient
condition for y, € Zis that# is a prime number.

42. Lemma: Supposen, ¢ € N*, n = kp, then

k
a, = Ec;ean—i(p—l)—k- @
i=0

Induct with respect to k. Whenk =1, @ is actually a, = a,, +
a,—p» 80 @ is true for 2 = 1.

Now we suppose (D is true for £, then we consider the case with
k+1. So, n = ( + Dp, and the minimum value of the subscripts
n—i(p —1) — k(0 <7 < k) is reached when: = £, and the minimum
value isn —kp = p. So, every term of the following summation process
can apply the recursive formula in the condition:

By induction hypothesis, whenn = (¢ +1)p, we have

k
a, = E Citn—icp—

i=()

k
= 2 G (@n—icpv4—1 T @nicp—1r—4—p)
=0
k 1
— (0 ; ; £
= Qa1 + Z Ciap—icpmir—a— + E Ciarnicpy4p T Chan iy

i=1 =0
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o
— 0 —+1
= Clnanan + E:CZ A n— (1) o D— ()

=0

1

; B
+ E Cian—irnn—atn T Gy
=0

A1
— (0 41 i g
= CGunasam + E( v+ GO dn—roG-o—etn T Gl @n—atnp

i=0

k+1
= E Gt @i et 1) -
=0}
41 P 1 2
For the last step, C;*'' +C, = Cii} is used. So, D holds true for

k +1, and the lemma is proved.
Next, we are going to deal with the original problem by making

use of the lemma. Whenn = p?, letk = p in the lemma, then we have

2
a, = z :C‘lban—i(pAU*P-
i=0

It is well-known that when 1 <<i << p — 1, we have C, =0 (mod p).
Sos; a, =a,— ta,—2(mod p), concerninga, = a,— +a,—,,» we have
a,—1 = a.—2 (mod p). This suggests that for anyz = p® — 1, we have

a; Eat+p2~1 (mOdP).
Since p° = p(p®> — 1) +p, ap = appr— =a,(modp), and also
sincea, =a, ta,1 =p —1, then we havea,® =p —1 (mod p), i.e.,
the remainder is p —1 whena,? is divided by p.

43. For the sake of convenience, denotem =n—1, b, =a; +1,

then1 < a, <2m, and
2a1-,
a; -
T 24 — Qm 1),

ifa, <m,

1f a; > m.

This suggests thata,., =2a,(mod2m +1), and 1 <<a, <2m, 1

1, 2, ves,

(1) The p(2, 2*) and p(2, 2* + 1) in question are equivalent to
finding p(1, 2* — 1) and p(1, 2*) for {a;}). The former one is
equivalent to finding the smallest/ € N*, such that2* =1 (mod 2(2* —

1) +1), and the latter one is equivalent to finding the smallest/ € N* ,
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such that 2/ =1 (mod 2¢" + 1),
Obviously, 2#*' =1 (mod 2(2* —1) +1). For 1 <z <k, it is always
true that

12 —1 <22 —1 =22 — 1) +1,

sop(1, 28 —1) =k +1.

Since 2™ =1 (mod 2*™ + 1), then p(1, 2¢) | 2(2 +1). While
for1 <t <k +1, it is always true that 1 << 2' — 1 < 2*"" + 1, then
p(1,28) >k +1,s0p(1, 2¢) =2(k +1).

So, for {b;}, we have p(2, 2!) =k +1, and that p(2, 2t +1) =
2(k +1).

(2) We still go to {a;} to proceed with the discussion. It is
required to prove: p(ao, m) | p(1, m). Now we suppose p(1,
m) =t, then2' =1 (mod 2m +1), therefore, 2'a, =a,(mod 2m +1).
This suggests that p(a,, m) | t (here we make use of some property of
“order” in basic number theory). That is to say, p(ay, m) | p(1, m),
and the proposition is true.

44. First, we set up a lemma: for anye € (0, 1), there exist two
points on a broken line such that they share the same ordinates, and
their abscissae differ by« or 1 —a.

As a matter of fact, suppose I" is the given broken line in
question, I'¢ is the broken line obtained by shifting I to the left by «
units, and I'; is the broken line obtained by shifting I' to the right by
1 —¢ units. It is easy to get that there is at least one point of
intersection for I"and I'y U I'», and this is the result that the lemma
needs (as shown by Figure 7, we will know that there will be points of

intersection for I"and I'y U I, , if we start from the highest and lowest

rl r /A\ FZ
/ N\
a / \
N\ N\ /‘/\/\ N
—a \/ O \/\\ // 1 2 —«a
N/

v

points of I').

Figure 7
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Next, we make use of the lemma to prove the conclusion we need.

Takea = % » and we may know that when n = 2, the conclusion

holds; Takea = %, and we have two points A, B on the broken line,

such that AB // the x-axis, and | AB | =%, or | AB | 2%. If | AB| =

1
3

sub-broken line joining A with B. Referring to the lemma and the

, then n = 3 already holds. If | AB | = %, then we consider the

conclusion withn = 2, we may know that there exist points C, D on

the sub-broken line, such thatCD / AB, and | CD | :% |AB | = %—
Hence, the conclusion holds true when n = 3. Conduct the reasoning
likewise, together with mathematical induction, we may know that
the conclusion holds true for any n = 2.

45. We first use mathematical induction to prove the existence.

When n = 1, obviously the method exists. Suppose when 7, there
is a method T that meets the conditions. We now consider the case
with » +1. Then we first put the » balls into the white boxes labeled 1,
2, »*, n, and we suppose after this placement, the smallest labeling
number of the empty box is:(1 <{i <<n), then we follow the method
described below to put in the » + 1 th ball: We take one ball
respectively from the white boxes labeled 1, 2, ---, ¢ —1 and put them
in the box labeled as i, and we put the n + 1 th ball also in the box
labeled asi. It is easy to know that this way of placement meets the
conditions.

Then we use mathematical induction to prove that the method of
placement is unique, inducting still with respect to n.

When » = 1, 2, the uniqueness obviously holds. Suppose for
n(=2), there is only one method of placement, denoted by T,

It is easy to know when n + 1 == 3, among all the methods of
placement, the n +1 th white box must be empty. Then, whenn +1,
there exist two methods of placement T'; and T,. We notice that the
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n + 1 th white box, which is empty, can be removed, and after one-
step operation for T, and T',, there are » balls in the white box, and
the number of white boxes is n, so they both become T.

Suppose the labeled number of white boxes that were operated
under T, and T, respectively arez,, 7,. If i; > 7., then after the first
operation under T';, the white box labeled 7, has at least one ball,
while after the first operation under T ,, there is no ball in the white
box labeled i,. They cannot both change into T', so i, << i,. By the
same reasoning, i, << i, i.¢., i1 = i,. Thus, under T, and T,, the
numbers of balls in the white boxes whose labels are bigger than i, are
the same. The numbers of balls in the white boxes whose labels are less
than 7, are also the same (otherwise, T, and T ,, after one operation,
they cannot both change into T". ) So, the numbers of balls in the boxes
labeled 7, should also be the same, therefore T, = T .

This suggests that there exists a unique method of placement that
meets the conditions.

46. (1) We use 0, 1, 2 to express A, B and C, respectively.
Under modulus 3, we watch the changing status of the sequence R, ,
IQ1 y oo

Let R; = (xy5 >+ 2,0y Ry = (y1y y2s 5 yu)s thenfor 1 <i <<
n, it is always true that y, =— (z; +x44) (mod 3).
If n» is an even number, take R, = (1, 2, 1, 2, =+, 1, 2). Then

for any m > 1, it is always true thatR,, = (0, 0, ==, 0, 0). So at this
time, there does not exist any positive integer m that meets the
requirements. If z is an odd number, since there are at most 3" distinct
n-element number arrays in form of (x,, -**, z,), then for any R,,

there exists anmg, € N*, andk € N, such thatR, = RmRﬁ'Z' We will
prove that if £ = 1, then R,-; = RmR”HH (therefore by inferring
likewise we get R, = R,,LRO ).

As a matter of fact, suppose R,y = (x1, *=*y x,)» RmR“HH =
(y1s ***s 3.0, then fromR, :RMRU+k , we can know that — (x; +x,4) =

—(y; +yi4) (mod3). So
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n n

D1 (x; F 200 =20 (— 1 (y; +ym) (mod 3).
1

j=1 i=

Concerning also n is an odd number, we know that — z, +
(—1D) "z =y T (—D"y,u(mod 3), i.e., —2x; =—2y,(mod 3),
1 = yi1(mod 3). So, x; = y,. By the same reasoning, we can prove
that fori € {2, -+, n}, it is always true that x; = y,, so R,y =
RmRU+k-1'

By above we know that for any R, , there exists an m g, such that
R, = RmRn . Then, while Ry, changes, we take the least common
multiple m of all mg . Then for any R, , it is always true R, = R,,.

From all above, there exists an m that meets all conditions if and
only if » is an odd number.

(2) Forn =3, B € N, the smallest value of m that meets the

conditions (set in (1)) should be m = 3*.

As a matter of fact, for any R, = (x,, ***, x,), suppose Ry =

(y1s ==+ y,)» then from the relation we inferred before under modulus
3}2

3, it is easy to know that y, =— Zcékxi+p (mod 3), where the

i=()

subscript of x,., takes on values under the meaning of modulus =,

where p =1, 2, --, n. We also notice that for1 <: <{3* —1, Cy =
0 (mod3), soy, =—x, — x4, =— 2x, = x, (mod 3), therefore,
R3k :R().

On the other hand, suppose R, = (0, 0, =+, 0, 1), then for0 <<m <
3*, the 3* —m th component of R,, is not equal to 0. So, the minimum

value of m that satisfies (1) is 3*.

Solutions to Exercise Set 2

1. We make the proposition more general by changing 2011 into
n, and we prove that the proposition holds true for the n-element set S
and 0 <N <27,

When n =1, the subsets of S are S and J only. For0 <N <2, we
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dye any N subsets into white, and the others into black, then we know
that the proposition holds true.

We suppose the proposition holds true for n, then we consider the
case with n + 1. We partition the subsets of S into the part containing
a,n and the part not containing a,. Thus, S = {a;, =+, a,).
Suppose the subsets of S that do not contain a, include A,, =+, Ay,
the subsets of S that contain a,; include By, -+-, By, where

B, =A;, Ulapt, 1 <@ <2n,

If 0 <N <27, then by induction hypothesis, we dye N sets from
Ay, ==, Ay into white color, and others into black color. We dye all
B, into black color after meeting all conditions set by the question.
Then we know that the proposition is true forn +1. If 2" <N <2,
then suppose N = 2" + %, where 0 < £ < 2". We use the method we
applied in induction hypothesis for A;, -+, Ay, which is to dye £ of
them into white color, and others into black color such that all
conditions are met. Then we dye all B, into white color.

'Generalizing, we know that the proposition is true for all » and
then of course true for n = 2011.

2. We extend 2048 into the case 2*. Namely, we prove. for any
n € N*, we place + 1 and — 1, totaling 2" terms, on a circle. By
operations described by the question, after a limited number of
operations, all the numbers will become + 1.

Whenn = 1, by the given conditions, we can get the following

sequence for operations:

Then we know that the proposition holds true forn = 1.
Suppose the proposition holds true for n, then for the case n + 1,
We Use 1, I, ***» Ty* to express the 2" numbers permuted on the

circle. Then, we have the following sequence for operations:

(xla Tae **°%s Iz”“)‘“’ (I1x2» oLz *** Iz"+11'1) —

(X1 L3y TpXgs *=*s T Ty).
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We “combine” the two operations into one operation. Then we
know that if the 2" numbers (z;, x3, ="y, x4 ) and (xy, x4
x+ ) on the circle can all be changed into +1 after a limited number
of operations, the proposition is proved. Since this requirement is
exactly the induction hypothesis, the proposition is hence true.

3. Without loss of generality, we supposex,, ***, x, =>0. Whenn =

] + = % <1, so the proposition is true for n = 1. If we suppose

the prop051tion holds true for n, then we consider the case n + 1. Let

1,

X; .
Yi— :“—;_91:29 3,y n+1 then
V1423 ’ ’
nZH Li =T 1 i Vi
S ltxl b txi Thaxt ]2 Syl e byl
<-4 Jn__
Tz 1 +47
Now we suppose r; = tana, 0 <a <l;-, then
s Jn = singcosa ++/ncosa < sina ++/n cos a

1 +af V14 xi
= vn +1sinla +¢) < vn+1,

Where ¢ = arctan Jn.
So, the proposition is true for n + 1. QED.
Explanation. There is a very smart solution to this problem. Let
o = 0, then by Cauchy-Schwartz Inequality we know that

n

<2 1+ x? il +x?>2

=1

2

\"2 (T i otz

x?

\nz (1 +I()+ +xl1)(1 +I()+ +.’E2)
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- 1
n2<1+x(,+ i 1+15+"'+xf>

:n<1_1+x%—|}"'+xﬁ)
< n.

So the original inequality is true.

4. First, we prove a lemma.

n
DV ez bt ez, 17 =2" 20 |z |7,
k=1

C(eqsene,)

where the summation process is meant for all possible vectors (g4, ***,
€.)s Wheree, € {—1, 1}.

Whenn =1, it is obvious that the lemma is true. Whenn =2, we
notice that

| Z1 TR |2 +| zy + 2, |2 = (&4 —22)(51 —z3) + (= +Zz)(£1 +z_2)
:2(212‘1 +22£2) :Z(I Z1 |2 +| Z2 |2)7

(This conclusion can be interpreted as the sum of squares for lengths of
diagonals of a parallelogram is equal to the sum of squares for its four
sides. ) and by this, we know that the lemma is true forn = 2.
Now we suppose the lemma is true for n, then from
D1 ezt ez |2
ey on epy)

= Z (lerzy +o Fenz, F2m 12+l ez T Fenzn — 2o D

Ceqrmrey,)

~2 Z <|elz1+---+e,.zn 12 4] 2 1

=2 |Zn+1 1> +2 E | e1z1 + o teaz, |2

Cegsne,)

n
=2 | gy P2 |
k=1

nt1

=2"+12 |2k IZ.
k=1

We know that the lemma is true forn +1. So for anyn € N*, the
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Lemma is true.
Coming back to the original problem, by conditions we know that

D1 ez etz < D) lewwr +o teawn I
) )

(eqr e, (eqyne,

Then by the lemma, we know that2" >, | z, |2 <2" > | w. |,
k=1 k=1

then the proposition is proved.

5. A polynomial that obviously satisfies the condition is P =
x1x2°x,. If we are able to prove one term of P(x,, -+, x,) is a
multiple of =, x,+:x, (i.e., z,, *»=, x, all appear in this term), then
the degree of P is no less than »n.

Now we prove the strengthened conclusion: One term of P(x;, -+,
x,) is a multiple of z;x;"*x,.

Whenn = 1, from the condition P (1) >0, P(—1) <0, then we
know that P (x,) is not a constant, and one term is a multiple of x;.
The proposition holds.

Suppose the proposition is true for any polynomial with » — 1
variables that meets the conditions. We consider the case with n.

For P(x,, x5, ***» x,) that meets the conditions, we let
Q<x1 s T2y **°y In—l)

:‘;—EP(IM Loy "y Tp—19 D) *P(In Sty Tp—i —1)],

which is the sum of all coefficients of the odd-degree terms of x,,
when we treat P as a polynomial of x, (other variables =, , **+, =, are
all treated as constants).

Since when z,, -, x,—, are all replaced by + 1 or — 1, if the
number of — 1 is an even number, then P(x(, **, z,—+, 1) > 0,
Plxyy =y zpmys —1) <0,50Q(xy, >y x,—y) > 0; similarly, if the
number of — 1 is an odd number, then Q(zx,, **, x,-,) < 0. By
making use of induction hypothesis we may know that one term from
Qlzxy, =y x,—) is a multiple of x,z,**z, ;. Note that P(x, =+, x,)

originates from summing up all the terms by first multiplying every
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term inQ(x,, ***, x,1) by a certain odd-number power of x,. So, one
term of P(x,, **+, z,) is a multiple of x .z, x,.

From all above, the proposition holds true.

6. Whenn =1, m; = a,. If 4 > a,, then the subscript & that
satisfiesm, > p does not exist, and at this time, the proposition is
obviously true. If << a,, then there is exactly one subscript 4 that

meets the requirements. From 1 < %' we know that the proposition
§23

holds true.

Now we suppose the proposition holds true for 1, 2, =, n—1(n =
2). Suppose for the case n,  is the number of subscripts £ that satisfies
my >p. Ifm, <pu, then for the sequencea;, ***, a,—1 , the number of
subscipts £ that satisfies m, > p is also r. Then from induction

a; - +a, <@ + e +a,,. The

hypothesis, we can know that » <<
iz iz

proposition is true for 7.
If m, > u, then there exists ¢« € {1, 2, -, n} such that

@uinn + ot a,
1

> p. For this 7, concerning the sequence a;, a,, **,

a.—; » there are at least » — i subscripts & that satisfies m, > . Hence,
a; T ta,
T
Then, (a; +++a,) +(a,—ip1 ++*+a,) > —ip +ip =rp,
a; +a, +++ +a,

P .
The proposition is proved.

from induction hypothesis, we know thatr —i <

sor <

7. Compare to the second proof for the Arithmetic Mean-
Geometric Mean Inequality in Section 10. We use the method in that
proof to prove the widely used Jensen’s Inequality.

Whenn =1, 2, it is obvious that the inequality is true.

Now we suppose the inequality holds for n = 2*(k € N*). Then
from the definition of /', we may know that
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f<x1 +-2°;+—1I-x2k+1 ><%<f(x1 +2k + x )_}_f(xz’kﬂ +2k + ))

—%—(2k2f(x,) +2sz(xz » )
lz-H

2k+1 Ef(x ).

Hence, the inequality is true for anyn = 2¢(k € N*).
More generally, forn € N* (n=>=3), suppose 2! <n <2*"', k €

N*. Denote A = ;(:cl +--- +x,). Then since the inequality holds for

21 we know that

(P ) < L (G - @ o p ).

2k+1
At the same time,

2k+1 (xy + o +x, + Q" —n)A) = 2k+1 (nA + ' —n)A) =

Then, we have

2 FA) < D flx) + Q@ —n) fF(A).
ji=1

So f(A) < %Ef(xj), i.e., the inequality holds for n.
j=1

The proposition is proved.

8. Lemma: Suppose f(x) is a convex function on the interval
(0, 1), n € N*, n = 2. The positive real numbers x;, ***, x, satisfy
xy +++x, =1, then

n

W ]

i=1

Proof of the Lemma: From Jensen’s Inequality, we know that
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Ef(x) Z( Zf(x] > Zf( Zx]>

1= [
=2 r(=T)

So, the Lemma holds.
Let’s go back to the original question. Let f(z) = In lxﬂ We
notice that for any x, y € (0, 1), it is always true that

1+ 1+y 14+ay+x+y
+In =In
Yy Ty

f@) + fy) =

= In( ¢ jy)z o )= 1n(——(x(ji;f)2)
+

= 2ln

1+
x

nd ix is a convex function on (0, 1). Considering

So, f(x) =
this, together with previous conclusions, we may know that the
proposition holds.

9. Denote S, = . F.i, thenS; —+, S, — = +% :%. While

i=1

n =3, it is true that

1.1, WF
Se=gtg T2 7

_é N F1—1+F1‘2

4—’—123 2

3 A Fa 1o

4_'_21.:3 21 jL4l:3 272
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_|_

|

+

_I,.
Y T 1=

|

o= &0 AW

By use of S, :%andsz :%, we may know that forn =1, 2, it

is always true S, <<2. Now we suppose forn =%, & +1, it is true that
S. <2, then we have

1 1 1 .1 1,
+ Skt S <t X2+ X2 =2

1

Sk+2 = 2

So, the proposition holds true.

10. By making use of a2 = a1 +a,, we know thatas = as +a, =
2a; +as = -+ = 2la, +13a,. According to the conditions set by the
question, we can know that the following indeterminate equation has

at least two sets of positive integer solutions (x, y), such thatx < y.
13z +21y = k. )

We notice that if (D has two sets of positive integer solutions (x; ,
vyi)and (x,, y,), such thatx, <y, x; <y, then13zx, +21y, = 13z, +
21y, = k. By symmetry, without loss of generality, we may suppose
xy < x2. Then13(xy, —x;) = 21(y,; —y,). Thus, byx; =z, we know
that y, = y,, which leads to (xy, y,) = (x2, y,) and causes a
contradiction. So x; < x,. Therefore, we have 21 | x» —x1» 13 | 31 — v
(it makes use of (13, 21) =1). Sox, —x; =21, and getx, =21 +x, =
22. From y, = x,, we know that £ == 13 X 22 421 X 22 = 748,

On the other hand, when # = 748, D has two sets of distinctive
positive integer solutions, and they are (22, 22) and (1, 35),
corresponding to (a;, a,) respectively, and we then have two
sequences that meet all the requirements.

Generalizing all above, the least positive integer we look for
is 748.
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11. If m >k +2, thenFm 2F1¢+2 :Fk+1 +Fk >2Fk (Since the

sequence {F,} is a non-decreasing sequence). Then x; < % From the

definition of {x,} we may know that x, << 0, and further we may use
mathematical induction to easily prove: forn >=2, it is always true that
x, < 0. At this time, the sequence {x,} does not contain any term
equal to 1, som <k -+2. Since m > k, our conclusion has to be m =
kE+1.

On the other hand, for any4 € N*, if m =% +1, then from the

definition of {x,}, we can know that x, = 28 — Fen (unless 2 =1,
Fk+1 _Fk
m = 2, thenx; = 1, meaning there is a 1 in this sequence already).
And we get x, = Fe Fev _ Feo e conduct this reasoning
F Fpy
recursively to find that. when % is an odd number, supposing £ = 2n +
1, we have x; = Fos . Lopt = Fy _ 1. This is in accordance with
F2n72 FZ
the question; when % is an even number, supposing 2 = 2n, we have
— F2n—4 _ &

1 . .
Fo =F "2 after which every term in the sequence

is no bigger than 0, and this is not in accordance with the question.

oo y Tp

Generalizing all above, the positive integer pairs we look for is
(B,m)=0Q2n—1,2n), n € N".

12. The answer is 11 Yuan.

Suppose f(n) is the smallest amount of money that needs to be
paid to confirm the number Mr. Zhang takes from {1, 2, +--, n}, then
f(n) is a non-decreasing sequence. And, if the first subset chosen by
Mr. Wang is a set with m elements, then

f(n) <max{f(m) +2, f(n—m) +1}.

Next, we make use of the Fibonacci Sequence {F, } and prove the
following conclusion: suppose x is a positive integer, and I, << x <
F..(n =2), then

flx) =n—1. @



Solutions to Exercises 185

We first prove that for anyn € N* (n = 2), it is always true that
f(F,,+1) n—1. @

As a matter of fact, whenn =2, F, = 2, it is easy to know that
S (F;) < 2. We suppose for positive integers less than n, ) is always
true. Then we consider the case with n. Mr. Wang for the first time
takes one subset and makes its number of elements I, ; , then it is true
f(F,) <max{f(F, ) +2, f(Fo —F,)+1} =max{f(F,—) +
2, f(F,) +1}) < max{n—1, n—1} = n— 1 (here it is deemed that
F(Fy) = f(1) =0). So @ holds true for all positive integers n.

Next, we are to prove: foranyn € N*, F, <x <F,,,x €N",
it is always true that f(x) =n — 1.

Whenn =2, x = F; = 2. Now, it is ecasy to know f(2) =2, so
the conclusion is true for n = 1. Suppose the proposition is true for
positive integers less thann. We consider the case withn. For anyn €
N*, F, <x < F,;,. (Attention, here we haven =3, sox >=3.)

If the number of elements in the subset that Mr. Wang takes for
the first time is << F,,, then the smallest amount of money that
Mr. Wang needs to pay = f(xz —F, ) +1 =2 f(F,,.+D +1=n—1;
if the number of elements in the subset that Mr. Wang takes for the
first time is = F,—, + 1, then the smallest amount of money that Mr.
Wang needs to pay = f(F,, + 1) +2=n—-3+2 =n—1. So, f(x) =
n—1,

Generalizing all above, the conclusion O holds. Making use of
this conclusion and concerning also 144 = F,,, we may know that
Mr. Wang at least has to pay 11 Yuan to guarantee getting to know the
number Mr. Zhang takes.

13. Whenm = 1, it is obviously true. Now we consider the case
m =2,

We first prove that {F, (mod m)} is a periodic sequence. This can
be observed by noticing that (F,, F,.,) has only m? kinds of different
situations under mod m. By using the Drawer Principle (also known as
the Pigeonhole Principle), we know there exists an n < k£, such that
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(F,, F,ua) = (F,, Fiu) (mod m), and then together with the
recursive formula, we may deduce that F,_, = F,; (mod m).
Reversely deduce in turn and we can get that conclusion.

After that, from F;, = F, =1 (modm), we know that there exists
ap €N*,suchthatF,y =F,, =1 (modm), hence F, =0 (modm),
F,,=1(modm), F,, =—1 (modm), and further, for: € N*, we
have F,, , =—1 (modm). Take n = tp —2, then we have F; — F, —2 =
1 +1-—2 =0 (modm). The proposition is then proved.

14. (1) We can’t. As a matter of fact, if we can partition N* into
the union of m F-sequences, then we consider the positive integers:
2m, 2m +1, ++, 4m. Among all these 2, + 1 numbers, there must be
3 numbers that are from the same F-sequence. However, take any
three numbers from the 2m + 1 numbers, and the sum of any two of
them is bigger than the third number. This becomes a contradiction.

(2) We use the Fibonacci expression (see Example 2 in Section 9)
for positive integers to prove: N* could be partitioned into the union
of infinitely many F -sequences.

We will, under Fibonacci expression, make all positive integers
that make a, = 1 arranged, from the smallest to biggest, on the first
row; make all positive integers that make a, = 0, while a; = 1
arranged, from the smallest to biggest, on the second row; make all

positive integers that make a, = a3 =0 whilea, =1 arranged, from the

smallest to biggest, on the third row; ... and a table is listed below:
F2 F2 +F4 7 F2 +F5 F2 +F(, F2+F4+F5
F, Fy +Fs F; +Fs F; +F, F, +Fs +F,
F, F, +Fs F, +F;

By Zeckendorf’s Theorem, we know that every positive integer
appears exactly once on the above table, while every column from top
to bottom forms a F-sequence. So, the conclusion of (2) is surely

true.
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15. When: =1, it is obviously true thata, <k.
Suppose for 1 <{s <<n, we have sa, << k. Next, we are to prove;
(S + 1)a5+1 B k

If (s +1)a, < sa,, then of course we have (s + 1)a,y < k; if

(s +Da,yy >sagsi.e.sam >sla, —ag)s then —&H— >,

as a s+1
[
(ayy ag)

At

making use of
’ & (ays amp) ~

Noticing that [a,, a; ] =

&~ and concerning also —2— € N* , we may know that
as; —Agp (as9 as+1)
— 4 > ¢4+ 1, Then
(as ’ arH)
(s +Dag < (s +Da, < Gt ca, = la.s ayq ] <k
(as ’ a5+1)

So the proposition is also true for s + 1.
16. We use mathematical induction (inducting with n) to prove
the following strengthened proposition:

1 1 1 1 1
+ o < (12 ).
[aos ar] [ais as] [@n-1s Qn] ao< 2) @

Whenn = 1, from the condition a, < a;, we know that [ae, a; ] =
1 1 _ 1 (

[ao, a1] \56_1—; —ao

2a, s then — %) So whenn =1, the inequality

@ holds.
Suppose that the inequality D holds true for n, then for the case

n +1, we have

[ao}ad Jr[a1,1az:| A er
[ao,lalj - (1_%)' @
If ai = 2a,, then the right-hand side of @ < m +
i“ _%)<ﬁ<2—2—1ﬂ>= ai0(1 —51)s if ag <@ < 2y, then
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from (ay, a;) << a; — ay, we know that the right-hand side of @

a; —ay 1 1 1 1 1 1 1 1
<@g 1)1 11 1 __ 119
apdq +Cll ( 2" ) ao a; * 2" < agp 2a[) o« 2 [ ( 2”7‘—1 )

So, the inequality D is also true forn + 1.

17. Suppose under base-2, n = (a,a,1°**ay).» wherea; € {0, 1},
ar = 1. Letz, = (apari°++ao); (which is a positive integer expressed
under base-3), t, = 0.

We use mathematical induction to prove: for any n € N*, it is
always true thatu, =1¢,.

Whenn = 1, the proposition is obviously true. Suppose for any
m <mn, it is always true thatu, =1t,. Next, we are to proveu, =¢,.

On the one hand, no any three numbers in the sequence {zy, z;, ***,
t,} form an arithmetic sequence. This is because for any 0 <o <g <
y <mn,ift, +t, = 2t,, then since 2¢, under base-3 is composed only by
numbers 0 and 2, we know that every corresponding numbers of ¢, ,
t,, under base-3 are exactly the same. Therefore, 1, = ¢,, and this
requires that « = y. This brings up a contradiction.

The above discussions show that u, <i,.

On the other hand, if u, <t,, then from induction hypothesis we
know thatu, € {¢t,, +1, +, t, —1}. At this time, under the ternary
expression for »,, the number 2 will necessarily appear (since the
positive integer under base-3 with only numbers 0 and 1 € {5 t15 *=*}).
So, there exista, & € Nsuch that0 <¢, <, <<u, satisfying:

(1) If within the ternary expression of , , a certain digit is a 0 (or
1), then for the ternary expression of ¢, , ¢, , the corresponding digits
will also show a 0 (or 1) on the same position.

(2) If within the ternary expression of u, , a certain digit shows a
2, then on the same position of 7, , it should show a 0, while ¢, shows a
1 on the same position.

Thent, +u, = 2t,. This is a contradiction. Sou, =1¢,.

Generalizing all above, we may know that », = ¢,. Considering
100 = (1 100 100),, we have u 4 = (1 100 100); = 981.

18. We will discuss this problem under base- 4.
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Suppose among all the numbers that are divisible by 4 — 1, the
smallest value of the number of all non-zero digits under base- & is s.
Among all the numbers whose total numbers of all non-zero digits are
ss we take the number A with the smallest sum of all digits.

Suppose A =a 6™ +a,b"2 ++-+ +a,b"s is the base- b expression for
A, wheren, >n, >+ >n, =20, 1 <a, <b,i =1,2, =+, s.

Next, we prove: n, n,, ***, n, constitute a complete system with
modulus 7, therefore s = n.

On the one hand, suppose 1 <<i: <<j <s. Ilfn;, =n;, =r (modn),
where 0 <<r <{n — 1. We examine the numbers

B =A —ab" —a;p" +(a; +a;)b"™",

Obviously b —1 | B. If a; +a; < b, then the total number of all
non-zero digits of B iss —1, which is contradictory to the choice for A.
So, it must be b <<a; +a; <2b. Supposea; +a; =b +q, 0 <qg <b,

then at this time, the base- & expression of B is

B = pmitrit +qbnn1+f +abit s +a; b7 +a bt
Foe @i 67T @bt e fa b,

Then, the sum of all digits of
B = S ay —Ca; ta;) +1+q = Eak +1—56 < 2“’%’
k=1 k=1 k=1
which is contradictory to the choice for A. So, any two fromn,, ---,
n, are not congruent under mod =.
On the other hand, if s <<z, then we supposen,; =r;,(modn), 0 <

r; <<n. We examine the number C, where
C =abt +ab2 +-+ab’.
Due to 6" =" (mod b* —1), we haveb” —1 | C. Buts < n means
0<C<G—1b+W D>+ +GB—Db" =b" —b <b" —1.

This is a contradiction.
So, the proposition holds.
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19. We start from every odd prime number to find » that satisfies
the condition.

We notice that for anym € N*, (¥ —1, p?" +1) =2. So, from
the formula for the difference of two squares, considering together
with mathematical induction, we may prove that any two numbers
from p +1, p>+1, «-, p¥ +1 have no same odd and prime factors,
and none of these numbers is a multiple of p. So, there exists anm &
N*, such that

RGP 1) < p <h (¥ +1D. @D

Take the smallest positive integer m, that satisfies Q. Let n =

p¥° —1. We assert that h(n) <h(n +1) <h(n +2).
As a matter of fact,

n=p"" —1=0(p-DG+DE +DG"" +1D),
while m, is the smallest positive integer that satisfies (D, so we have

h(n) <p =h(n+1). Andsince h(n +2) =h(p?* +1), from D we
know that h(n +1) <h(n +2).

The above discussion shows: for every odd and prime number p,
there is always an n that meets the conditions (obviously different p’s
correspond to different n’s). And since there are infinitely many odd
and prime numbers, the number of n that meet all the conditions
should be infinite.

20. Lemma: If £ € N*, £ 5 3 and % is not a power of 2, then

w2 +1) > 1.

As a matter of fact, if 22 +1 = p™, where p is a prime number,
andm € N*, we denote k =2* « 8, ¢ =0, 8 > 1, and § is an odd
number. We discuss by two cases:

(1) @ =0, then from £ # 3 we know that3 >3. So, 2 +1 =(2+
128" —2F2 4+« +1) is a multiple of 3, and2* +1 >9. If2¢ +1 =
37, theny >= 3. At this time, we take mod 4 on both sides, then we

know that (—1)” =1(mod 4), so ¥ is an even number. Denote y = 25,
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then 2 = (3° —1)(3° +1). Since 3° — 1 and 3° + 1 are adjacent even
numbers and their product is a power of 2, then we must have 3° —1 =
2, which leads tod = 1, ¥ = 2. This is a contradiction. So, whenga =
0, the lemma holds true.

(2) @ > 0. At this time, by making use of factoring we can know
that2* +1] 2% +1. If w(2* +1) =1, then p = 2% + 1 is a prime
number. At this time, we suppose 2% +1 = p*,i.e., (p —1F +1 =
p*, u =2. We take mod p? on both sides and make use of the Binomial
Theorem, then we know that p | 8. Further, suppose 8 = p* *x, ptx,
and we can know from the Binomial Theorem that

p = pﬁ _Cgﬂp/?*l +ees +C§p2 "B . p.

The last term on the right is a multiple of p**', but not a multiple
of p”**, while every other term is a multiple of p*. So, the above
equation is not true. So, whena > 0, the lemma is also true.

Through the above lemma, we know that when £ # 3 and £ is not
a power of 2, we have w(2*) <w(2* +1). Next, we are to prove that
there exist infinitely many such &, such that w(2* +1) <w(2* +2).

As a matter of fact, if we have only a limited number of % as
above such that w(2* +1) < w(2* +2), then there exists £, =27 > 5.
For every k € {k, +1, ==, 2k, —1}, it is always true thatw(2* +1) =
w2t +2) =1 +w(2" +1). Then, we have

w0 1) =1 +w@2 1) = = (kg — 1) +w @ +1) = k.

This requires that 2*0™" +1 = p,-++p, , where p., **+, p, are the

initial 2, prime numbers. However,
piecbr, = (2 X3 X5 X7 X1 X (pgreepy, ) >4 « 4075 = 2%,

Thus we have a contradiction. So, the proposition holds true.
21. Suppose the permutation of prime numbers from the smallest
to biggest is p1, p2s =y Pns *=-. Thena, = p; +po + -+ +p,.
Whenn =1, 2, 3, 4, we can then directly verify the proposition
and then know that it holds true. Now we suppose that the proposition
holds true with» — 1, i.e., there exists a positive integer x , such that
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,— <z’ < a,. We take the biggest x which meets the requirement
and denote it to be v, then y> <a, , while (y +1)? >a,, wheren >5.

Denote p,w = 2k + 1. Then when n = 5, concerning that two
adjacent prime numbers differ by at least 2, we know

pr Pt Fp, <1TH3+5++ 2k —1) =%
Hence, y? <a, <k?,i.e., y <k. Then

(y+D> =32 42y +1 <32 +2k +1 =32 + p,
<P1 +.” ~+‘pn +pn+1 = Api1.

So, the proposition also holds true for 7.
From all of above, for alln € N*, the proposition holds true.
22. We supposc a to be a positive odd number. If (a, 5) =1, then

(a, 10) = 1. In the sequence 1, 11, -+, 11---1, there are two numbers

—
al’s

being congruent under moda, i.e. , there exist 1 <<i <j <Ca, such that

11---1 = 1:--1 (mod a). Namely, a | 1:++1 0-0, so a | 1-++1. The

:/._1/
ji1's il's j—ils i0’s j—il’s

proposition is then proved.

If5 | a, then supposea =5° « b, a« € N*, (5, b) = 1. We prove
the following lemma in the first place.

Lemma: For any positive integer n, there exists an n-digit positive
integer A, with 1, 3, 5, 7, 9 as digits only, such that5" | A,.

We prove this lemma by using induction. When n = 1, just take
A, =5. Suppose whenn =k, there exists an £ -digit number A, , whose
digits belong to the set {1, 3, 5, 7, 9}, and 5* | A,. Consider the

following numbers

108 +A,, 3 X108 +A,, 5 X10* +A,,
7 X108 +Ag, 9 X108 +A,.

If 54" | A,, then it suffices to let A,y =5 X108 +A,; if 5 fa,,
then suppose a, = 5¢ X ¢, wheret = r (mod 5), r € {1, 2, 3, 4}.
Noticing that (5, 2*) = 1, then we know {2*, 3 X 2%, 7 X 2%, 9 X 2%}
becomes a reduced residue system with modulus 5. Then, we may
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choose S € {1, 3, 7, 9} such that S X2* =5 —r (mod5). Therefore,
by letting A,y = S X 10* + A, we have 5*' | Ay, and all digits of
Ay belong to {1, 3, 5, 7, 9}. The lemma is proved.

Going back to the original question. From lemma, we can know
that there exists an -digit number A, such that 5¢ | A. Then, within
the sequence A, AA, -, @ (here @ means the positive

bA’s EA’s
integer we get by writing consecutively the £ A’s), there must be two
congruent under mod 4. By making use of the method in the first case
we know that the proposition holds true.

23. (1) Letx;, = 12346789, then S(z,) = 45, and from45 | 123 467 895
we may know that xr; € A. Now we suppose z, € A, and the
expression of x,, under the decimal system, has equal numbers of
appearances for the numbers 1, 2, -=-, 9. We suppose that x, is anm-
digit number, and we take x4, = x, » (10°" 410" +1) = Fzx: %% » then
under the decimal system, the numbers of appearances for the numbers
1, 2, =+, 9 are the same in 41 » and S(z,1) = 3S(x,). Since 10> +
10" +1=14+1+1=0 (mod 3), and also S(x;) | x;» we know that
S(xp+1) | xeqr. By this, together with mathematical induction, we
know that the conclusion (1) holds true.

(2) Lemma: For any n € N, there exists an n-digit positive
integer =, , whose digits are 1 and 2 only, such that 2" | z,.

We can follow the proof for the lemma in the previous question to
get this lemma proved.

Going back to the original question. Whenk =1, 2, 3, 4, 5, we
take 1, 12, 112, 4112, and 42 112, and we see that the proposition
holds true.

When £ > 6, then our idea is to look for a k-digit number x in A .
we will look for = whose last n digits is the x, mentioned in the lemma,
and then we fill in non-zero numbers in front of z,, and the sum of all
digits from the %-digit positive integer x formed is 2", where = is to be
determined.

A sufficient condition for the above-mentioned n to exist is:
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S(x,) +k—n) <2" <S(x,) +9(k —n). )

Since n << S(x,) < 2n, therefore, if the following is satisfied,
then D holds.

2n +(k —n) <2 <n +9( —n),
namely,
n+k 2" <% —8n. @

Next, we prove: when 2 == 6, there exists ann € N* that satisfies
@.

As a matter of fact, suppose n is the biggest positive integer
satisfying 2" +8n < 9%, then 9% <<2"' +8(n +1). This suggests that if
2" +8(n +1) < 9(2" —n), then n satisfies @).

We note that £ 26, so the above-mentioned » satisfiesn =>4. Then
7 X 2" 2= 17n + 8 (this inequality can be proved through inducting with ),
and this means 2" + 8(n + 1) << 9(2" —n). Therefore n satisfies @).

Generalizing all above, we know that the conclusion @) is true.

24. There exists a sequence that satisfies the conditions.

We arrange all prime numbers bigger than 5 from the smallest to

biggest, and we then get the sequence p,, p., ---; we define a sequence
{g,} as follows: gz = 6, qzt1 = 10, gy =15, k =0, 1, 2, ++-. Now
we define the sequence {a,} asa, = p,g.» n =0, 1, 2, --. We will

prove that the sequence {a,} meets all the conditions.

We notice that for subscript: =, we have p; # p;, so there is no
term in {a,} that is a multiple of any other term. Hence, (1) is
satisfied. We now take a step further. If i = j(mod 3), then (a;, a;,) =
(gis q;) =6, 10, or 15; if ¢ Z j (mod 3), then since 6, 10, 15 are
mutually non-prime for any two of them, we know that (a;, a;) =
(g:» q;) > 1. Moreover, 5fa,, 3fa:, 2fas;, and every prime number
bigger than 5 divides at most one term from the sequence {a, }. Hence,
there is no positive integer bigger than 1 that divides every term from
{a,}. So (2) is also satisfied.

25. We prove: whenk = 2, -+, p — 1, there exists a set {b;, ;.
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bi,2s ***» by, v} where b, ; = 1, or the product of some numbers from
ai, vy ap satisfying that for 1 <7 <j <k, it is always true thatb,, ; &
br., ; (mod p).

Whenk = 2, from the conditions, we know thata; £ 1 (mod p).
Then just take {b;, 15 b2,.; = {1, a,}. Now we suppose D is true for
k(2 <<k < p —2). From the condition p Ya, we know thata, b,, ,, -,
ay by, , are not congruent for any two of them under mod p. By the
composition (none of the terms is a multiple of p) of the sequence
{br, 15 ***» bi, 1}, and thata} £ 1 (mod p), we know

Cag br, 1) "Cag by, k) Z by, 1++by,  (mod p).

So, under mod p, (a, by, 1, ***» ap by, x) 18 not a permutation of
(bi,1s ***5 by, ), therefore, there exists aj € {1, 2, -+, &} such that
any two numbers from the sequence {a; bx, ;s be,1» ***» by, x) are not

congruent under mod p. By this, we can know that the conclusion @
holds.

Once we examine (6,1, 15 ***s by, — ; We can get the conclusion
required by the question (because they constitute the reduced residue
system with mod p).

26. (1) Take any a € N*. Since there is a limited number of
values of f that are < f(a), so there exists ann € N”, such that for
d >=n, we always have f(a) < f(a +d). We consider the sequence
fla), fla +n), fla +2n), ==, fla +2"n), fla +2n), ---.

If there exists a £ € Nsuch that f(a +2*"'n) > f(a +2*n), then
we take d = 2*n, and we know that (1) holds. So, for £ € N, we have
fla +2¢"'n) < f(a +2*n) (here we do not take “equal sign”, since f
is an injection) , namely, f(a +n) > f(a +2n) >+--. Butsince itisa
surjection, there is only a limited number of values of f that are less
than that of f(a +n). This brings up a contradiction.

(2) They do not necessarily exist. For example, let f: N* — N~
be defined below:

n=1;2; 3, 4; 5, 6,7, 8 9, 10, ---
f(n) = l; 2; 4, 3; 89 79 6, 5; 16, 159 A
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In the definition above, forn € N*, we have f(2" +1) = 2",
fFQ+2) =271 —1, e, fQ2) =27 +1, while (1) =1, F(2) =2.

Next, we prove: whenm =5, fora, d € N”, it is always true
that f(a +(m —2)d) > f(a +(m —1)d), or f(a +(m — 1)d) >
f(a +md).

As a matter of fact, if not true, then

fla+m—2d) < fla+m—1d) < fla+md).

From the definition of f, we know that f(a + Gn — 2)d),
fla +n —1)d), f(a+md) are separately located on three different
decreasing intervals, while the length of the decreasing interval from

2" +1to2"" is2". So, the length of the decreasing interval wherea +

(m —1)d is located is >£i(m2_—1)d. Sincea +(m —2)d and a +md
are neither located on the decreasing interval where a + (m — 1)d is

a+(m—1d
2

a +(n —1)d = a +4d. This brings up a contradiction. Hence the

located, soa +md —(a +(m —2)d) = » leading to 4d =

conclusion of (2) is that they do not necessarily exist.
27. Lemmma; If the integersn,, n,, -+ satisfyn, =ni, kb =1, 2, -+,
ny > 1, then for any; € N*, we have

ﬁ(l+n—i)e(1+%,1+ L_1.

N j n; —1

Proof of the lemma. From the conditions, we know that

(=2 =<I0+5)-T0+())

k=0 n; k=0

= k

=E(i) -ty 1
=0 \N; 1_i n; —1
n;

So, the lemma holds.
From the lemma, we can prove uniqueness. (As a matter of fact,
if
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400
« ::k:1(1 +—:%>== k:1<1 +—;%;>,
andn; =my, ***y n; = m;, then
L)l
1

By the lemma, the former one € <1 + » 1 +—1TJ, and the
i+

it

latter one € <1+ 1 , 1+ 1

m my 1

}. Then we can come to 7,44

m jH - )
The existence could be obtained by the following method. Denote
ar =a € (1, 2], then there exists a unique n, € N*, such thate, €

1
9 —1

J. Leta, :%, then1 <o, <a; < 2. For
14+—

nq

<1+iw1+

this «» , there exists a unique n,, such thata, € (1 +ni, 1 +n 1*1].
2 2

Conducting the reasoning in turn, we may define a sequence {n, }{Z;.
Next, we prove ni << 7 44.
As a matter of fact,

1+n 1“1 1
L —— <awn = < T sl
Hh 14+ = 1+—= nE
Ny nyg

song <n,.

Finally, from the definition of n, we may know that

N ﬁ +——1f'-
H( k) L ( ) nny — 1

k=1

1 <x—

o0

Let N —+oo, and then we may geta = || (1 +i>.

k=1 e
28. We firstly prove that there exists a pair of positive integers
(p, @), such that p < q, anda, | a,. We examine the number table



198 Sequences and Mathematical Induction

below;
Zo, 19 Lo, 29 "y To,m
L1, 19 T1,29 9 T1i,m
Lm,19 Tm,29 s T, ;m

Herex(),1 = dy1sy Xo,; = Xo, ;1 +1,] = 29 e N, And,

Xi, j — (Hxi~1,k> +.’L','—1,j. 1<Z,] ém.
k=1

In the above table, every row contains consecutive m positive
integers, and for any two numbersa, 6 in each column, if ¢ <4, then
a | b.

By the conditions, every row contains at least two numbers from
{a,}. Hence, there are at least 2(m + 1) numbers in the above table
that are terms from the sequence {a,} and therefore, there are two
numbers from one column in the table that are from the sequence
{a,}, and we denote them to bea,, a,,» p <g, then we havea, | a,.

Now we give the value a, + 1 to xy, | » and by similar methods as
above, we may construct a table of the same property. Then we can
find the next pair (p’, ¢'), p’ < ¢, such that a, | a,. Conduct
reasoning like this, and we can find infinitely many pairs of (p, ¢),
such that p < ¢, anda, | a,.

The proposition is proved.

29. This kind of partition exists. Let A = {n € N | The binary
expression of n has an even number times of appearances of number
1} ={0,3,5, 6, ***}; B={n € N| The binary expression of n has an
odd number times of appearances of number 1} = {1, 2, 4, 7, *--}. We
say that A, B are partitions that meet the conditions.

Next, we prove: for anyn € N, it is always true that
TA(TZ) :7"3(71). @

We prove it through inducting with respect to m, the number of

digits for » under binary expression.
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When m =0, 1, we notice thatr,(0) =r5(0) =r, (1) =rp(1) =
0, and we know that @ holds.

Now we suppose (D holds for n € N, whose number of digits is no
bigger than m. Let us examine the positive integer n with m +1 digits.
For possible equalitiesn = s, +s;, 51 > 52, s1, 52 € A (we do similar
discussions when s, s, € B), we will discuss with three cases.

Case 1. If the m + 1th digit, from right to left, of s; is 1, then
the m + 1th digit, from right to left, of s, must be 0. Examine the two
numbers from the 1st digit to the mth digit, from right to left. Among
them., there is an odd number of 1 in s,, and there is an even number
of 1ins,. Lets,=s, +2™, s5 =35, —2", then both s’ and 55 have odd
number of 1, ands; >s5, s1+s5s=mn, 51, 52 € B. Conversely, whens, ,
s, € B, we also haves;, s, € A. So the numbers of expressions for this
part in two sets are the same.

Case 2, If them +1 th digits, from right to left, of s, and s, arc
both 0, and the mth digits are both 1, from right to left, then similar
to above discussions, we may know thats; =s;, —2"' € B, sh=s, —
271 ¢ B. So (si, s3) constitutes an expression of » — 2" in B.
Conversely, whens,, s, € B, (s1, s3) constitutes an expression of n —
2" in A. By making use of ra(n — 27) = ry(n — 2™) (induction
hypothesis), we may know that the numbers of expressions for this
part in two sets are the same.

Case 3. If them +1 th digits, from right to left, of s, and s, are
both 0, and the mth digits are not both 1, from right to left, then the
mth digit of s, , from right to left, is 1, and the mth digit of 5,, from
right to left, is 0. At this time, we examine the numbers of 1s for
these two numbers from the 1st digit to the m — 1 th digit, from right
to left. Then we know that there is an odd number of 1s ins;, and an
even number of 1s ins,. Lets;=s, +2™ 1, s5 =135, —2"'. Similar to
Case 1, we may know that the numbers of expressions for this part in
two sets are the same.

Generalizing all above, for n withm + 1 digits, we also haver, (n) =
rg(n). So, A, B defined above meet the conditions.
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30. Suppose that S is the set of all the numbers that can be
expressed in accordance with the conditions set in the question. Let
T =S U {1}, and denote the set comprised of all the elements in S
that are powers of 3 and are no bigger thank tobe S,, and T, =S, U {1}.
Then the following conclusion is obviously true.

WO2T < T,3T <T. Here 2T = {xt |t € T}.

(2) If h <k, then2T, +3* € T. Here

2Th +3k = {Zt +3k l t € Th}.

Next, we are going to use mathematical induction to prove: for
anyn € N*, it is always true thatn € T,

From the definition of T, we may know that 1 & T is true.
Suppose for anym € N*, m <n, it is always true thatm € T. Then
we consider the case n.

Casel. If2| =, then % € T. Therefore, n € 2T < T.

Case2. If3 ] n, then —’31— ¢ T. Therefore, n € 3T < T,

Case3. If2%n, and3Yn, then there exists ak € N* such that 3* <
n—3t 31 —3* n—>3

n < 3% At this time, 0 < 3 < 3 =3* <n. So, 3

€
T ;—. Therefore,

__ Nk
n =2(1—21>+3k €2T,, +3* = T.

So the proposition holds.

31. For any 2 € N*, since f is a surjection, we know that the set
f (k) ={z|x €N, f(x) =k} is a non-empty set. Therefore, by
Well-ordering principle, we know that there exists anm, € N*, such
thatm, = minf "' (k).

Next we firstly prove that

g(lm,) = k. @

We induct with respect to k. Whenk =1, fromg(m,) < f(m,) =1
and also g(m ) € N*, we may know that g(m ) = 1. Namely, @ is
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true for £ = 1.

Now we suppose (D is true for all positive integers that are less
than &£, namely g(m,) =1, -, g(lm,—) =k —1. Then we discuss the
value of g(m ).

Firstly, g(m,) << f(m;) = k. Secondly, {g(m ), *+, glm,y)} =
{1, 2, ===, & — 1}. Since g is an injective mapping, and from the
definition of m; we know that any two fromm,, -+, m, are different,

so g(m;) = k. Therefore, g(m,) = k. So, @ is true fork € N* .

By D and that g is an injection, we may know that g is a one-on-
one correspondence from N* to N*. Now foranyn € N*, letg(n) =
k. Since g is a one-on-one correspondence and from (O we know that n =
m, , therefore f(n) = f(m,;) = k. So f(n) = g(n). The proposition
is proved.

32. Considern € N*. Suppose a, is the nth term, under base 2, of
a sequence of positive integers whose 1s are only on even-number
positions or whose 1s are only on odd-number positions. We prove:
this sequence {a, } meets all conditions.

By making use of binary expressions for positive integers we may
know that (1) holds. We only need to prove that (2) also holds.
Consider all non-negative integers that are less than 2%, and they are
all 2r-digit numbers under base 2 (if not up to the number of digits,
make the vacancies at the front up by zeros). Among them, there are
2" numbers whose even-number positions are all zeros, and there are 2’
numbers whose odd-number positions are all zeros. There is only O that
appears in both types of numbers. Hence, there are exactly 27" — 1
numbers that are less than 2% in the sequence {a,}. Therefore, ay+_, =
2%,

Forn € N*, suppose 2" —1 <{n <<2""2 —1, r € N. Then from the

2
definition of {a,} we know thata, = a,+_, =2¥ = T16 X 2D~ ?—6

So, there exists a sequence {a, ; that meets both conditions.
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