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Introduction 

Mathematical induction is an important method used to prove particular 

math statements and is widely applicable in different branches of 

mathematics, among which it is most frequently used in sequences. 

This book is rewritten on the basis of the book Methods and 

Techniques for Proving by Mathematical Induction, and is written with 

an understanding that sequences and mathematical induction overlap 

and share similar ideas in the realm of mathematics knowledge. Since 

there are a lot of theses and books related to this topic already, the 

author spent quite a lot of time reviewing and refining the contents in 

order to avoid regurgitating information. For example, this book 

refers to some of the most updated Math Olympiad problems from 

different countries, places emphasis on the methods and techniques for 

dealing with problems, and discusses the connotations and the essence 

of mathematical induction in different contexts. 

The author attempts to use some common characteristics of 

sequences and mathematical induction to fundamentally connect Math 

Olympiad problems to particular branches of mathematics. In doing 

so, the author hopes to reveal the beauty and joy involved with math 

exploration and at the same time, attempts to arouse readers' interest 

of learning math and invigorate their courage to challenge themselves 

with difficult problems. 
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Preface 

Mathematical competitions are a special type of intelligence competition 

among teenage students. Although many common intelligence competitions 

are based on science knowledge, mathematical competitions hold the 

longest history and are the most internationally recognized, and thus, 

have the biggest impact. China first began to hold math competitions 

in 1956. The most prestigious and well-known mathematicians from 

China include Hua Luogeng, Su Buqing, and Jiang Zehan, all of 

which actively participated in creating and organizing these initial 

competitions. They were also influential in the publishing of a series of 

math reading materials for young people and teenagers, which inspired 

large numbers of young people to begin engaging in mathematical and 

scientific research. China has participated in the International Math 

Olympiad since 1986 and received first place awards on a number of 

occasions. In 1990, China hosted the 31 st International Math Olympiad 

in Beijing, which spoke to China's leading international position and 

attracted the attention of scientists and educators from many other 

countries worldwide. 

China's success in math competitions over the years has resulted in 

increasing participation of young people in these competitions across 

all regions, heightened interest and enthusiasm towards math learning 

in students, greater facilitation of creative thinking abilities, and 

improvements in studying habits and efficiency. In addition, they have 

led to healthy competition strategies to be used in math teaching, 

which aids in selecting those students with special math talents to 

participate in the competitions. Those who stand out and achieve 

success in math competitions prove to have a solid foundation in math, 
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as well as strong science study strategies and skills, and many of the 

students who are successful in these competitions go on to work in the 

field of science. In the United States, some winners have gone on to 

become famous, for example, J. W. Milnor, D. B. Mumford, D. 

Quillen are all recipients of the Fields Award. In Poland, A. Schinzel, 

the famous Number Theory expert, received awards in math competitions 

when he was a student. In Hungary, the famous mathematicians L. 

Fejer, M. Riesz, G. Szego, A. Haar, T. Rad6 were all once winners 

of math competitions. Hungary was the first country to organize these 

competitions and as a result, many great mathematicians have come 

from this region; the number is way beyond the normal ratio of the 

number of mathematicians to the total population. 

Through the implementation of mathematical competitions, 

participating schools receive a valuable opportunity to strengthen ties 

between one another and in doing so, exchange math teaching 

experiences. From this point of view, math competitions become the 

" catalyst" for math curriculum reforms and become a powerful 

measure for cultivating excellent talents. 

When organizing math competitions, attention should be 

simultaneously placed on both popularizing the event and improving 

performance. Popularizing the event is the main focus, as with 

popularity comes more participation and a lasting, strong influence for 

the competition, which is the aim of holding these competitions in the 

first place. 

Some may be tempted to become over-concerned with performance 

instead, organizing and participating in these competitions with a very 

strong utilitarian objective. These practices are incorrect and are 

against the original intention of implementing math competitions. These 

drawbacks have deep social implications and influence and need to be 

overcome step by step. Math competitions must not be negated because 

of such drawbacks. 

I am very pleased with the publishing of this set of Mathematical 

Olympiad Series. This set of books in particular covers a large range of 
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meticulous topics. Based on my own knowledge and experience, it is 

rare to come across books of this nature. This set does not only explain 

the common methods that appear in math competitions, but also 

provides to-the-point analysis and solutions to the problems, most of 

which is derived from the authors' own research. This makes this set 

of books very valuable in preparing for math competitions and can be 

used as reference materials for students and teachers in primary, 

middle and high schools. 

The authors of this set of books are all teachers and researchers 

involved in mathematical competitions; many of them are even lead 

teachers or coaches for the China National Math Olympiad camp and 

team. They have all contributed to the organization of math 

competitions in China and in leading China's students to winning 

achievements and bringing honor to China in IMO. They all put forth 

many efforts in order to make the publishing of this set of books 

possible. The East China Normal University Publishing House 

designed this set of books using their experience in publishing math 

competition books, such as Math Olympiad Courses and Going Toward 

IMO; it is quite evident that they spent a lot of time and energy on it. 

I am very grateful for the work that the authors and editors put in for 

this set of books and I would like to conclude by offering my sincerest 

wishes for a successful future for China in mathematical competitions. 

Wang Yuan 

Famous Mathematician. Member of the Chinese Academy of Sciences. 

Former Chair of the Chinese Mathematical Society and Chinese 

Mathematical Olympiad Committee. 
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Knowledge and 
Technique 

1 The First Form of Mathematical Induction 

Mathematical induction is a common proof technique used to prove a 

given proposition pen) involving a positive integer n. It is a direct 

corollary of the following axiom of induction. 

Axiom of induction Let S be a subset of the set of positive integers 

N* , satisfying: 

(1)1ES; 

(2) If n E S, then n + 1 E S. 

Then S = N* . 

Axiom of induction is one of the five axioms for positive integers 

presented by Peano. The axiom laid the foundation for mathematical 

induction. 

The first form of mathematical induction is the most common 

form, which is referred to in our high school textbooks. 

The first fonn of mathematical induction Let P (n) be a proposition (or 

property) about (of) positive integer n. Suppose the following conditions 

hold. 

(1) pen) is true when n = 1; 

(2) It can be inferred from the validity of pen) that pen + 1) is true. 

Then PCn) is true for all n E N* . 

Proof. Let S = {n I n E N * and P C n) is true. }. Then S is a 

subset of N* . Noting (1), we have 1 E S; noting (2), if n E S, then 

n + 1 E S. Thus, by axiom of induction, we can deduce that S = N* , 
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i.e., pen) is true for alln E N*. 

Explanation. In fact, the first form of mathematical induction is 

equivalent to the axiom of induction. So, they are also named as the 

principle of mathematical induction. The first form of mathematical 

induction is called mathematical induction for short. 

It is not hard for high school students to understand the implications 

and validity of mathematical induction. However, utilizing mathematical 

induction is no easy job. 

Utilizing mathematical induction is composed of two steps. 

Checking the validity of P (1) lays the foundation. Combining the 

inductive hypothesis with relevant knowledge, we gain the recursion of 

P (n + 1). These two steps complement each other in proving the 

proposition and constitute the logical structure of the inductive proof. 

Most importantly, it is necessary to make use of the inductive 

hypothesis in inductive proof, which provides a criterion for the 

validity of the proof. 

Example 1. For any n E N* , prove that 

CD 

Proof. When n = 1, the left side of CD = 1 ' while the right side 

1 1 
of CD = 1 - 1 + 1 = 2· Thus, CD holds for n = 1. 

Now suppose that CD holds for n. Let's consider the statement with 

n+1. 

1 1 1 
By k (k + 1) = k - k + 1 ' we have 

1 1 1 
1 X 2 + 2 X 3 + ... + (n + 1) (n + 2) 

( 1-~)+ (~_~)+ ... + (_1 ___ 1_) 
2 2 3 n+l n+2 

1 
=1- n + 2· 
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Therefore CD holds for n + 1. 

In conclusion, by the principle of mathematical induction, we 

prove that CD holds for all positive integer n. 

Explanation. This proof is wrong in that the inductive hypothesis 

is not made use of when we prove CD holds for n + 1. 

Here is the correct process: 

Noting the inductive hypothesis, we have 

1 1 1 1 
1 X2 +2 X3 + ... + n(n +1) + (n +l)(n +2) 

-(1-_1_)+ 1 
n +1 (n +1)(n +2) 

_ (1 __ 1_)+ (_1 ___ 1_) 
n+l n+l n+2 

1 
= 1 - n +2· 

Therefore CD holds for n + 1. 

Actually CZ) is derived accurately. However, it is a direct proof for 

CD without the technique of mathematical induction. This mistake is often 

made by high school students, which must be corrected seriously. 

Otherwise, it will be hard for students to establish an accurate thinking 

structure of deduction. 

Example 2. Let n E N* . Prove that after removing any square 

from a 2n X 2n grid, the remaining part can be tiled with L-shaped 

"BJ" tiles (no gaps and no overlaps) . 

Proof. When n = 1 , since a "tE" turns into a "BJ" when 

any square is removed from it. So the proposition holds for n = 1. 

Now we assume that the proposition is true when n = k. That is, 

after removing any square from a 2k X 2k grid, the remaining part can 

be tiled with "BJ" tiles. Let's consider the statement with n = k + 1. 
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Figure 1 

Sequences and Mathematical Induction 

As shown in Figure 1, when we divide the 

2k+l X 2k+l grid into four 2k X 2k grids along the 

middle latitude and longitude, the removed 

square must fall in one of the 2k x 2k grids. So, 

at first, we can put a "E3=J" tile in the 

middle of the remaining part. Then let's 

remove the four shaded squares, as shown in 

Figure 1. Now one square is removed in each 

2k X 2k grid. Noting the inductive hypothesis, all of them can be tiled 

with "E3=J" tiles. Along with the tile put in the middle, we get the 

validity of the proposition about n = k + 1. 

Generalizing all above, the proposition is true for all positive 

integers n. 

Explanation. This example shows the common expression of the 

proof technique of mathematical induction. The structure can certainly 

vary according to one's own style. However, it is necessary to achieve 

a correct transition between the inductive hypothesis and conclusion, 

which is the key step in proving a proposition with mathematical 

induction. 

Example 3. Let x, y be real numbers satisfying that x + y, 

x 2 + y2, x 3 + y3 and X4 + y4 are all integers. Prove that xn + yn is an 

integer for any n E N* . 

Proof. This problem calls for a varied form of the mathematical 

induction: let pen) be a proposition (or property) about (of) positive 

integer n. If 

(1) pen) is true when n = 1 and 2; 

(2) If can be inferred from the validity of pen) andP(n +1) that 

P (n + 2) is true. 

Then pen) is true for all n E N* . 
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Actually, this change only adjusted the step size in the process of 

induction. This kind of cases will occur frequently in later discussions. 

Let's return to the problem. Since x + y and x 2 + y2 are both 

integers, the proposition is true when n = 1 and 2. 

Suppose that the proposition is true for nand n + 1. That is, xn + 
yn and xn+l + yn+l are both integers. Let's consider the statement with 

n +2. Now 

So, in order to prove xn+2 + yn+2 E Z, with the help of the 

inductive hypothesis and the condition that x + y E Z, we need only 

prove that xy E Z. 

Noting that x + y, x 2 + y2 E Z, we have 

2xy = (x + y)2 - (x 2 + y2) E Z. 

If xy tt z, let xy = ; , where m is odd. Since x 2 + y2, X4 + y4 E 

Z, we can infer that 

2x 2y2 = (x 2 + y2)2 - (x 4 + y4) E Z. 

Therefore 2 X (; r = ";2 E Z. However, m is odd. There is a 

contradiction. So xy E Z and, thus, the proposition is true for n + 2. 

In conclusion, xn + yn E Z for all n E N* . 

Example 4. Let e E (0, ;) and n be a positive integer greater 

than 1. Prove that 

(~e -l)(~e -1)~2n -2-I+1 +1. 
sm cosn CD 

Proof. When n = 2, the left and right sides of CD are equal. So 

the proposition is true when n = 2. 

Assume that the proposition is true for n (~ 2). Then 
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---1 ---1 ( 1 )( 1 ) 
sinn+10 eosn+10 

1 (1' n+10 n+10) + 1 . +10 +1 0 - sm - eos SInn eosn 

= 1 ( 1 _ eos 0 _ sin 0 ) + 1 
sin Oeos 0 sinnOeosnO sinnO eosnO 

= 1 [(_1_ -1) (_1_ -1) + 1 - eos 0 + 1 - sin 0 -lJ+ 1 
sin Oeos 0 sinnO eosnO sinnO eosnO 

~ . 1 [(2n - 2~+1) + 2 
smOeos 0 

(1 - eo.s 0) (1 - sin 0) ] + 1, 
smnOeosnO 

where @ is deduced from the inductive hypothesis and the AM-GM 

inequality. 

Note that sin Oeos 0 = ~ sin 20 ~ ~ , and that 

(1 - eos 0) (1 - sin 0) 
sinnOeosnO 

in which 

( 
1 )n-2 1 

= sin Oeos 0 • (1 + sin 0) (1 + eos 0) , 

(1 +sinO)(1 + cos 0) = 1 +sinO +eosO +sinOeosO 

= 1 + t + t
2 

;: 1 

= ~ (t + 1)2 ~ ~ (j2 + 1)2 

( we have made use of the property that t = sin 0 + eos 0 = /2 sin( 0 + 

~) E (1, /2J). 

Hence 

n-l 

(1 - eos 0) (1 - sin 0) ~ 2"""""2 = 2~ _ 2"-;-1 • 
sinnOeosnO J2 + 1 

Therefore it can be deduced from @ that 
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(_1_ -1)(_1_ -1) 
sinn+1 e cosn+1 e 

n n n-l 

?': 2 [ (2 n 
- 22 +1 ) + 2 (22 - 2-' ) ] + 1 

So the proposition is true for n + 1. 

In conclusion, the proposition is true for all n E N* (n ?': 2). 

Explanation. The examples above refer to knowledge in several 

branches ranging from algebra, number theory to combination and 

demonstrate the diverse applications of mathematical induction. 

Example 5. Sequence {an} is defined as follows: 

Prove that there are infinitely many terms in the sequence that are 

multiples of 7. 

Proof. Calculating directly by the recurrence formula, we can 

get that 

al =l,a2 =2,a3 =3,a4 =5,as =7. 

Now we suppose that an (n ?': 5) is a multiple of 7. Let's find a 

subscript m > n satisfying 7 I amo 

Since an = O(mod 7), we have a2n = a2n-1 +a n - a2n-l (mod 7) and 

a2n+l =a2n +a n -a2n(mod7). Soa2n-l -a2n =a2n+l(mod7). Letrbe 

the remainder when a2n-1 is divided by 7. If r = 0, it suffices to take 

m = 2n -1; if r * 0, let's consider the following 7 numbers: 

CD 

Note that 

a4n-2 = a4n-3 + a2n-l - a4n-3 + r(mod 7), 

a4n-l = a4n-2 + a2n-l - a4n-2 + r(mod 7) - a4n-3 + 2r(mod 7), 
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Therefore a4n-3' a4n-2' "', a4n+3 constitutes a complete system of 

residues of modulo 7. So, there exists an m E {4n - 3, 4n - 2, 

4n + 3} satisfying that am - O(mod 7). 

In this way, starting from as and combining with the deduction 

above, we proved that there exist infinitely many terms in the 

sequence that are multiples of 7. 

Example 6. ( 1) For any positive integer n ( ~ 2), prove that 

there exist n different positive integers aI, "', an' satisfying 

for any 1 0:;;;: i < j 0:;;;: n. 

(2) Is there an infinite set {aI, a2' ... } of positive integers satisfying 

(ai -aj) I (ai +aj) for anyi #j? 

Proof. (1) When n = 2, it suffices to take 1 and 2. 

Suppose that the proposition is true for n. That is, there exist 

positive integers al <a2 < ... <an' satisfying (ai -aj) I (ai +aj)' for 

any 1 0:;;;: i < j 0:;;;: n. Now we consider the following n + 1 numbers: 

A, A +al' A +a2' "', A +an. CD 

WhereA =an!anda n ! =lX2X3X"·Xa n • 

Take two numbers x <y from CD. Ifx =A, y =A +ai' 1 O:;;;:i 0:;;;: 

n, then y - x = ai and x + y = 2A +ai. Combining with ai 0:;;;: an' we 

haveai I A. So(y -x) I (y +x); if x =A +a" y =A +aj' 10:;;;: 

i <j O:;;;:n, theny-x =aj -ai' y+x =2A+Cai +aj). By inductive 

hypothesis that (aj - ai) I Caj + a,), noting aj - ai < an' we have 

Caj -ai) I A. Therefore Cy -x) I (y +x). Thus, the proposition is 

true for n + 1. 

In conclusion, for any n E N*, n ~ 2, there exist n positive 

integers satisfying the conditions. 

(2) If there exist infinitely many positive integers a 1 < a2 < "', 
satisfying (ai -aj) I (ai +aj) for any 10:;;;: i <j, then for any j > 1, 

we have(aj -al) I (aj +al). SoCaj -a]) 12al. However, sinceal < 
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a2 < ... , we infer that 2al is divisible by infinitely many positive 

integers, which is a contradiction. Thus, there can't be infinitely 

many positive integers satisfying the conditions. 

Explanation. What mathematical induction proves is that for any 

n E N* , P (n) is true. That is to say, it deals with propositions about 

any limited positive integer n rather than P ( (0). Here we demonstrate 

partly the essential difference between finiteness and infinity by the 

comparison of (1) and (2) in the example. 

We can certainly deal with some results concerning infinity by 

mathematical induction, such as what we have done to Example 5. 

Comparing the structure of the recursion in Example 5 with the one in 

Example 6, we can find the essential difference between them. The 

former is compatible with the previous result, while the latter isn't. 

2 The Second Form of Mathematical Induction 

The second form of mathematical induction Let P (n) be a proposition 

(or property) about (of) positive integer n. Suppose the following 

conditions hold. 

(1) pen) is true when n = 1; 

(2) If P (k) is true for all positive integers k less than n, we can 

infer that P (n) is true. 

Then P (n) is true for all n E N* . 

Proof. Consider proposition Q(n): " for all 1 ~ k ~ n, k E N* , 

P(k) is true." It can be deduced from the validity ofQ(n) thatP(n) is 

true. 

When n = 1, by (1), we have that Q(n) is true. 

Now we suppose thatQ(n -1) (n ~2) holds. That is, P(k) is 

true for all 1 ~ k ~ n -1. Then by (2), we have pen) is true. Thus, 

for all 1 ~k ~n, k E N*, P(k) is true and thereforeQ(n) is true. 

Hence by the first form of mathematical induction, we can deduce 

that for all n E N * , Q (n) is true and furthermore, P (n) is true. Thus, 

we have proved the validity of the second form of mathematical induction. 
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The second form of mathematical induction is a corollary of the 

first form. When putting forward the inductive hypothesis. we 

suppose thatP(1).···. PCn -1) are true. Then we prove thatPCn) is 

true under these conditions. This is where the second form differs 

from the first form. and this difference may sometimes be very handy 

in proving a proposition. 

Example 1. The sequence of real numbers al. a2' ... satisfying 

that ai+j :;::;; ai + a j for all i • j E N* . For any n E N* • prove that 

a2 a3 an 
al+-+-+"'+->a 2 3 n ~ n· CD 

Proof. When n = 1. it is obvious that the proposition is true. 

Now we suppose CD holds for all positive integers less than n. That 

is. for 1 :;::;; k :;::;; n - 1. we have 

n~l n-l 

we have ~ bk ~ ~ ak • equivalently. 
k~l k~l 

n-l 
Adding ~ak to both sides. we have 

k~l 

Hence 

It can be deduced from the condition that 



Knowledge and Technique 11 

n-l 

Thus, 2 ~ ak ;:?c (n -Dan. Then by @, we deduce that CD holds 

for n. 

Therefore for any n E N* , the inequality CD holds. 

Example 2. The sequence of positive integers Cl' C2' ••• satisfies 

the following condition. For any positive integers m, n, if 1 ~ m ~ 
n 

~ C i' there exist positive integers aI' a2' ••• , an satisfying that 
i=l 

n 

'" Ci m = L.J -. 
i=1 ai 

Then for any given i E N * , what is the maximal C i ? 

Proof. Let's prove that the maximal C 1 is 2 and the maximal C i is 

4 X 3i
-

2
, when i ;:?c 2. 

For this purpose, we need first prove that C 1 ~ 2 and C i ~ 4 X 3i
-

2 
, 

when i ;:?c 2. 

In fact, if Cl > 1, letting (m, n) = (Cl -1, 1), we have that there 

exists an al E N* satisfying that CI - 1 Then 

a 1 is an integer only when C 1 = 2. So C 1 ~ 2. 

Now we suppose that CD holds for all i = 1, 2, ... , k -1Ck ;:?c 2). 

Let em, n) = (Ck' k). Then there exist aI, ••• , ak E N* satisfying 
k-l 

C k = £1 + ... + £1£. This calls for a k ;:?c 2, otherwise ~ £L = 0 which is 
a1 ak i~1 ai 

k-l 

contrary to that ai and Ci are positive integers. Thus, Ck ~ c; + ~ Ci' 
i=l 

k-1 

equivalently, Ck ~ 2~Ci. Hence 
i=l 
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Therefore by the second form of mathematical induction, we can 

deduce that CD holds. 

When Cl = 2, Ci = 4 X 3i
-

2 (i ;? 2), let's prove that the sequence 

{c i } has the property in the problem. (2) 

Let's induct on n. When n = 1, m < CI = 2. So m = 1 or 2. If 

m = 1, it suffices to let al = 2. If m = 2, it suffices to let al = 1. 

Now we suppose the sequence {c i} has the property given in the 

problem for 1, 2, ... , n - 1. Let's consider the situation for n. Then 

i=l 

Ifm = 1, it suffices to letai = nCi' i = 1,2, ... , n; 
n-l 

If 2 < m < c2 + 1 = ( ~ C i ) + 1, let an = C n and apply the inductive 
i=l 

hypothesis to m - C
n 

= m -1. Then we can deduce that (2) is true; 
an 

If ~ C n + 1 < m < c n , it suffices to let an = 2 and apply the 

inductive hypothesis to m - c2 ; 
n 

If C n < m < ~ C i , it suffices to let an = 1 and apply the inductive 
i=l 

hypothesis to m - C n. 

Hence (2) is true. 

Generalizing all above, when i ;? 2, the maximal C i is 2 and the 

maximal C i is 4 X 3i
-

2
• 

Explanation. Comparing the two examples, we can find that 

there are two ideas when solving problems by the second form of 

mathematical induction. One is handling the problem as a whole, just 

as adding the n - 1 inequalities in the inductive hypothesis in Example 

1. Another is including the situation for n in some situation for 1, 

2, ... , n - 1, which has been demonstrated in the latter part of 

Example 2. 

Example 3. P (x) is a real polynomial of degree n and a is a real 
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number no less than 3. Prove that there is at least one number among 

the following n + 2 ones that is no less than 1. 

1 aO - p (0) I, 1 a 1 - P (1) I, "', 1 an+! - p (n + 1) I. 

Proof. Induct on the degree n of p (x). 

When n = 0, p (x) is a constant polynomial. Let p (x) = c. From 

the inequality that 11-c 1 +1 a -c 1 ~I a -1 1 ~2, it can be deduced 

that max{ 1 1 - c I, 1 a - c I} ~ 1. Thus, the proposition is true when 

n = 0. 

Suppose that the proposition is true for all polynomials with 

degree less than n. Now we consider the polynomial p (x) of degree n. 

Let f (x) = a ~ 1 [p (x + 1) - P (x)]. Then the degree of f (x) is 

less than n. By the inductive hypothesis, we have that there exists 

m E{O, 1,2, "', n} satisfying that 1 am - f(m) 1 ~ 1, i.e., 

Therefore 

1 a m+1 -p(m +1) +p(m) -am I~a -1 ~2. 

Hence max{ 1 a m+1 
- p (m +1) I, 1 am - p (m) 1 } ~ 1. Then there exists 

r E {a, 1, 2, "', n + 1} satisfying that 1 a r 
- per) 1 ~ 1. Thus, the 

proposition is true for n. 

Generalizing all above, the proposition is true for any polynomial 

p (x) of degree n. 

Explanation. We often make use of the second form of mathematical 

induction when inducting on the degree of a polynomial. The degree 

of the difference between two nth degree polynomial may not be n -1, 

however, it must be less than n. We can avoid this kind of discussion 

by applying the second form of mathematical induction. 

Example 4. Prove that any convex n-gon can be overlapped by a 

triangle spanned by three of its sides or a parallelogram spanned by 
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four of its sides. 

Proof. Let's induct on n. 

When n = 3, the case is trivial. When n = 4, if 

the quadrilateral is a parallelogram, the proposition 

is true. If it is not a parallelogram, there is a pair of 

its opposite sides that is not parallel. Extend the 

two sides. They intersect. Along with one of the 

rest two sides, they constitute a triangle which Figure 2 

overlaps the quadrilateral (see Figure 2). 

B 

U Now we suppose that the proposition is true 

c 

Figure 3 

for any convex m-gon. Here m < nand n ? 5. 

Take an arbitrary side AB of the convex n -gon M. 

There are at least n - 3 ? 5 - 3 = 2 sides except AB 

and its two adjacent sides. One of the two sides 

must be unparallel to AB (because there is at most 

one side parallel to AB). Let the side be CD. 

Extend BA and CD (without loss of generality, we 

can suppose the polygon is shown in Figure 3). 

They intersect at U. Now we substitute the broken line BUC for broken 

line AD, side BA and side CD which are overlapped by LBUC. Then 

we get a convex polygon M 1 which overlaps M. The number of sides of 

Ml is less than n. By inductive hypothesis, we can deduce that the 

proposition is true for n. 

Generalizing all above, the proposition is true. 

Explanation. Mathematical induction is also widely applied III 

plane geometry. The proposition in the example, in fact, can be 

strengthened: if the convex n -gon is not a parallelogram, then it can 

be overlapped by a triangle spanned by three of its sides. 

Example 5. Let aI, az, "', an be the first row of an inverted 

triangle where a; E {a, 1}, i =1,2, "', n. b l , bz, "', bn- I are the 

second row of the inverted triangle satisfying that if ak = aH!' then 

b k = 0; if a k =F a HI , then b k = 1, k = 1, 2, "', n - 1. The remaining 
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n - 2 rows of the inverted triangle are similarly defined. Now, what is 

the maximal number of 1 s in the inverted triangle? 

Proof. Let in be the maximal number of 1s III the inverted 

triangle. It is easy to see that i1 = 1, i2 = 2, i3 = 4. The 

examples are 

1, 
1 1 

o 

1 1 0 

() 1 

1 

We can start with the number of Os in the first line and get the 

results above. However, it becomes hard to begin from the first line 

when n grows bigger. When trying to deal with the cases where n = 5, 

6, we can find many 1s in the following table. 

1 0 1 1 0 1 1 0 

0 1 1 0 1 1 0 1 

1 0 1 1 0 1 1 

1 1 0 1 1 0 

One feature in the table above is that each line recurs every three 

lines (in a smaller scale). We are thus, simulated to utilize mathematical 

induction to find the value of in. 
First, let's prove a lemma. 

Lemma. When n ;?: 3, consider the upper three lines of the inverted 

triangle. 

C1' ••• , C n-2 

There are at least n - 1 Os in the three lines. 

Proof. Let's induct on n. 

The verification of the initial cases is left to readers. Let's see 

how to complete the process of induction. Note that, in the sense of 

mod 2, the first three lines are 
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al +a2' a2 +a}, a3 +a4' "', a n-l +a n 

a 1 + a}, a 2 + a 4' "', a n-2 + an 

Ifal' al +a2' al +a} are not aU1, then we can remove the three 

numbers and turn the case into the one of n - 1. By the inductive 

hypothesis, we can deduce that the lemma is true. 

If al = al +az = al +a3 = 1, thenal = 1, a2 = a3 = O. Now the 

beginning part of the first three lines are 

There are at least three Os among the nine numbers in the 

parallelogram. Hence removing the nine numbers, by the inductive 

hypothesis, we can deduce that the lemma is true. 

It can be inferred from the lemma that in ~ 2(n -1) + in-} , n ;;::: 

. r n (n + 1) l r l 4. Smce il = 1, i2 = 2, i3 = 4, we have in ~I 3 ,where x 

denote the smallest integer greater than x. Noting the previous 

example, we can deduce that in = I n(n 3+ 1) l 
Thus, the maximal number of 1s in the inverted triangle IS 

I n(n 3+ 1) l. 
Explanation. Finding an example is a key point in solving this 

problem. However, it is not hard after making some effort. The 

difficulties lie in taking every three lines as a whole when dealing with 

the problem - the spark can come from toying with the example graph 

above. 

Example 6. Let n E N * and function i: {1, 2, 3, "', 2n
-

1
} - N * 

satisfies that 1 ~ i Ci) ~ i, for 1 ~ i ~ 2n
-

1
• Prove that there exists a 
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positive integer sequenceal, a2' "', an' satisfying that 1 <al <a2 < ... < 

an < 2n-l and j(al) < ... < j(a n). 

Proof. Induct on n. 

When n = 1, it is obvious that the proposition is true. 

Suppose that the proposition is true for 1, 2, "', n - 1. Now we 

consider the case of n. 

For 1 < i < 2n
--

I
, let t Ci) denote the maximal m satisfying that 

there exists a positive integer sequence i = al < a2 < ... < am < 2n-l 

such that 

If the proposition is not true for n, then from the fact that 

t (1) = max t ( i) , 
1<i~2n~1 

it can be deduced that for any 1 < i < 2n
-

1 
, we have t C i) < n - 1. Let 

A j = {i I 1 < i < 2n
-l, t (i) = j } , j = 1, 2, "', n - 1. 

n-l 
Then any twoA j don't intersect and UAj = {1, 2, 3, "', 2n

-
I

}. 
j~l 

n-I 

Therefore ~ I A j I = 2n
-l. 

Now for any 1 < j < n - 1, let's prove that I A j I < 2n
-

j
-l • 

In fact, if there exists a j satisfying I A j I > 2n
-

j
-l , then there exist 

1 < il < i2 < ... < ir < 2n-l satisfying thatt(i l ) = t(i z ) = ••• = tCi T ) = 

j, where r = 2n
-

j
-

1 + 1. Now for any 1 <p < q < r, we have jCip) > 
jCiq) (otherwise, if fCi p) < j( iq) , then putting jCi p) in the front of 

the increasing sequence j beginning from i q leads to t (i p) ;?: t (i q) + 1 , 

which is contradictory). Hence j(i l ) > j(i 2 ) > ... > jCir). 

Furthermore j(i l ) ;?: r = 2n- j-l + 1. Noting that 1 < j(i 1 ) < il , we 

have that i 1 ;?:2n
-

j
-l + 1. 

Now from the definition of t (i 1)' it can be deduced that there 

exist il = al < ... < aj <2n-l , satisfying that j(al) < ... < jeaj). By 

the inductive hypothesis, there exist 1 <b 1 < ... <bn- j <2n-l-j <i j = 

a 1 in {1, 2, 3, "', 2n
-

j
-l } satisfying that j Cb l ) < ... < f Cb n- j ). Noting 
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that 

we have 

and 

which is contrary to the assumption that the proposition is not true for 

n. Hence I Aj I,s;; 2n
-
j- l

• 

However, we can now infer that 

n-1 n-l 

2n
-

1 = ~ I A j I,s;; ~ 2n
-

1
-

j = 1 + 2 + ... + 2n-2 = 2n
-

1 ~ 1. 

This is contradictory. Thus, the proposition is true for n. 

Generalizing all above, the proposition is true. 

Explanation. Here we utilized proof by contradiction when proving 

that the proposition is true for n. Other methods of proving can be 

supplemented when we prove a proposition by mathematical induction. 

3 Well-ordering Principle and Infinite Descent 

Well-ordering Principle is often applied in mathematical competitions. 

Its typical form is as follows. 

Well-ordering Principle There must be a least element of any 

nonempty subset T of the set of all positive integers N* . That is, there 

exists a positive integer to E T, satisfying that for any t E T, we have 

to,s;;t. 

Proof. Consider set S = {x I x E N* , x t1 T}. It's easy to see 

that S = N* \ T. 

If there is no least integer in T, let's prove that every positive 

integer belongs to S and thus, T = 0, which is contradictory. 

First, 1 E S. Otherwise, we have that 1 E T and then 1 is the least 
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element of T. 

Next, suppose that 1,2, "', n E S, i. e. 1,2, "', n are not 

elements of T. If n + 1 E T, then n + 1 is the least element of T, which 

is contradictory. Hence n + 1 E S. 

Therefore by the second form of mathematical induction, we can 

deduce that for any n E N* , n E S. 

Thus, the Well-ordering Principle is true. 

When dealing with specific problems, we often make use of some 

other forms or corollaries of the principle. 

1. Greatest Integer Principle. Let M be a non empty subset of the 

set of positive integers N* . Suppose that there is an upper bound of M. 

That is, there exists a E N* satisfying that for any x EM, x :<:( a. 

Then M has a greatest element. 

2. There is a least element and a greatest element in any finite set 

of real numbers. 

3. The axiom of order. Set M of n real numbers can be written as 

M ={xJ' "', x n }, where XI <X2 < ... <Xn • 

The Well-ordering Principle guides us to start from the extremes 

e the least or the greatest element) when dealing with a problem. It 

contains the idea of turning back. We should turn back to the essence 

of the problem. 

Infinite descent comes from solving indeterminate equations. 

Fermat made use of this method about 400 years ago when proving that 

there is no positive integer solution to X4 + y4 = Z4. It's basic idea is as 

follows: 

"If proposition P (n) of positive integer n is true for n = no, then 

for some n J E N* , nl < no, we can prove that the proposition P (n) is 

true as well. " Hence pen) is not true for any n E N* . 

This is one form of the Well-ordering Principle, which is often 

made use of when we deal with problems of number theory, especially 

indeterminate equations. 

Example 1. Given n arbitrary different points on a plane, prove 
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that there exists a circle passing through two of the points that keeps 

the other n ~ 2 points outside. 

Proof. Since there are only C~ distances between every two of the 

n points, there must be two points (say A and B) whose distance is the 

least Cif there are more than one pair of such points, just take anyone 

of them). 

Now let's consider the circle P which takes the segment AB as 

diameter. Then for any point C in P, the longest side of triangle ABC 

is AB. Noting that AB is least, we can deduce that other n ~ 2 points 

stay outside of circle P. The proposition is proved. 

Example 2. Prove that there are no rational numbers x, y, z 

satisfying that 

x 2 +y2 +Z2 +3(x +y +z) +5 = O. CD 

Proof. Multiply both sides of CD by 4 and complete the squares. 

We have 

(2x +3)2 + (2y +3)2 + (2z +3)2 = 7. 

If there exist three rational numbers x, y, z satisfying CD, then 

there exists integer solution (a, b, c, m) to indeterminate equations 

satisfying that m > o. 
If there exists integer solution (ao, bo, co, m 0)' m 0 > 0 to (2), we 

can prove that there is integer solution (al , b1 , Cl , m 1)' m 1 > 0 to (2) 

and m 1 < mo. Thus, by the idea of infinite descent, we can find a 

decreasing sequence of positive integers m 0 > m 1 > m 2 > ... , which 

leads to a contradiction. 

In fact, ifmo is odd, thenm5 =1Cmod8) and thus, a6 +b6 +d ~ 

7(mod 8). However, the square of an integer ~O, 1, 4(mod8). Hence 

a6 +bt +d ~O, 1,2,3,4,5, 6(mod8). a5 +b5 +d ~7(mod8) can 

never occur. This leads to contradiction and thereforemo is even. Now 

we havea5 +b5 +d = 7m5 ~O(mod4). On the other hand, the square 
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of an integer = 0, 1 (mod 4). Hence ao, bo and Co must be all even. 

1 1 1 1 
Then let al = 2:ao, bl = 2:bo, Cl = 2:co, ml = 2:mo. We get a 

solution Cal' b l , Cl' m I) satisfying that 0 < m 1 < mo. 

In conclusion, there is no rational solution to CD. 
Explanation. Starting from the least element or finding a less one 

from a certain element is an important idea we are introducing in this 

section. They are fundamentally special forms of mathematical induction. 

This reflects, to some extent, difficulties and challenges in mastering 

mathematical induction, probably by which people are attracted to 

learn math. 

Example 3. Let PI' P 2' .", P n be n noncollinear points on a 

plane. Prove that there exists at least one line passing through exactly 

two of the points. 

Proof. This is the well known Sylvester Theorem. There are 

many ways to prove it. One of the brief ways is given with the help of 

the Well-ordering Principle. 

Let's consider the lines PiP j passing through at least two of 

P l' .", P n. The distances from the points not on the lines to them are 

greater than o. There are only finite number of distances Csince there 

are at most C~ lines and finite number of points not on the lines). 

Hence there is a least value of the distances. 

Without loss of generality, let the distance from P 1 to P 2 P 3 be the 

least one. Let's prove that there are no other points among P 1 , •• ', P n 

on P 2 P 3 • 

If there is another point among P 1 , '.', P n 

on line P 2 P 3' let P 4 be on P 2 P 3. Let Q be the 

projection of P I on to P 2 P 3. Then there must be 

two of P 2 , P 3 , P 4 on the same side of Q. Let 

P 2 and P 3 be on the same side of Q. Suppose 

I QP 2 I < I QP 3 I (as shown in Figure 4). Then 

the distance from P 2 to line PIP 3 is less than or Figure 4 
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equal to the distance QR from Q to P 1 P 3 and QR < PI Q, which IS 

contrary to the minimality of P 1 Q. Hence there are no other points on 

P 2 P 3 • 

Therefore the proposition is true. 

Example 4. Prove that there is no positive integer solution to the 

indeterminate equation 

Proof. Suffice it to prove that there is no positive integer solution to 

If there is, suppose that (x, y, z) is a positive integer solution to 

CD, satisfying that z is the least in all solutions. Now, let d be the 

greatest common divisor of x and y, i. e. , (x, y) = d. 

Thend2 I (x 4 + y4) and thus, d 2 I Z2 and d I z. Hence d = 1 

(otherwise, (~ , ~ , ~ ) is also a solution to CD). Therefore (x 2
, y2, 

z) is also a primitive root of 

Let y2 be even. It can be deduced from the general solution of (2) 

that there exist a, b E N* , one of which is odd while the other even. 

a and b satisfy that (a, b) = 1 and 

Noting that y2 is even, we have that x is odd. Noting that x 2 +b2 
= a 2 , 

we can deduce that there exist m, n E N* , one of which is odd while 

the other even. m and n satisfy that (m, n) = 1 and 

x = m 2 - n 2, b = 2mn, a = m 2 + n 2. 

Theny2 = 4mn(m 2 +n 2
). Since em, n) = 1, 

Hence m 2 + n 2, m, n are perfect squares. 
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Then let m = rZ, n = S2, m 2 + n Z = zf, r, s, z 1 E N* . We have 

r 4 + 54 = zT , where zT = a < z. This is contrary to that z in ex, y, z) 

is the least in all solutions. 

Therefore there is no positive integer solution to CD. The proposition 

1S, thus, proved. 

Explanation. We applied another form of infinite descent: "If 

proposition pen) is true for some n E N* , let no be the least integer 

satisfying that pen) is true (the existence of no is given by the 

Well-ordering Principle). Then we can prove that there exists n 1 E 

N* , n1 < no satisfying that pen 1) is true." Hence for any n E N* , 

P (n) is not true. 

Example 5. Let n be a given positive integer. Is there a finite set 

of nonzero plane vectors who has more than 2n elements and satisfies 

the following conditions? 

(1) For any n vectors in M, we can find n other vectors in M 

satisfying that the sum of the 2n vectors is zero; 

(2) For any n vectors in M, we can find n - 1 other vectors in M 

satisfying that the sum of the 2n - 1 vectors is zero. 

Solution. There is no such set M. 

In fact, if there exists such set M, since set M is finite, there are 

finite number of ways to choose n vectors. Therefore there exists a 

way to choose vectors so that the length of the sum of the n vectors 

takes maximum. Let the n vectors be U1 , U2' ••• , Un and U1 + Uz + ... + 

Un = s. 

Draw a line l perpendicular to s from the origin. Then l divide the 

plane in two. Let M 1 be the set of vectors on the same side of s 

belonging to M and M Z be the set of vectors on the other side of s or on 

l belonging toM. ThenM1 n Mz = 0, M1 U Mz = M. 

By condition (2), we have that there exist vectors V1 , V n-1 1n 

M satisfying that U1 + ... + Un + V1 + ... + V n-1 = O. Equivalently 

V1 + ••. + V n-l =-s. 
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Now we prove that there exists no vector v satisfying that v E M 2 

and v tl {Vl' "', Vn-l}. 

If there exists such vector V, then v • s ~ O. Hence 

1 V1 + •.. + Vn-1 + V 12 = 1 v - S 12 = 1 S 12 - 2v • s + 1 V 12 > 1 S 12 , 

which is contrary to how we choose U1' "', Un. 

Therefore 1 M2 1 ~ n -1. 

On the other hand, it can be deduced from (1) that there exist 

U~, "', U~ EM, satisfying that 

1 U1 + ... + Un +U~ + ... +U: 1 = o. 

Equivalently, U'1 + ... +u~ = -s. It can be deduced from (2) that there 
., , . f' h '+ " , eXIst v l' "', V n-1 , satIs ymg t at U 1 ... + U n + V 1 + ... + V n-1 = O. 

Equivalently, v~ + ... + V:-1 = s. 

Similarly, we can prove that there exists no vector v' E M 1 , 

satisfying that v' tl {v~, "', V:-1}. Hence 1 M 1 1 ~ n - 1. 

It can be then inferred that 1 M 1 ~2n -2, which is contradictory. 

Hence there is no M satisfying such conditions. 

Example 6. Let a be a given positive integer. Find the greatest 

positive integer (3 satisfying that there exist x, y E N* , such that 

CD 

Solution. Noting when (3 = a + 2, we can take x = y = 1 and then 

CD holds. Hence (3 max ~ a + 2. 

On the other hand, let (3 be a positive integer satisfying the condition. 

Assume that (x, y) is the one among all the pairs of positive integers 

satisfying CD (here we regard (3 as constant) that x + y is least. 

h 2X2 +a a 
If x = y, t en (3 = 2 = 2 + 2 ~ 2 + a. 

x x 

If x eft y, without loss of generality, assume that x > y. Then 

there exists another real root x of the quadratic equation about x 

x 2 - (3y • x + y2 + a = O. 
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It can be inferred from Vieta Theorem and (2) that x = f3y - x E 
2+ 

Z. Noting that x • x = y2 + a, or x = ~ > 0, we have that:i is a 
x 

positive integer. Then (x, y) is a pair of positive integers that satisfies 

CD as well. Therefore 

y2 +a 
x+y = --- +y ~x +y. 

x 

The minimality of x + y is made use of here. 

Then we have x 2 ~ y2 + a and x ~ y + 1. Moreover, 

x 2 + y2 +a < 2(y2 +a) < 2(y2 +a) 
f3 = xy ~ xy ~ y (y + 1) 

=~+ 2a <2+a. 
y2 + y yCy + 1) 

This shows that f3 max ~ 2 + a. 

In conclusion, the maximum of f3 is a + 2. 

Example 7. Find all integers n > 1 that any divisor, greater than 

1, of them, can be written in the form of a r + 1, where a, r E N* , 

r ~2. 

Solution. Let S be the set of all the positive integers satisfying 

the condition, i. e. , for any n E S, n > 1, any divisor, greater than 1 , 

of it, can be written in the form of a r + 1, where a, r E N* , r ~ 2. 

It can be deduced that for any n E S (n > 2), there exist a, r E 

N* , a, r > 1, satisfying that n = a r + 1. Suppose that a is the least 

when n is written in this form, i. e., there is no b, t E N* , t > 1, 

satisfying that a = b'. Then r must be even (otherwise, let r be odd. 

Then (a +1) In. Hence a +1 can be written in the form of b' +1. Then 

a = b', which is contrary to the minimality of a). Therefore each 

element greater than 1 in S can be written in the form of n = x 2 + 1 , 

x E N*. 

Now let's find every n in S. 

If n is a prime number, then n IS a prime number that can be 
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written in the form of x 2 + 1. 

If n is a composite number, discuss the problem in two cases: 

(1) If n is an odd composite number, then there exist odd prime 

numbers p and q that p, q, pq E S. Then there should bea, b, c E N* 

satisfying that 

p = 4a 2 + 1, q = 4b 2 + 1, pq = 4c 2 + 1. 

We can assume that a ~b <c. Thereforepq -q = 4(c 2 -b2
) and 

thus, q 1 4(c - b) (c + b). Noting that q is an odd prime number, we 

have that q 1 c - b or q I c + b. Then there must be q < 2c and lead to 

pq < 4c 2 < 4c 2 + 1 = pq, which is contradictory. 

(2) If n is an even composite number, noting that 22 tf: Sand 

combining with the previous discussion, we have that n can only be 

written in the form of 2q, where q is an odd prime number. Now q, 

2q E S. Hence there exist a, b E N* satisfying that 

q = 4a 2 + 1, 2q = b2 + 1. 

Hence q = b2 
- 4a 2 = (b - 2a) (b + 2a) and thus, b - 2a = 1, b + 

2a = q. Moreover q -1 = 4a. Noting that q -1 = 4a 2
, we have 4a = 

4a 2 and then a = 1, b = 3, q = 5, n = 10. That is, there is only one 

even composite number 10 in S. 

In conclusion, any n E S must be 10 or prime number written in 

the form of x 2 + 1. It is obvious that such n satisfies the conditions in 

the problem. Hence 

S = {x 2 +11 x E N*, x 2 +1 is prime} U {10}. 

Example 8. There are two piles of coins on the table. It is given 

that the total weight of the two piles are equivalent. Furthermore, for 

any positive number k (which is less than the number of coins in either 

pile), the total weight of the heaviest k coins in the first pile do not 

exceed the total weight of their counterparts in the second pile. For 

any positive number x, prove that if we replace coins weighing no less 

than x in both piles by coins weighing exactly x, then the total weight 
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of the first pile will not be less than the one of the second pile, after 

the operation. 

Proof. Let's handle the problem with the axiom of order. 

Suppose that the weights of the coins in the first pile arexI ;:? ••• ;:?xn 

and the weights of the coins in the second pile are YI ;:? ••. ;:? Ym. It can 

be deduced from the condition that for any k :0::;;: min {m, n}, x I + ... + 
Xk:O::;;:YI+···+Yk. 

For any x E R, let 

We need to prove that 

SX +X+l + ... +xn ;:? tx + Yt+1 + ... + Ym. CD 

It is obvious that when s or t does not exist (note that the condition 

implies that if t does not exist, s does not exist as welD, the inequality 

CD can be deduced by the equality XI + ... + Xn = YI + ... + Ym. 

Hereafter, let's consider the situation where sand t exist. 

Let XI + ... + Xn = YI + ... + Ym = A. Then CD is equivalent to the 

following inequality. 

SX + (A - XI - •.• - xs) ;:? tx + (A - YI - ... - y,) 

If t ;:? s, then 

XI + ... +xs +(t -s)x =XI + ... +xs +~ 

:O::;;:YI + ... +Ys +Ys+l + ... +y,. 

Inequality @ holds. 

If t < s, then @ is equivalent to 

XI + ... +xs :O::;;:YI + ... +Yt +X + ... +X. 
~ 

It can be deduced from the condition that 
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Xl + ... +Xs ~Yl + ... +y, +Yt+l + ... +y, 

~Yl + ... +y, +X + ... +X. 
~ 

s-t 

Hence Q) holds. 

In conclusion, the proposition is true. 

4 General Terms and Summation of Sequences 

A row of numbers arranged in a certain order is called sequence. Each 

number in the sequence is called term. The numbers are called, ill 

order, the first term, the second term, ... , the nth term, 

The general form of sequences can be written as 

al'aZ'···,an ,···. 

It is denoted by {an}. If the nth term an of {an} can be expressed 

by an algebraic formula, then the formula is called the general 

formula. 

By the definition of sequence above, a sequence is essentially a 

function defined on the set of positive integers. Finding the general 

formula and adding up the first n terms of a sequence are most 

fundamental and common among relevant problems. 

Let Sn be the sum of first n terms of {an}. Then its relationship 

with the general terms is as follows. 

For the sake of convenience of discussion, let's introduce the 

following concepts. 

If there are finite number of terms in a sequence, then we call it a 

finite sequence. Otherwise, it is called an infinite sequence. 

If sequence {an} satisfies that for any n E N*, an < an+l Crespo 

an > a n+!) , then it is called an increasing Crespo decreasing) sequence. If 

an ~ a n+l C resp. an ;:?- a n+!), then it is called a non-decreasing 

Crespo non-increasing) sequence. 
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If there exists a constant M satisfying that for any n E N*, I an I < 
M. Then the reaL sequence {an} is called a bounded sequence. 

Example 1. Sequence {an} satisfies that for any nonnegative integers 

1 
m, n(m ~n), am+n +am-n =2:(a 2m +a2n). Besides,al =1. Find the 

general formula of the sequence. 

Solution. It can be inferred from the condition in the problem 

that for any mEN it holds that 

then ao = 0 and a2m = 4a m • 

Noting that a 1 = 1, we can find that when n E {O, 1, 2}, it holds 

that an = n 2. Then is it the general formula of the sequence? 

If am-I = (m -1)2, am = m 2, it can be deduced from the condition 

that 

Henceam+l =2am -am-l +2al =2m 2 -(m-1)2 +2 =m 2 +2m+ 

1 = (m + 1)2. Then by the principle of mathematical induction, we 

have that for n E N* , an = n 2 

In conclusion, the general formula of the sequence is an = n 2. 

Explanation. It is common, in sequence questions, that we are 

asked to find the general formula of a sequence with conditions given. 

This question is also a problem of functional equation in a special form, 

since sequences are functions defined on the set of positive integers. 

Example 2. Let n be a given positive integer. Sequence ao, aI' 

a2' .", an satisfies thatao = ~, ak = ak-l +a~-l, k = 1,2, '.', n. 

Prove that 1 - -.l < an < 1. 
n 
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Proof. It can be inferred from the condition that for any 1 ~ k ~ 

n, we have aH < ak. Hence for any 0 ~ k ~ n, ak > O. 

Let's transform the formula in the problem and we can get 

1 n 1 1 
ak-l ak-l + n' 

After transposition of terms, we have 

1 1 1 

Adding up CD according to the subscript k from 1 to n, we get that 

=~-~=2-~. 
all an an 

Noting that ak-l > 0, we have that 

Hence an < 1. 

Since ak > ak-l , we get () < all < al < ... < an < 1. Therefore 

2-~ f-, 1 >f-, 1 
an = L.J ak-l +n L.J 1 +n 

k~l k~1 

n 
n +1' 

Thus, 

Hence the proposition is true. 

Explanation. The skill of taking the reciprocal of both sides of 

the formula is innovated by the idea of splitting terms, which is often 

applied in the summation of sequences so that we can cancel out the 

former and latter terms. 
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n Example 3. For n E N* , let an 4 4 4 • 

(n ~ 1)3 + n 3 + (n + 1)3 

Prove that 

al +a2 + ... +a999 < 50. 

Proof. The general idea is to deal with the problem "from part 

to the whole". For this purpose, we will enlarge an properly. We can 

thus, split the terms and cancel them out. 

Noting thatx 3 ~y3 = (x ~Y)(X2 +xy +y2), let x = (n +1)1-, 

y = Cn ~1)1-. Thenxy = Cn 2 ~1)1- <n4. Hence 

an < n 
x 2 + xy + y2 x 3 ~ y3 

n(x ~ y) 

n(x ~y) 1 
en + 1)2 ~ (n ~ 1)2 = 4 (x ~ y) 

= ~ ((n +1)~ ~(n ~1)1-). 

Therefore 

1 999 

al +"'+a999 <4~((n+1)1- ~(n~1)1-) 
n-I 

= -.1 (1 OOO~ + 999~ ~ 1) 
4 

< -.1 X 1000~ = 50. 
2 

The proposition is thus, proved. 

Explanation. It is an important method to lessen or enlarge the 

terms first and then add them up, when dealing with inequalities 

relevant to the summation of sequences. 

Example 4. Let k E N* and k - 3(mod 4). Define that 
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For any n E N* , prove that 2n- 1 I Sn. 

Proof. Let's prove by using complex numbers. 

If can be deduced from the definition of Sn and the binomial 

theorem that 

where i is the imaginary unit. Re(z) denotes the real part of z. 

Hence 

Moreover letting x = 1 + Jk i, y = 1 - Jk i, we have 

= ~ ((x n+1 + yn+1 ) (x + y) - xy (x n + yn )) 
2 

= (x + y )Sn+l - xySn 

= 2Sn+1 - (1 +k)Sn' 

Besides, SI = 1, S2 = 1 - k. 

Now we prove that for any n E N* , 2n
-

1 I Sn. 

Noting that k - 3(mod 4), we have that the proposition is true for 

n = 1, 2. Then suppose that the proposition is true for n, n + 1. That 

is, 2n
-

1 I 5 nand 2n I 5 n+l. As to the case of n + 2, since 1 + k = 1 + 3 = 
O(mod 4) and 

Sn+2 = 2Sn+1 - (1 + k )Sn , 

we have that 2n
+

1 I Sn+2 (because 2n
+

1 I 2S n+ l , 2n
+

1 I (1 + k) Sn ). 

Therefore for any n E N* , 2n- 1 I Sn. 

Explanation. We began from the conditions, then made proper 

transformations, established the recurrence relation and finally made 

use of mathematical induction. Thus, the problem was accomplished 

by us at a stretch with clear thinking. This idea is also quite easy to 

realize. 
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Example 5. The first several terms of increasing sequence of 

positive integers {an} are 

1; 2, 4; 5, 7, 9; 10, 12, 14, 16; 17, .... 

The structure is one odd number, two even numbers, three odd 

numbers, four even numbers, .... 

For any n E N* , prove that an = 2n - [1 + !~n -7 J. 
Proof. If there exists kEN * , satisfying that n = 1 + 2 + .'. + k , 

then n is called a triangle number. 

Now we define the sequence {b n }: b1 = 1, 

if n is a triangle number, 

if n is not a triangle number. 

Then it can be inferred from the structure of {an} and mathematical 

induction that an = b n • 

Moreover, since sequence {b n } satisfying CD exists uniquely, it suffices 

to prove that (note that when n = 1, 2n - [1 + !~n -7] = 1) 

C = {1, 
n 2, 

if n is a triangle number, 

if n is not a triangle number. 

Here 

C n = 2(n + 1) - [ 1 + !S(n
2 
+ 1) -7 J_ (2n - [ 1 + !~n -7 J). 

For this purpose, let's prove: 

If and only if n is a triangle number, 

1 + !S(n
2 
+ 1) - 7 E N* . 

In fact, if there exists k E N* satisfying that 

n = 1 + 2 + ... + k = k (k + 1) 
2 ' 
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1 + /SCn +1) -7 
2 

1 + /4k Ck + 1) + 1 
2 

= 1 + 2; + 1 = k + 1 E N * . 

On the other hand, if n is not a triangle number, there exists k E 

N* 'f' h kCk+1) Ck+1)Ck+2)C' . b , satIs ymg t at 2 < n < 2 1. e. , n 1S etween 

two consecutive triangle numbers). Calculating in the same way, we 

get that 

k + 1 < 1 + /S(n + 1) -7 < k + 2. 
2 

Hence ® holds. 

Then let's prove that (2) holds. Since 

c
n 

= 2 + [1 + /~n -7 J_ [1 + /S(~ +1) -7 J. 
when n E N* , we have 

o < 1 + /S(n + 1) - 7 
2 

1 + /Sn -7 
2 

= ~ ( /Sn + 1 - /Sn - 7 ) 

= -.1. Sn + 1 - (Sn - 7) 4 

2 /Sn + 1 + /Sn - 7 /Sn + 1 + /Sn - 7 

~ 4 = 1. 
v's+1 + vIs-=7 

. . 1 + /S(n + 1) -7 
Therefore 1f and only 1f 2 E N* , C n = 2 -1 = 

1. For other n, C n = 2 - 0 = 2. 

It can be deduced from ® that (2) holds. 

In conclusion, an = 2n - [ 1 + /~n -7 J. 
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Explanation. This is a problem of finding the general formula of 

a grouping sequence. CD shows the relationship between consecutive 

terms. The method we applied here is a special one when proving the 

relationship with the answer already known. It is even harder if we 

are asked to find the general formula of the sequence by ourselves. 

Example 6. A finite sequenceao, aI' "', an is called k balanced, 

if 

an +ak +a2k + '" = al +aHI +a2Hl + .,. 

= ••• = ak-I + a2k-1 + a3k-J + ... 

It is given that sequence ao, aI' "', a49 is k balanced for k = 3, 5, 

7,11,13,17. Provethatao =al = ••• =a49 =0. 

Proof. Consider the polynomial 

The idea is to prove that there are 50 distinct complex roots of 

fex) and thus, fex) is a zero polynomial then ao = ... = a49 = O. 

Fork E {3, 5, 7,11, 13, 17} let£e* 1) be akth root of unity. 

Then when m = n (mod k), we have £ m = £ n. Hence 

fee:) = (ao +ak +a2k + ... ) +eal +aHl + ... )£ + ... 

+ (ak-l + a2k-J + ... )£ k-l 

= (an +ak +a2k + ... )(1 +£ +£2 + ... +£k-J) 

= o. 

We made use of the formula in the condition and that £ is a root of 

the polynomial 1 + x + ... + X
k

-
1 

• 

Therefore for k E {3, 5, 7, 11, 13, 17} and £ = i;" (1 < m < k -

1), it can be deduced that £ is a complex root of CD. As k varies among 

different prime numbers, we will get different complex roots. Then 

there are (3 -1) + (5 -1) + ... + (17 -1) = 50 roots of f(x). Hence 

it must be zero polynomial. 

The proposition is proved. 
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Explanation. The polynomial in CD is called the generating function 

of {a m }. This method is often applied in finding the general formula of 

a sequence. We will refer to generating functions in Section 7 later. 

5 Arithmetic Sequences and Geometric Sequences 

Arithmetic sequences and geometric sequences are two kinds of the 

simplest sequences. We often transform other sequences into them. 

If the difference Crespo ratio) between the consecutive terms is 

constant, then the sequence is called an arithmetic Crespo geometric) 

sequence. The constant is called the common difference Crespo ratio) of 

the sequence, which is often denoted by d Crespo q). Note that q can't 

be zero, since zero can't be a denominator. 

We have the following formulas relevant to the general formulas 

and summation of arithmetic sequences and geometric sequences: 

1. Let 5 n be the sum of the first n terms of {a n }. Then 

an = al + Cn -1)d, 

1 nCn-1) 
Sn = 2(al +an)n = aln + 2 d. 

2. Let Sn be the sum of the first n terms of {an}. Thena n = al • qn-l 

and 

if q = 1, 

if q 7'= 1. 

3. If geometric sequence {an} is an infinite sequence and its 

common ratio q satisfies that I q I < 1, then it is called an infinite 

decaying geometric sequence. The sum of all of its terms is 5 = -1 a 1 • 
-q 

Example 1. Let's arrange n 2 (n ?o 4) positive real numbers in n 

lines and n rows: 
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The numbers in each line constitute an arithmetic sequence, while the 

numbers in each row constitute a geometric sequence. Furthermore, 

1 
the common ratios are the same. Given that a24 = 1, a42 = 8' a43 = 

136. Find the value of all + a22 + ... + ann. 

Solution. Let the common ratio of the geometric sequence constituted 

by numbers in each row be q. Then a44 = a24 • q2 = q2. 

Since the numbers in the fourth line constitute an arithmetic 

sequence, a42, a43' a44 constitute an arithmetic sequence as well. 

Hence a42 + a44 =2a43. Then 

1 + 2 6 
8 q 16· 

Therefore q2 = !. Noting that all of the numbers in the table are real 

positive numbers, we have that q = ~. 

Since the numbers in the fourth line constitute an arithmetic 

sequence and a42 = ~ , a43 = 136' it can be deduced that the common 

difference of the arithmetic sequence is 136 - ~ = 11
6

. Hence the first 

1 11k 
term a41 = 8 - 16 = 16· Then for any 1 ~ k ~ n, a4k = 16· 

Noting that the k th row is a geometric sequence whose common 

. . 1 h h ratIO IS 4' we ave t at 

k ( 21 )-3 alk = a4k • q-3 = 16 • k 
2· 
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Therefore for any 1 ~ m ~ n, amk = a lk • qm-l 2~. Moreover 

a mm 

n S n 

LetS =all +a22 + ... +ann • ThenS = ~;; and thus, 2 = ~ 2';1. 

Subtracting both sides of the two formulas, we get 

Hence S = 2 ~ n ;- 2. 

Example 2. Given that the nonnegative real solutions to the equation 

about x 

(2a ~ 1)sin x + (2 ~ a)sin 2x = sin 3x 

constitutes an infinite arithmetic sequence, in ascending order. Find 

the range of a. 

Solution. The equation can be transformed into 

2asin x ~ asin 2x + 2sin 2x ~ sin x ~ sin 3x = 0 

{:::}2asinxCl ~cosx) +2sin2x ~2sin2xcosx = 0 

{:::} (2asin x ~ 2sin 2x)(1 ~ cos x) = o. 
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Then there holds 1 - cos x = 0 or sin 2x = a sin x. 

The nonnegative real solutions to the former one are x = 2k jT(, 

k 1 EN. As to the latter, it can be transformed into sin x = 0 or cos x = 

~. The nonnegative real solutions of sinx = 0 are x = k 2T(, k2 E N. 

There exist solutions to cos x = ~ if and only if I a I ~ 2 and the 

a nonnegative real solutions are x = 2k 3 T( + arccos -:2 or x = 2k 4 T( + T( + 

a 
arccos-:2' k3' k4 EN. 

In conclusion, when I a I ;?: 2, the nonnegative real solutions to the 

equa tion are x = k T(, kEN, which constitute an arithmetic sequence. 

When I a I < 2, the nonnegative real solutions to the equation are x = 

kT(, kEN or x = 2k 3 T( +arccos ~ or x = 2k 4 T( +T( + arccos ~. Then if 

and only if arccos ~ = ;, or equivalently a = 0, all the nonnegative 

real solutions to the equation constitute an infinite arithmetic sequence, 

from less to greater. 

Hence the range of a satisfying the condition is 

a E (- 00, -2J u {O} u [2, + 00). 

Example 3. There are two infinite sequences of positive integers. 

One is an arithmetic sequence whose common difference is d (> 0), 

while the other is a geometric sequence whose common ratio is q ( > 
1) , where d and q are relatively prime. If there is one common term in 

both sequences, prove that then there are infinitely many terms in 

common. 

Proof. Let the two sequences are {a + nd }, n = 0, 1, 2, "', and 

{bqm}, m = 0,1,2, "', respectively, where a, b, d, q are positive 

integers and q > 1. 

If there is one term in common, without loss of generality, we 

assume the first terms of both sequences are same. Otherwise, we can 
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remove the finite number of terms before the common term in both 

sequences, i. e. ,a = b. Then to prove that there are infinitely many 

terms in common, we need only to prove that there exist infinitely 

many m E N* satisfying that 

aqm _ a (mod d). 

We need only qm lCmod d). 

Noting that the remainder after dividing 1, q, q2, ••• , qd by d 

ranges among only d numbers, by pigeonhole principle, we have that 

thereexistO~i <j ~dsatisfyingthatqj =qiCmodd). Since Cd, q) = 

1, it can be deduced that qi-i - 1 (mod d). Moreover for any n E N* , 

lettingm = (j -i)n. we have thatqm = (qi-i)n _1n = 1(modd). 

Hence the proposition is true. 

Explanation. If readers are familiar with Euler's Theorem, we 

can also findm satisfying the condition, by the fact thatqgo(d) 1(modd) , 

when (d, q) = 1. 

Example 4. Sequence {an} is defined as follows. 

al = 1000000, a n+l = n[:n ]+n, n = 1, 2, 

Prove that there is an infinite subsequence of {an} which constitutes an 

arithmetic sequence (the sequence constituted by the terms of another 

sequence is called a subsequence of it) . 

Proof. Let Xn = a~+l. Then for any n E N* , Xn = [:n ]+ 1 E 

N*. {xn} is a sequence of positive integers. 

Moreover for n E N* , 

= [~]+1 = [~]+1 n+1 n+1 

= Xn + [ - n ~ 1]+ 1 

~ Xn + (-1) + 1 = X n • 
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This shows that {xn} is a non-increasing sequence. Therefore {xn} 

becomes a constant sequence from some term on (since all the Xn are 

positive integer). Denote the constant by k. Then from that term on 

an = kn. Hence {an} is an arithmetic sequence from that term on. 

The proposition is proved. 

Explanation. The conclusion in this problem does not rely on the 

initial value (we only need that al ;;? 0). We applied an obvious result 

in solving this problem that any infinite non-increasing sequence of 

positive integers becomes constant from some term on. 

Example 5. For any gIven positive integer n ;;? 3. Prove that 

there exists an arithmetic sequence aI' a2' ••• , an and a geometric 

sequence b j , b2 , ••• , b n satisfying that 

CD 

Proof. Note that exponential growth is greater than linear 

growth. Hence there doesn't exist an infinite increasing arithmetic 

sequence of positive integers {am} and an infinite increasing geometric 

sequence of positive integers {bm} satisfying that for any m E N* , am > 
b m , letting alone satisfying CD. What we discuss in this problem is 

about finite sequences. The idea is to let the common ratio be 

approximately 1 and keep enough space between consecutive terms. 

Consider the sequences {an} and {b n } defined by the following 

formula. 

b1 =xn , b2 =xn- 1(1 +x), ••• , bn =x(1 +x)n--l; 

am =xn- 1 (1 +x) -1 +(m -1)xn
-

1 , m = 1,2, ... , n. 

Here x is an undetermined positive integer. Then {am} is an arithmetic 

sequence whose common difference is x n
-

1 
, while {b m } is a geometric 

sequence whose common ratio is 1 +-.1. Hence we need only prove that 
x 

there exists such positive integer that CD holds. 

On one hand, for 1 ~ m ~ n, since 
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we have am > xn , when x > 1. Hence 

_ + n-I < +a m 
am+1 - am x a m -

X 

Noting that al = b2 - 1 < b2 and that {b n } is a geometric sequence 

whose common ratio is 1 + ~, it can be deduced that for 1 ~ m ~ n -
x 

1, am < bm+, . 

On the other hand, let's prove that there exists x E N* (x > 1), 

satisfying that for any 1 ~ m ~ n, bm < am. 

In fact, 

bm <am RXn--m+l(1 +x)m-I <Xn +mx n-
I -1 

R xn + C;;:=i x n- I + C;;:=i x n- 2 + ... + C~-I x n- m+1 < xn + mxn- I - 1 

R C;;:=i x n- 2 + ... + C~-1 Xn--m+1 < x n- I - 1 

Since n ;:? m, it can be deduced that 

Hence if 

holds, then @ holds. 

The left side of ® is a polynomial of degree n - 2 of x , while the 

right side is a polynomial of degree n - 1 of x. Therefore when x is 

sufficiently big, ® holds. 

In conclusion, the sequence satisfying the conditions exists. 

Example 6. Let k ( ;:? 2) be a given positive integer. For any 1 ~ i ~ 

k, ai and d i are positive integers. The set corresponding to the 

arithmetic sequence {ai +ndi } en = 0,1,2, ... ) isAi = {ai +ndi I 

n =0, 1, 2, ... }, 1~i~k. LetA"A2,···, Ak be ak-partitionofN* 

(i.e. , the intersection of any two of AI , A2 , ... , Ak is empty and AI U ... U 
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Ak = N* ). Prove that 

(1) -.L + ... +-.L = 1; 
d 1 d k 

(2) ~ + ... + ak = k + 1. 
d 1 d k 2 

Proof. Let's make use of the method of generating functions. It 

can be inferred from the conditions in the problem that for I x 1< 1, 

+= k +00 
~xm = ~ (~Xai-n,di). 
m=l i=l n=O 

By the summation formula of the infinite decaying geometric sequence, 

we have 

k 
x ai X 

~ = 
1 -x 1 d • 

i=l -x' 

Hence 

k 

= ~ x ai 

X 
1 +x + ... +xdi 1· 

i=l 

As x approaches 1 from the left, take the limit of both sides. It 

k 1 
yields ~ d

i 
= 1. Hence (1) holds. 

Now differentiate both sides of CD with respect to x. We have 

1 = ± aixa,-1C1+x+···+xdi-1)-xa,(O+1+2x+···+(di -1)xdi - 2
) 

i~l C1 + X + ... + Xd, -1 )2 • 

Then as x approaches 1 from the left, take the limit. It yields 

1 = ± aidi -(1 +2 + ... +(di -1) 
i~l df . 

Hence 
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1 
= 1 +-(k-1) 

2 

We applied (1) here. 

Therefore the proposition is true. 

k + 1 
2 . 

Explanation. In comparison to Example 6 III last section, we 

referred to the theory of infinite series, an important skill in utilizing 

the generating function. We will discuss in detail what generating 

functions are and how to utilize them in Section 7. 

6 Higher-order Arithmetic Sequences and the Method 

of Differences 

We can get a new sequence by subtracting consecutive terms of a given 

sequence {an} : 

It is called the first difference sequence of {a n }. If this sequence is 

denoted by {b n}, where bn = a n+l - an. Then subtracting the 

consecutive terms of {b n }, we get the following sequence. 

It is called the second difference sequence of {an}. 

And similarly, for any p E N* , we can define the pth difference 

sequence of {an}. 

If the pth difference sequence of {an} is a nonzero constant 

sequence, then {an} is called a pth order arithmetic sequence. Specifically, 

the first order arithmetic sequence is the arithmetic sequence in 

general. The second and higher order ones are called higher-order 

arithmetic sequences in general. 

Note that sequences are functions defined on N*. Generalizing 

the idea of subtraction above, we can get the concept of difference. 

Suppose 1 (x) is a function defined on R. Let.0.1 ex) = 1 (x + 1) -

1 ex). Then.0.1 ex) is also a function defined on R. It is called the first 
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difference of I (x). Similarly, we can recursively define the second, 

the third, ... , the p th difference of I (x). 

I::'? I(x) = 6C!::,.f(x» = 6(j(x + 1) - I(x» 

= (j(x +2) - I(x +1) -(j(x +1) - I(x» 

= I(x +2) -21(x +1) + I(x), 

By mathematical induction, we can prove the following theorem. 

Theorem 1. Let I (x) be a function defined on R. Then 

p 

6 PI(x) = ~(-1)p-iCpI(x +i) 
i=(J 

P 

= ~(-1)iCpI(x +p -i). 
i=O 

If function I (x) (x E R) is a polynomial of degree p of x, then 

61(x) is a polynomial of degree p -1 of x. 62 I(x) is a polynomial of 

degree p - 2 of x, "', 6 P I (x) is a polynomial of degree 0 of x. 

Besides, 6 P I (x) = p ! a P , where a P is the leading coefficient of I (x). 

Whenm > p, m E N*, 6 m l(x) =0. 

Conversely, for function I (x) (x E R) , if 6 P+! I (x) = O. then the 

degree of I (x) is no more than p. 

Applying these results to higher-order arithmetic sequences, we 

have the following theorem. 

Theorem 2. The sequence {an} is a pth order arithmetic sequence 

if and only if the general term an is a polynomial of degree p. 

Example 1. Let sequence {an} be a third order arithmetic sequence. 

The first several terms are 1, 2, 8, 22, 47, 86, .... Find the general 

formula of {an}. 

Solution 1. Calculate the difference sequence of each order of 

{an}. It yields 



46 Sequences and Mathematical Induction 

{b n }: 1,6,14,25,39,···; 

{c n }: 5, 8,11, 14,···; 

{d n }:3,3, 

Noting that {an} is a third order arithmetic sequence, we can 

deduce that {d n } is constant. Then C n = Cl + 3(n -1) = 3n +2. Hence 

Therefore 

bn+1 -bn = 3n +2, n = 1,2, 

bn - bl = (b n - bn - I ) + ... + (b 2 - b1 ) 

= ~ Ok + 2) = 3n (n -1) + 2(n -1) 
k~1 2 

On +4)(n -1) 
2 

So bn = ; n 2 + ; n - 1. 

The same as above, we have 

It yields an = ; n 3 - ; n 2 - n + 2. 

Explanation. Here we applied the method of summing after splitting 

the terms and the summing formula 

tk = m(m
2 

+ 1), tk2 = ~ m(m + 1) (2m + 1). 
k~1 k~1 

Solution 2. By the result of Theorem 2, we can suppose an = An 3 + 
Bn 2 + Cn + D, where A, B, C, D are undetermined. 

From the initial data, we can deduce that 

{

A+B+C+D =1, 

8A +4B +2C +D = 2, 

27A +9B +3C +D = 8, 

64A +16B +4C +D = 22. 



Knowledge and Technique 

1 1 
It yields A = 2' B = - 2' c = - 1, D = 2. 

H - 1 3 1 2 +2 encea n - 2 n -2n -n . 
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Explanation. The method of undetermined coefficients is often 

applied in finding the general formula of a higher-order arithmetic 

sequence. 

Example 2. If the value of polynomial I (x) is an integer for any 

x E Z, then I(x) is called an integer valued polynomial. For any 

integer valued polynomial of degree n, prove that there exist integers 

an' an-I' "', ao, satisfying that 

Here G) = k\x(x -n···(x -k +1), where (~) = 1. It is called 

a difference polynomial of degree k. 

Proof. For polynomial I (x) of degree n, if the leading 

coefficient is c n , then letting bn = n! • c n , we can deduce that I (x) -

bn e) , is a polynomial whose degree < n - 1. Continuing the same 

process, we have that there exist bn , bn - 1 , "', bo E C satisfying that 

To prove that the proposition is true we need only to prove that 

bn , "', bo are all integers. 

Noting that for k E N* , 

1 
= -((x +1)"'(x -k +2) -x(x -1)···ex -k +1» 

k! 

1 ( x ) 
(k 

- 1) ! x (x - 1) ... (x - k + 2) = . 
k -1 
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Then it can be deduced from CD that bo = j(O) E Z (for j(x) is an 

integer valued polynomial). Take the difference of the both sides of 

CD. It yields 

Letting x = 0, we get b 1 E Z, and similarly bo , b 1 , "', bn are all 

integers. 

Explanation. If the value of t} j (x) at x = 0 is denoted by 

tlj(O) , then from the process of proving thatbk is an integer, it can 

be deduced that for any polynomial j (x) of degree n , 

where b,,0 j(O) = j(O). 

Example 3. Let sequence {an} be a pth order arithmetic sequence, 

whose general formula is an = j(n), where j(x) is a polynomial of 

degree p. Prove that 

n p 

2: am = 2: C!ti b"k j(O). 
m~l k~O 

n 

And by this, find the formula of 2: m 3. 

m=l 

Proof. It can be inferred from the Explanation of last example 

that 

Hence 

~am = ~ (~b"kj(O)(:)) 

= ~b"kj(O)~(:) 
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p 

= ~~kf(O)(C~ + ... +C~) 
k~1J 

P 

= ~ ~k f(O) CC~+l + C~+I + ... + C~) 
k~1J 

P 

= ~ ~k fCO) (CZ+~ + CZ+2 + ... + C~) 
k~1J 

Therefore a) holds. 

When f(x) = x 3
, 

p 

= ~C~t\~kfC(). 
k~O 

~f(x) = (x +1)3 -x3 = 3x 2 +3x +1, 

~2f(x) =3(x +1)2 +3(x +1) +1-(3x2 +3x +1) =6x +6, 

~3 fCx) = 6(x + 1) +6 - (6x +6) = 6. 
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Hence~f(() =1, ~2f(O) =6, ~3f(() =6. Then by a), we have 

~ m 3 _ 6C4 + 6C3 + C2 _ (n (n + 1) ) 2 L...J - n+1 n+l n+1 - 2 . 
m=l 

Explanation. Here we have given the summing formula of the 

first n terms of a pth order arithmetic sequence (with the general 

formula provided). By this, we thus, give the summing formula of 
n 

~mP(p = 1, 2, ... ). 
m=l 

Example 4. Given the polynomial f(x) = xn +alxn-l + ... +a n , 

where a1 , ... , an E R. Prove that there is at least one number no less 

than n! among 
2n 

1 f(1) I, 1 f(2) I, ••• , 1 fen + 1) I. 

Proof. It can be deduced from Theorem 1 that 

n 

~nf(x) = ~(-1)iC~f(x +n -i). a) 
i=O 
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Letting x = 1 in CD, we have 

n 

n 1 = ~ (-1)iC~f(n + 1 - i). 
i=O 

If the proposition is false, then for 0 ~ i ~ n, there holds 

I f (n + 1 - i) I < ;! . 
Along with CV, there must be 

n . . n, 
nl ~~ I (-1)'C~f(n+l-i) I<~C~ .;~ =nl, 

i=() i=() 

which is contradictory. 

Hence the proposition is true. 

Explanation. This problem can also be dealt with Lagrange 

interpolation formula. 

Example 5. For nonnegative integer N, let u eN) be the number 

of 1 s in the binary representation of N (for example, u (10) = 2, 

because 10 = (1010) 2). Denote the degree of p (x) by deg p (x). For 

any k E N* , prove that it holds 

Here a is the leading coefficient of p (x ). 

if deg p (x) < k ; 

if deg p ex) = k. 

Proof. Solve the problem by the method of differences. 

Fort EN*,let~t(p(x» =p(x)-p(x+t). Then 

qk(X) = ~1(~2(~"'CLV-l(p(X»)"'» 

is also a polynomial of x. 

Let's prove the following by inducting on k. 

zk-l 
~(-1)u(')P(i) =qk(O). 
i=O 

CD 

When k = 1, the left side of CD = P (0) - p (1) , while the right side 
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ql (0) = P (0) - p (1). Hence CD holds for k = 1. 

Now suppose that CD holds for k. Let's consider the case of k + 1. 

Then 

2Hl_1 l-I 2Hl_1 

~ (-1)uCi)p(i) = ~(_1)uCi)p(i) + ~ (-1)uCi)p(i) 
£=0 i=l 

l-1 l-1 
= ~ ( _1)uCi) P (i) - ~ ( _1)u(i) P (2k + i) 

i=O i=O 

2k_1 

= ~(-1)u(i)(p(i) -p(2k +i» 
i=O 

2k_1 

= ~(-1)u(i)62k(p(i». 
i=O 

Now substitute 6i (p (x» for p (x) and apply the inductive hypothesis 

to it. It can be deduced that 

2Hl_1 

~ (_1)uUl p (i) =qk(62k (P(0») =qHI(O). 
i=O 

Therefore for k E N* , CD holds. 

Note that when deg(p (x» ~ k , every time we take the difference 

of p (x), the degree is reduced by one. Hence when deg p (x) < k, 

q k (x) = O. When deg p (x) = k , for tEN * , we have 

6, (p (x» = p (x) - p (x + t) 

= a (x k - (x + t)k) + j3(X k- 1 - (x + t>k-l) + .... 

By the Binomial Theorem, we can deduce that 6, (p (x» is a 

polynomial of degree k - 1 and the leading coefficient is - atk. 

Therefore q k (x) is a constant polynomial and 

k-I 

qk (x) = (II (- (j + 1) • 2j) ). a 

k(k-1) 
= (-Uk. 2-2- • k! • a. 

Hence the proposition is true. 

Explanation. We can get a different identity when we take different 
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polynomial p (x) of degree k. 

Example 6. Let {an}' {bn } be two sequences. Prove the following 
n 

binomial inversion formula: for any n E N* , an = ~ C~bk holds if and 
k~O 

n 

only if for any n E N* , bn = ~ (- 1)n-k C~ak holds. 

Proof. For m E N* , let fex) be a polynomial of degree m 

satisfying that for 0 < k < m, fek) = ak. 

From the difference polynomial in example 2, it can be deduced that 

Let g ex) = ~ b k (X). Then g ex) is a polynomial of degree m. 
k~() k 

n 

If for any n E N* , it holds that an = ~ C~bk. Then for any 0 < 
m 

n < m, it holds that g(n) = ~ C~bk = an = fen). This shows that 
k~() 

there are m + 1 different roots ex =0, 1, 2, ... , m) of fex) - g ex). 

Hence it is a zero polynomial. Therefore b n = t::,."feO). Along with 

Theorem 1, it can be deduced that 

n 

bn = t::,.nf(O) = ~ (-1)"-kC!f(k) 

n 

= ~ e _1)n-kC~ak. 
k~() 

n 

Conversely, if for any n E N* , it holds that bn = ~ ( _1)n-k C~ak , 
k~O 

then bn = t::,.n feO). Hence g (x) = fex) and thus, 

m n 

an =fen) =gen) = ~C!bk = ~C~bk 
k~O k~() 

(note that we have to take m ~ n). 

In conclusion, the binomial inversion formula holds. 
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Explanation. We have given several formulas related to the method 

of differences. They are useful in proving some identities. They are 

also often applied in finding general formulas and summation of 

higher-order arithmetic sequences. 

7 Recursive Sequences 

If the nth term a n of sequence {a n} is determined by several terms 

before it, then the sequence is a recursive sequence. In fact, arithmetic and 

geometric sequences are recursive sequences. The recurrence relation 

of them is an = 2a n-1 ~ a n-2 and an = a n-l • q, respectively. 

Generally, suppose 

CD 

That is, an+k is a function of an' a n+!, ••• , an+k-I and the initial 

data al' .•• , ak are determined. Then sequence {an} is called a kth 

recursive sequence and CD is called the recurrence relation of {a n } • 

The problems related to recursive sequences fall into two classes. 

One is finding the general formula (or other properties) of a sequence, 

given the recurrence relation; the other is establishing the recurrence 

relation first and then seeking the essence of a problem by the idea of 

recurrence. 

Now let's give some instrumental results. 

Sequence {an} satisfying the following recurrence relation is called 

a homogeneous linear recursive sequence with constant coefficients. 

where CI' C2' ••• , Ck are constant. 

Note that if A is a root of 

then sequence {A n} (n = 1, 2, ... ) satisfies recurrence relation @. 

Moreover if the roots of CD are distinct, letting them be At, A 2 , 

Ak' then sequence {AtAj +A2A2 + ... +AkA;;} (n = 1, 2, ... ) satisfies @ 
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and the coefficients A j , A 2 , "', Ak can be determined by initial data 

a j , a2' "', ak (by solving a linear system). In this way, we get the 

general term of a sequence satisfying @ with given initial data aj , 

This method of finding the general formula of a linear recursive 

sequence is called the method of characteristic roots. And CD is called 

the characteristic equation of @. The result will be rather complicated 

if there are multiple roots of CD, which will be illustrated in later 

examples. 

In comparison, we can also make use of the method of generating 

functions. Generally, for sequence {an}Cn = 0,1,2, ... ), the 

following formal series 

lex) = an +ajx +a2x2 + ... 

is called the generating function of sequence {an}. 

For example, the generating function of constant sequence an 

1, n = 0, 1, 2, ... is I (X) = 1 + x + X2 + ... = -1_1- (I x I < 1) , which 
-x 

is the summing formula of infinite decaying geometric sequences. 

Since the method of generating functions involves knowledge 

about advanced sequences like convergence of series, we will give the 

following formula of form series without proof and then show how to 

utilize this method in examples. 

Fora E R, denote (a) = a(a -1)"'c,a -n +1), n EN (it is a 
n n. 

generalization of binomial coefficients, which has been referred to in 

last section. Also, we define (~) = 1). Then 

Specifically, when a E N* , @ is the binomial theorem. 

There is no uniform method to deal with recursive sequences of 

other forms. One of the common methods is the method of fixed points. 
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Example 1. Given sequence {an} satisfying that 

find the general formula. 

Proof. Transform the recurrence relation. It yields 

Equivalently, 

CD 

Substitute the subscript n + 1 for n. It yields 

Comparing CD with (2), we can deduce that an and a n+2 are the 

roots of equation 

It can be deduced from the recurrence relation that {an} is an 

increasing sequence. Hence an and a n +2 are distinct. Therefore applying 

Vieta's theorem to ®, we get 

equivalentlya n +2 = lOan+! - an' n = 1, 2, .... 

This is essentially a problem of second order homogeneous linear 

recursive sequence. We will give the following two ways to find the 

general formulas. 

Method 1. The characteristic equation is 

,1.2 = lOA -1, 

with two roots AI. 2 = 5 ± 216. Hence we can assume 

an = A • (5 + 216) n + B • (5 - 216) n . 

Noting the initial data aj = 0, we have a2 = 1. Then solving 



56 Sequences and Mathematical Induction 

{
(5 + 2/6)A + (5 - 2/6)B = 0, 

(5 + 2/6)2 A + (5 - 2/6)2 B = 1, 

we get A 5 - 2/6 , B = - 5 - 2/6 . Therefore 
4/6 4/6 

Method 2. Utilize the method of generating functions. For the 

sake of convenience, we can define complement ally that ao = - 1 by 

the recurrence relation and the condition that a 1 = 0, a2 = 1. Then the 

generating function of {an} (n = 0, 1, 2, ... ) satisfies that 

+00 +00 

I(x) = ~anxn =-1 + ~anxn 
n=O n=2 

+00 +00 
=-1 +10~an_lxn - ~an_2Xn 

n=2 n=2 

+00 +00 
=-1 + lOx ~anxn -x2 ~anxn 

n=l n=O 

=-1 +10x(j(x) +1) -x2/(x). 

S I · h· I () lOx - 1 o vmg t e equatIOn, we get x = x2 -lOx + 1· 

Letting I(x) = A /6 + B /6 (rewrite I(x) 
1-(5 +2 6)x 1-(5 -2 6)x 

in the form of a partial fraction), we have 

{
(5 - 2/6)A + (5 + 2/6)B =-10, 

A+B=-1. 

ThenB = lIZ (-5 -2/6), A = 117 (5 -2/6). 
4y 6 4y 6 

Now expand I(x) in the form of formal series. 

+00 +00 

lex) =A~(5+2/6)nxn +B~(5-2/6)nxn 
n~() n=O 
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+= 
= 2j (A (5 + 2J6)n + B (5 - 2J6)n)xn. 

n=O 

an = A (5 + 2J6) n + B (5 - 2J6) n 

= _1_((5 +2J6)n-1 - (5 _2J6)n-l). 
4J6 
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Explanation. This example demonstrates fundamental steps of 

finding the general formula of sequences by the method of generating 

functions: first, find the generating function f (x) by the recurrence 

relation, then expand f ex) in the form of formal series and get the 

general formula from the equality of the coefficients of corresponding 

terms. 

Example 2. Sequence {an} satisfies that al = 2 and that for n 

1, 2, 

Find the general formula of the sequence. 

CD 

Solution. Here we introduce the method of fixed points (which 

comes from the idea of iteration of functions). First, find the roots of 

equation 

A 1 
A = 2 +T' 

They areAl. 2 =±/2. 
Noting CD and thataj = 2, we can deduce that each term of {an} is 

a positive rational number. Now by CD - (2), we have that for A = ±/2 , 
it holds that 

an-A (1 1) 
a n+l -A = --2- + an -T ' 

which can be transformed into 
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~ __ 1_ Aa n -2 
2 Aa n 2Aa n • 

Take A = 12, - 12 in Q) respectively. The quotient of both sides 

of the two formulas is 

f
a -12J2 
a: +12 

Hence we have 

Therefore an -12 = (12 _1)2n. Solving the equation, we get 
an +12 . 

an 
12 C1 + (12 - 1)2n ) 

r;::; 2n 

1 - ("12 -1) 

Example 3. Let m, n E N* and mn be a triangle number Ci. e. , 

there exists t E N* , satisfying that mn = 1 + 2 + ... + 0. Prove that 

there exists a positive integer k such that for any subscript j, the 

sequence {an} defined by the following recurrence relation 

a I = m, a 2 = n, a j = 6a j-I - a j-2 + k , j = 3, 4, 

satisfies that a ja j+l is a triangle number. 

Proof. Note that 

x is a triangle number R there exists t E N* , satisfying that x 

1+2+···+t 

Rthere exists t E N* satisfying that x 
t (t + 1) 

2 

Rthere exists t E N* satisfying that 8x + 1 = e2t + 1)2. 
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Hence we need only prove that there existsk E N* , satisfying that 

for any j E N* , Sajaj+l + 1 is a perfect square. 

Starting from the formula of the perfect square, let's see whether 

there exists k E N* , satisfying that for any j E N* , it holds that 

Sa ja j+l + 1 = (a j + a j+l + l)2 , where l is a constant related to k only. 

Takingj = 1 in the conjecture, we have that l = ISmn + 1 -m -

n ( since mn is a triangle number, ISmn + 1 E N* ) . 

Moreover, if for any j E N* , it holds that 

Then substitute j + 1 for j in CD. It yields 

Subtracting both sides of the two formulas, we get 

S(aj+2 -aj)aj+l = (aj+2 -aj)(aj+2 +2aj+l +aj +2l) 

H Sa j+l = a H2 + 2a j+l + a j + 2l 

H a j+2 = 6a j+l - a} - 2l. 

Then it can be deduced from CD, ® that @ holds. 

With the analysis above, if we let 

k =-2l = 2(m +n) -2/Smn +1, 

then the sequence {an} defined by the given recurrence formula satisfies the 

condition, which can be proved by mathematical induction. 

In conclusion, the proposition is true. 

Explanation. Here we applied the idea of proving after guessing, 

which is not unique to problems of sequences, but common throughout 

the study of math. It is a reflection of inspiration. 

Example 4. Sequence 0, 1, 3, 0, 4, 9, 3, 10, 

follows: 

au = 0 and for n = 1, 2, ... , there holds 

rest. 

is defined as 
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Does every nonnegative integer occur in this sequence? Prove your 

result. 

Solution. Every nonnegative integer occurs in this sequence. 

Noting that by definition, {an} is a sequence of integers, let's first 

determine the range of each term in {a n }. Inducting on n, let's prove 

that 

CD 

When n = 1, it can be inferred from the condition that al = 1. 

Then CD holds. Suppose that a n-l (n ~ 2) satisfies CD. When n < a n-l < 
2n -3, an =an-l -n E [0, n -3J Cnotingthatn <2n -3, we have 

n ~3), which satisfies CD; when 0 <an-l < n -1, an = a n-l +n E [n, 

2n - 1J, which also satisfies CD. Therefore CD holds for n E N* . 

Now let's rewrite the recurrence formula of an: when a n-l = 0, 

an =n,an+1 =2n+1;whenan-l E[1,n-1J,an =n+an-l E[n+ 

1, 2n -1J, and thena n +l =a n -en +1) =an-l -1; whena n -l E en, 

2n -3J, an = a n-l -n E [0, n -3J, and thena n+1 = an +(n +1) = 

a n-l + 1. Hence when n ~ 3, we have that 

{

2n + 1, 

a n +l = a n-l -1, 

a n -l + 1, 

if a n-l = 0, 

if a n-l E [1, n -1J, 

if a n-l E en, 2n -3J. 

As to the original question, if there are nonnegative numbers that 

don't occur in the sequence, we can take the least one. Let it be M, 

then M > 1 andM -1 occurs in the sequence. Suppose that a n-l = M-

1. If a n-l E [n, 2n - 3J, then M = a n-l + 1 = a n+l' which is 

contradictory. Hence a n-l < n -1. Noting that M > 1, we have a n-l E 

[1, n -1J and then a n+l = a n-l - 1 E [0, n - 2]. Moreover, a n+3 = 

a n +l -1 (or a n +l = 0). Repeating the steps again and again, we get a 

subsequence a n-l > a n+l > a n +3 > ... > a s-l = 0, where s ~ n + 2. 

Noting that a n-l < n -1, we have M < n. Since a s-l = 0, by (2), 

we can deduce that a s+l = 2s + 1 > s + 2. Moreover, it holds that 

a.+2 = a.+l - (s + 2) = s -1 E [0, s + 1]. 
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We can infer in the same way thata,+1 E {O, as+2 -1}, Therefore 

there must be a subscriptt such that a, =M Csinces -1 ?;on +1 ?;oM). 

Hence M must be a term in {a n } , which is contradictory. 

In conclusion, every nonnegative integer appears in {an}. 

Explanation. The key to this question is to rewrite the recurrence 

formula given in a proper way into the form of (2), which reveals the 

feature of adding 1 or subtracting 1 every two terms. This laid a solid 

foundation for proving that every nonnegative integer, occurs in the 

sequence. 

Example 5. Let An denote the set of n -letter words consists of a, 

b, e with no consecutive a sand b s; let B n denote the set of n -letter 

words consists of a, b, e with no three distinct consecutive letters. For 

any positive integer n, prove that 1 B n +1 1 = 3 1 An 1 holds. 

Proof. Let's apply the method of recurrence to solve this question. 

Let en denote the number of words with initial e and d n denote the 

number of words with initial a or b in An. 

For words in An+l , we can classify them by their initials. If the 

initial is e, then the word belongs to An as we remove the first letter; if 

the initial is a, then the second letter must be e or b; if the initial is b, 

then the second letter must be e or a. Therefore the following 

recurrence formula holds: 

{
Cn+l :1 An 1 = en +dn , 

d n+l - 2c n + d n . 
CD 

Now let e: denote the number of the words in Bn whose first two 

letters are same and d,' denote the number of the words in Bn whose 

first two letters are different. 

For words in Bn+l' we classify them by the first two letters. If 

they are same, then we can give the third letter arbitrarily. The word 

belongs to Bn as we remove the first letter. If they are different, then 

the third letter must be same to one of the first two letters. If it is 

same to the first letter, we can get d 'n words as we remove the first 
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letter. If it is same to the second letter, we can get 2c ~ words, as we 

remove the first letter (here the coefficient is 2 because we get the 

same word as we remove the first letter from abb··· and cbb···). 

Therefore the recurrence formula is 

{
c:+1 =1 Bn 1 = c:+d:, 

d:+1 = 2c:+d:. 

Noting that the recurrence formulas CD and ® are exactly the 

same. The only difference is there initial value. By enumerating 

directly, we have Cl = 1, d l = 2; C'2 = 3, d'2 = 6. Hence C'2 = 3Cl' 

d~ = 3d 1 • From the recurrence formula, we can deduce that C'n+l = 

3cn, d:+1 = 3dn. Noting that 1 An 1 = Cn+l and 1 Bn 1 = C'n+l' we get 

1 B n+1 1 = 3 1 An I. 
The proposition is proved. 

Explanation. It is an important method to apply the idea of 

recurrence to combination and counting problems. The recurrence 

formula we established here can be turned into homogeneous linear 

recurrence relation with constant coefficients. We can then find the 

value of 1 An I. 

Example 6. Sequence of real numbers {an} satisfies that for any 

different positive integers i, j, 1 a i-a j 1 ~ . +1 . holds. Moreover, 
I J 

there exists a real number c such that for any n E N* , 0 ~ an ~ c holds. 

Prove that c ~ 1. 

Proof. This question does not give the relationship between the 

terms of the sequence in the form of an equation. Instead, it describes 

the distance of the terms by an inequality. There is a sense of real 

analysis in the process of solving the question. The solution is based on 

the idea of summation after splitting terms. 

For n ~ 2, let nO), n(n) be a permutation of 1, 2, n, 

such that 
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Note that the terms of {an} are distinct according to the conditions. 

Then aI' "', an are just sorted from the least to the greatest in CD. 
From CD and the conditions, we can deduce that 

n-I 

C ~ an(n) - anCl) = ~ Ca n(Hll - anCk)) 
k~1 

n-I 

~ ~ ( ~ C )' k~1 re k + 1 + re k 

By Cauchy inequality, we have 

n-I 1 
"?:- ,,-1 ~ reCk + 1) + reCk) 

~CreCk +1) +reCk)) 

n 

2~re(k) -reO) -re(n) 
n(n +1) -reO) -re(n) 

~ (n _1)2 > (n -1)2 
c?'nCn+1)-1-2 n(n+1)-2 

Hence we have 

3 
c ~ 1 - n + 2' 

Letting n -- + co, we get c ~ 1. 

The proposition is proved. 

n -1 3 
n +2 = 1 - n +2' 

Example 7, An infinite sequence of real numbers {an} is defined 

as follows: ao, al are two different positive real numbers and an = 

I a n +l - a n +2 I, n = 0, 1, 2, .. '. Is it possible that the sequence is 

bounded? Please prove your result. 

Solution, This sequence must be unbounded. The fundamental 

idea is to take an increasing unbounded subsequence from {an}, 

In fact, if there exists n E N* , satisfying that an = a n+l , then by 

the recurrence formula, we have an-I = 0, and moreover a n-2 = a n -3 

(note that each term of {an} is nonnegative). As we deduce 
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successively, we have a1 = a2 or one of a1' a2 is zero, which is 

contrary to the condition that a l' a2 are two different real numbers. 

Therefore for any n E N* , an * a n+1 (equivalently, there are no same 

consecutive terms in {an}). Hence noting the recurrence formula, for 

any n E N* , an > O. 

Now let's find an increasing subsequence {b m } from {an}. 

It can be inferred from the condition that a n+2 = an +an+1 or a n+2 = 

a n+1 - an. If the former holds, then a n+2 > a n+1. If the latter holds, 

then a n+2 < a n+1. It must hold a n+3 = a n+2 + a n+1 , since a n+2 = a n+1 -

an (otherwise a n+3 = a n+2 - a n+1 < 0, which is contradictory). 

Therefore a n+3 > a n+1. The discussion shows that it holds either a n+2 > 

With the result above, we can remove from {an} all the terms a n+1 

satisfying that a n+1 < an and a n+1 < a n+2 (note that when n ? 2, a n+2 > 
an). It's certain that we remove a1 and keep a2 if a1 > a2. As we 

remove the terms, the remaining ones can be denoted by b 1 , b2 , ••• and 

then sequence {b m } is increasing. 

At last, let's prove that {b m } is unbounded. 

For any m E N* , it suffices to prove that bm+2 - bm+1 ? bm+1 - bm 

(since by summing after splitting the terms, we have bm+2 - b2 ? m(b2 -

b1 ). Lettingm -+ 00, we get that {b m } is unbounded). 

By the definition of {b m }, we can set bm+2 = a n+2 (note that n may 

not be same to m). Since a n+2 is not removed, a n+2 > a n+1. If a n+1 . > 
an' then bm+1 = a n+1 while bm = an or a n-1 (if the former, then an > 
a n-1). Thus, it always holds that bm ? a n -1. Therefore we have 

If a n+l <an' thenbm+1 = an whilebm = a n-1 ora n-2 Cif the latter, 

then a n-2 > a n-1. Otherwise a n-1 is not removable). Hence 

The proposition is proved. 

Explanation. Readers are encouraged to write a specific sequence 
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when reading the answer which helps to find the relationship between 

{an} and {b m }. Similar to the previous question, this recursive sequence is 

not defined by definite formulas. Both questions involve the estimate 

of inequality, which is a reflection of analysis. 

Example 8. Sequence {an} satisfies the recurrence formula 

a~ -1 
= n + 1 ' n = 0, 1, 2, 

Is there a positive real number such that both of the following 

results hold? 

(1) If a 0 ~ a, then lima n does not exist; 

(2) If 0 < ao < a, then lima n = O. 

Solution. There exists such positive real number a = 2. Mathematical 

induction is applied repeatedly in the solution to this question. The 

details are left to readers. 

(1) When ao ~ 2, we can prove by mathematical induction that 

for n ~ 0, an ~ n + 2 holds. Then lima n does not exist. 

(2) when 0 < all < 2, it can be divided into two cases: 

Case 1. 0 < all < 1. Now we can prove by mathematical induction 

that for any n E N*, I an I < ~ holds; thus, lima n = O. 
n n-CO 

Case 2. 1 <au <2. If there existsm E N* satisfying thata m +l < 
1 -a 2 

0, we can take the least m. Then 0 < am < 1 and I a m+! 1= m + l' < 

m ~ l' With this result, by mathematical induction, when n ~ m + 1, 

we can prove that I an I < ~ holds. Hence lim an = O. 
n n_+co 

Lastly, if for anym E N*, am >0 holds, noting that 1 <all <2, 

we have an >lholdsforn ~o. Nowletao =2-£ (0<£ <1). By the 

recurrence formula and mathematical induction, for any n E N* , we 

can prove that an < n +2 -ne. Therefore takingm =1 ~ l, we have am < 
£ 
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m +2 -me ~m +1. Then we can prove by mathematical induction that 

(m + 1)2 -1 
for any n > m, an ~ n -1 . When n is sufficiently large, it 

holds an ~ 1, which is contradictory. Hence there must be an n E N* 

satisfying that an ~ (), which falls in the previous case. 

In conclusion, a = 2 satisfies the conditions. 

8 Periodic Sequences 

We call sequence {an} a periodic sequence, if there exist positive 

integers T and no, such that an = an+T holds for any n ? n IJ. Moreover, 

we call {an} a pure periodic sequence if n () = 1 and T the period of 

{an} . 

By the definition of periodic sequence, if T is a period of {an}, 

then mT is also a period of {an} for any m E N*. Combining the 

property above with the Bezout's Theorem, a famous theorem in 

number theory, we can get the following theorem: 

Theorem 1. If T 1 and T 2 are periods of periodic sequence {a n } , 

then (T l' T 2) (the greatest common divisor of T 1 and T 2) is also a 

period of {an }. 

From this theorem, we can infer that a periodic sequence {an} has 

its least positive period, which is in stark contrast with the fact that a 

periodic function f may not have a least positive period. 

For sequence of integers {an}' it can be a periodic sequence 

modulo m, for some positive integer m, while it may not be a periodic 

sequence itself. This is the concept of modulo periodic sequence. Then 

there exist T, no E N*, such that for anyn ?no, an+T =an(modm) 

holds. 

Theorem 2. If sequence of integers {an} is a recursive sequence 

with constant coefficients, then for any m E N*, {an} is always a 

periodic sequence modulo m. 

Actually, if {an} is a recursive sequence of degree k with constant 

coefficients, let's consider the following arrays 
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Cal' az, "', ak)' Caz, a3' "', ak+l)' •••. 

Eachxi in the array (a 1 , a2' "', ak) , can only take a value from 0, 1, 

2, "', m - 1, modulo m, then there are at most m k different cases for 

the arrays in CD. Consequently, there exist r, t E N* (r < t) , such that 

Let T = t - r. Noting that {an} is a recursive sequence with constant 

coefficients, we can get that for any n ;;?: r, an+T - an (mod m). 

Therefore, Theorem 2 holds. 

Example 1. Let XO, Xl be positive real numbers and sequence 

{Xn} satisfying that Xn+2 4maX{X n+l , 4} , n = 0, 1, 2, Find the 
x" 

value of x 2011 • 

Solution. For the sake of convenience, let Xn = 4Yn. Then 

max{Yn+l' 1} 
Y,,+2 = , n = 0, 1, 2, 

Yn 

We can get the following table by direct calculation: 

Yz = 

Y4 = 

Ys = 

yo ~ 1, Yl ~ 1 Yo ~ 1, Yl > 1 Yu > 1, Yl ~ 1 Yo > 1, Yl > 1 

Yo 

1 

1 

yo 

Yl 

Yl 
Yo 

yo 

yo 

Yo 

y, 

yo 

Yl 

yo 

Yl 
yo 

yo 

Yl 

Yo 

Therefore {Yn} is a pure periodic sequence with period of 5, so IS 

{xn}. As a result, XZOll = Xl. 

Explanation. The recurrence relation given in the question above 

is a special form of Lyness Equation. Here determining a period by 
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direct calculation is a straightforward and effective method to deal 

with fractional (periodic) recursive sequences. 

Example 2, Let a ~ Xo < 1 and sequence {xn } satisfy 

And Xs = Xo. How many sequences are there that satisfy these 

conditions? 

Solution, Note that sequence {xn} is determined uniquely when 

Xo is fixed. Then we have converted the problem into finding how 

many different values that XII can take on. 

We use the binary system to solve this question. Represent {xn} in 

binary numbers. Let Xn = (0. b1b2 ••• )2. If bl = 1, then ~ ~ Xn < 1, 

and thus, Xn+1 =2xn --:1 = (0. b2b3 ''')2; ifb l =0, then a ~xn < ~ and 

thus, Xn+l = 2xn = (0. b2 b3 ·" )2. It indicates that Xn+l = (0. b 2 b3 ''')2 

holds as long as Xn = (0. h j h2 ''')2 (which is equivalent to "swallowing" 

the first number after the decimal point) . 

Now, let XII = (0. aja2'" )2. 

Then we can deduce that Xs = (0. a6 a7''')2 from our discussion 

above. Noting that Xs = xo, we have that Xo is a recurring decimal in 

b · b· (0··) (al"'aS)2· h·h Inary num ers, 1. e. , Xo = . aj a 2'" as 2 = 25 -1 ,In w IC 

(al "'as)2 represents a nonnegative integer in binary numbers (noting 

that aj' "', as are not all 1). 

In conclusion, there are 25 
- 1 = 31 different values for Xo 

(because al' "', as can take on a or 1 as their value, however, they 

are not alIi). That's to say, there are 31 different sequences. 

Explanation, Here we use binary representation to turn recurrence 

relations into formulas with more regularity. Then combining it with 
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the periodicity of the sequence, we grasp the structure of this sequence. In 

essence, we are mapping functions between different spaces. 

Example 3. Let j ex) be a polynomial with integer coefficients, 

and sequence {an} is defined as follows. 

If {an} is a pure periodic sequence, prove that the least positive 

period of {a n} is no more than 2. 

Proof. We can turn this question into proving that if there exist 

m E N* such that am = 0, thenal = 0 oraz = O. 

According to the factor theorem, since j ex) is a polynomial with 

integer coefficients, for anym, n E zem * n), m -n 1 fem) - fen) 

holds. 

Now let bn = a n+l - an' n = 0, 1, 2, ... , then by the result above 

and the definition of {an} , we have bn 1 bn+1 (Note that if bn = 0, then 

bn+1 = jCa n+l) - jCa n ) = eJ). 
Sincea m = ao = 0, am+1 = jeao) = al. Consequently, bm = boo 

If bo = 0, then a 0 = a 1 = ... = a m and the proposition is true. 

Otherwise, 1 bo 1 = 1 b m 1 * 0, then noting that bo 1 bl , bl 1 b 2 , 

bm - 1 1 b m , we can get 1 bo 1 = 1 bl 1 = ... = 1 bm I. 
Since 

half of bo , b j , ••• , bm- I are positive integers, while the others negative 

integers. Consequently, there exists k E {1, 2, ... , m - 2} such that 

bH =- bk , and then aH = ak+l. By the definition of {an}, we have 

a n+2 = an holds for all n ~ k - 1. Let n = m, we get 

Thena2 = o. 
Hence the proposition is true. 

Example 4. Let m be a positive integer greater than 1, sequence 
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{Xn} is defined as follows: XI = 1, X2 = 2, "', Xm = m, and 

X n+m =Xn+m-I +xn , n = 1,2, .... CD 

Prove that there exist m ~ 1 consecutive terms in {xn} such that they 

are all multiples of m. 

Proof. Consider sequence {x k (mod m) }, in which X k (mod m) , 

denoted by Yk' represents the remainder that Xk is divided by m. We 

turn to prove that there are m ~ 1 consecutive zeros in the sequence 

{yn }. 

By Theorem 2 and CD, we have that there exist no and TEN * 

such that YHT = Yk for any k ?o no. Specifically, we have 

Subtracting the two formulas and noting CD and the definition of 

Yk' we can get Yno-I = Yno-HT' and Yk = YHT for every k ?o 1 in the 

same manner. 

To get our result and calculate conveniently, we extend the 

subscript of {Xn} to negative integers according to the recurrence 

relation determined by CD. Combining this with what we discussed 

above, we can get that Yk = YHT' for every k E Z. 

Now, by Xn = Xn+m ~ Xn+m-I , we can conclude thatxo = X-I = ... = 

X-(m-2) = 1 (here we used the initial condition that X j = j , for any 1 ~ 

j ~ m), furthermore, X-(m-1) = X-m = ... = X-(2m-3) = O. Noting that 

Yk = YHT' we can get 

(Y-(2m-3l+T, "', Y-(m-ll+T) = (Y-(2m-3) ' "', Y-(m-j)) = (0, "', 0). 

Nevertheless, Y-(m-2) = ... = Yo = 1. Therefore ~ (2m ~ 3) + T ?o 1, 

which shows that there are m ~ 1 consecutive zeros among the terms 

with positive subscripts in sequence {yn }. 

Hence the proposition is true. 

Example 5. Let m be a given positive integer, and for any 

positive integer n, 5 m (n) denote the sum of mth power of every digit 

of n in the decimal system. For instance, 53 (172) = 13 +73 +23 
= 352. 
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Consider this sequence: no is a positive integer, n k = Sm (n k-l ) , k = 1, 

2, 

(1) For any positive integer no, prove that sequence {n k } is always 

a periodic sequence; 

(2) When no varies, prove that the set made up of the least 

positive periods in (1) is a finite set. 

Proof. Note that for positive integer n ;?: lOm+1
, there exists 

p E N* , P ;?:m +1 such that lOP ~ n < 10p+1
• Then n is a number with 

p + 1 digits in the decimal system. Therefore 

Sm(n) ~ Cp +1). 9m < (p +1)· 9p-1 

< 9P + q ·9P- 1 < (9 + 1)P = lOP ~ n. 

This indicates that the terms of {n k} satisfies that if n k ;?: lOm +1 
, 

thennHl = Sm(nk) <nk. 

On the other hand, if positive integer n < 10m+1 
, then 

We can get that if n k < lOm+1 
, then n HI = Sm (n k) < 10m+1 as well. 

The discussion above indicates that when the subscript k is large 

enough, nk < 10m+1 must hold. Hence from some term on, every term 

of {n d belongs to set {1, 2, ... , lOm+1 
- 1}. That is, there exists 

ko E N* such that for any k ;?: ko' 1 ~ nk ~ Hr+1 -1 holds. Combining 

this with pigeonhole principle, we can get that there exist r, s E N* , 

r > s ;?: ko such that nr = n,. By the definition of {nk}' nk = nHT 

holds for k ;?: s, where T = r - sand T ~ lOm +1 
- 1. 

Hence {nk} is always a periodic sequence for any no E N* , with 

least positive period ~ lOm+1 
- 1. 

Therefore, (1) and (2) hold. 

Example 6. First choose a positive integer ao, and then a1 E {ao + 
54, ao +77}, and so on. Whenak is fixed, we can chooseaHl E {ak + 
54, a k + 77}. In this way, we can get an infinite sequence {a n }. Prove 

that there always exists a term whose last two number are same. 
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Proof. Discuss this question by an modulo 100. Let bn denote the 

remainder when an is divided by 100. Equivalently, bn is a double-digit 

number among 00, 01, ... , 99. 

By the definition of {an}' for any n E N* , bn+1 - bn + 77 or bn + 

2 X 77(mod 1(0) holds. 

Since (77, 1(0) = 1, when j traverses the 

complete system of residues modulo 100, 77 j 

traverses the complete system of residues modulo 

100 as well. For j = 0, 1, 2, ... , 99, we arrange 

the remainder of77j divided by 100 on a circle as 

shown on the right. Then from the structure of 

{b n }, we can deduce that bn and bn+1 are next to 

each other or separated by one number. Hence 

23 
I 

I 
I 
I 
\ 
\ 
\ 

\ , 
" '-, 

00 

Figure 5 

77 

there must be one in any two adjacent numbers that is in {b n }. Since 00 

and 77 are adjacent, there must be n E N* such that bn = 00 or 77, i. e. , 

the last two digits of an are 00 or 77. 

Therefore the proposition is true. 

Explanation. Each term of {a n } has two choices and furthermore 

{an} is not changing periodically under mod 100. But it does jump 

regularly and the method of combination helps solve the question 

smoothly. 

Exercise Set 1 

1. For any nonempty finite set, prove that we can arrange all of 

its subsets in a line, such that the difference between the numbers of 

elements of any adjacent subsets is 1. 

2. Sequence {an} satisfies that ao = 0, an +a n-2 ;?o 2a n-l' n = 2, 
3, .... 

For any n E N* and k E Z, prove that nak ~ ka n holds as long as 

o ~ k ~ n. 

3. Sequence {an} of positive real numbers satisfying thata~ ~an -
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1 
a n+1' n = 1, 2, .... Prove that an < - holds for any n E N* . 

n 

73 

4. Let real numbers al , ... , an (n ;:? 2) satisfy that a1 < a2 < ... < 
an. Prove that 

5 L 1 2 ana n-1 + 1 2 3 . et a 1 = ,a 2 = ,a n+1 = , n = , , .... 
a n-l 

Prove that an > lin holds for any positive integer n ;:? 3. 

6. Let a be a positive real number. Prove that 

1 +a 2 +a4 + ... +a 2n :>-: n +1 
a + a 3 + a 5 + ... + a 2n-1 ~ n 

holds for any n E N* . 

7. Prove that 

3n ( 1 1 1 ) 19(n l ) >- - +- + ... +-
. 10 2 3 n 

holds for any n E N* , n ;:? 2. 
n 

8. Sequence {an} of positive real numbers satisfying that ~ a J 

n 

( ~ a j ) 2 holds for any positive integer n. Prove that an = n for any n E N* . 

9. Let a1, ... , an be n different positive integers. Prove that 

10. Sequence {an} of real numbers satisfies that 

(1) a 1 = 2, a 2 = SO(), a 3 = 2000; 

(2) a n+2 +a n+1 = a n+1 , n = 2, 3, 
a n+l + a n-l a n-l 

Prove that each element of {an} is an integer, and 2n I an holds for any 

positive integer n. 

11. Let k be a positive integer given, and sequence {an} satisfy 

that 
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Prove that am and an are relatively prime, for any positive integers 

m oftn. 

12. Sequence {an} satisfies thatao = 1, an = an+1 +a [1-]' n = 1, 

2, 

For any prime number p no larger than 13, prove that there are 

infinitely many terms of {an} that are multiples of p. 

13. Denote {x} the decimal part of x. Prove that 

holds for any n E N* . 

14. Let m, n E N* , and Sm (n) = ~ [k~ J. Prove that 
k~1 

holds, where [x] is the greatest integer which is no larger than x. 

15. Let k be a positive integer given. Consider sequence {an} 

satisfying that: 

ao = 1, a n+l = an + [ y;-: J, n = 0, 1, 2, .... 

Find the set comprised of all the integer elements of { y;-: } for 

every k. 

3, 

1 2n -3 
16. Sequence {x n } satisfies that XI = 2' Xn = ~Xn-I , n = 2, 

Prove that XI + X2 + ... + Xn < 1 holds for any n E N* . 

17. Sequence {f(n)} satisfies that 

f(1) = 2, fen +1) = Cf(n))2 - fen) +1, n = 1,2,3, 

Prove that 
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holds for any integer n > 1. 

18. Two sequences Xl' X2' ••• and Y1' Y2' ••• of real numbers 

satisfy that 

= Xn + )1 + x~ , Yn+1 = Yn , n ~ 1. 
1 + Vi + Y~ 

Prove that 2 < XnYn < 3 holds for any n > 1. 

19. Sequence {an} satisfies that all = ~ , an+l 2a n >- 0 
1 +a~' n ~ , 

while sequence {c n } satisfies that c Il = 4, c n+1 = c~ - 2c n + 2, n ~ o. 
2c c ···c Prove that an = 0 1 n-l holds for any n ~ 1. 

cn 

20. Sequence {an} satisfies that al = 1, a n+l = an +.!!:.-, n ~ 1. 
n an 

Prove that [a~J = n holds for any n E N* , n ~ 4. 

21. Let a be an irrational number, and n be an integer greater 

than 1. Prove that (a + ~); + (a - ~); is an irrational 

number. 

22. Sequence of real numbers {an} is defined as follows. al = t, 

a n+1 = 4a n (1 - an), n = 1, 2, .... How many different t are there 

satisfying that a21l11 = O? 

23. Sequence of real numbers Xl' X2' ••• , X2011 satisfies that 

1 Xi - Xi+l I,s;; 1 for i = 1, 2, ... , 2010. Find the maximal possible 
n n 

value of z= 1 xii -I z= X i I. 
i=l i=l 

24. Let all' al' a2' ••• be an infinite sequence of positive real 

numbers. Prove that there exist infinitely many positive integers n such 

that 1 + an > 'J2a n-l. 

25. For any n EN, the function F: N ~ N satisfies that: 

(1) F(4n) = F(2n) +F(n); 

(2) F(4n + 2) = F(4n) + 1; 
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(3) F(2n + 1) = F(2n) + 1. 

Prove that the number of integers n satisfying that 0 :s;;; n :s;;; 2m and 

F(4n) = F(3n) is F(2m+1
). 

26. Function f: N * - N * is defined as follows. f (1) = 1 and for 

any positive integer n , 

{
fCn) +2, ifn =f(jCn) -n +1), 

fen +1) = 
fCn) + 1, other n. 

(1) Prove thatf(jCn) -n +1) E {n, n +1} holds for anyn E N*. 

(2) Find the expression of fCn). 

27. Sequence {an} is defined as follows: 

!!.ill±12 
a 1 =O,a n =a[_I]+C-l) 2 ,n=2,3,· ... 

For each kEN, find the number of subscripts n satisfying that 

2k :s;;; n < 2k+1 and an = O. 

28. Sequence of real numbers {an} satisfies that 

Xl = 1, X n+l = {

Xn -2, ifxn -2 >0, andxn -2 t1 {Xl! "', Xn}. 

X n + 3, other cases. 

For any positive integer k > 1 , prove that there exists a subscript n 

such that X n+l = Xn + 3 = k 2
• 

29. Let n be a positive odd number, e be a real number satisfying 

that ; is an irrational number. Letak = tan(e +k
n

TC
) , k = 1, 2, 

h al +a2 + ... +a n •• d f· d . I n. Prove t at IS an Illteger an III ItS va ue. 
ala2'''a n 

30. For any n E N * , prove that there exists a polynomial P (x) of 

degree n with integer coefficients whose leading coefficient is 1 such 

that 2cos n<p = P(2cos <p), where <p is any real number. 

31. Let a and cos aTC be rational numbers. Find all possible values 

cos a TC can take on. 

32. Do there exist infinitely many points on the unit circle such 

that the distance between any two points is a rational number? 

33. Let n be a positive integer no less than 2. Find all polynomials 
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with real coefficients 

such that P (x) has n real roots that are all no more than - 1, and 

satisfies that 

34. Let P (x) be a polynomial with integer coefficients satisfying 

that P (n) > n for any n E N * and that there exists at least one term in 

sequence 

P(1), P(P(1)), P(P(P(1))), ... 

that is a multiple of m for any m E N* . Prove that P (x) = x + 1. 

35. Let P ex) be a polynomial with real coefficients whose degree 

is an odd number. It satisfies that 

for any x E R. Prove that P(x) = x. 

36. Function j: N - N satisfies that 

(1) I j (x) - j (y) I ~ I x - y I holds, for any real number x, y. 

(2) There exists positive integer k such that j<kl (0) = 0, where 

j<1)(x) = j(x), j<n+1l(x) = j(j<n)(x)), n = 1,2, 

Prove that j(O) = 0 or j(j(O)) = 0 holds. 

37. Sequence {p (n)} satisfies that 

PI = 2, P2 = 5, Pn+2 = 2Pn+1 + Pn' n = 1, 2, 

Prove that 

(i+j+k)! 
P n = 2.= -l-' !-=-j -! k-!----'-

holds for any positive integer n. Here, we take the sum among all 

nonnegative integer groups (i, j, k) satisfying that i + j + k = 2n. 

38. Let An = { 1 + ~ + ... + c;; I a i = 1 or - 1, where i = 1, 
"12 (v2)n 
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2, ... , n}. 
(1) Find the number of different elements of An , for every n E N* . 

(2) Find the sum of the product of any two different elements in 

An' for every n E N* . 

39. Sequence {xn} is defined as follows 

Xo =4, Xl =X2 =0, X3 =3, 

X n+4 = Xn +Xn+l' n = 0, 1,2, 

Prove that p I X p holds for any prime number p. 

40. Find all sequences of positive integers ao, aI' ••• , an such that 

(1)ao+~+ ••• +an-l =~; 
al a2 an 100 

(2)ao =land(aHl-1)ak-l )';a~(ak -1), k =1,2, ... , n-1. 

41. Sequence {yn} is defined as follows. Y2 = Y3 = 1, and 

Prove that Yn is an integer if and only if n is prime. 

42. Let p > 3 be a prime number, and q = p 3. Sequence {a n} is 

defined as follows. 

{
n, n =0, 1,2, ... , P -1, 

a = 
n a n-l + a n - p ' n > p - 1. 

Find the remainder of a q divided by p. 

43. Let n be a positive integer no less than 2, and bo be an integer 

satisfying 2 ~ bo ~ 2n - 1. Consider the sequence {b i } determined by 

b - {2bi -1, if b i ~n, i+l -

2b i -2n, if bi > n. 

Let p (bo , n) denote the minimal subscript p satisfying that b p = bo. 

(1) Let k be a positive integer, find the value of p (2, 2k) and 

p(2, 2k + 1). 

(2) Prove thatp(bo , n) I p(2, n) holds for anyn andbo• 

44. Given a broken line starting from (0, 0) and ending at C1, 0) 
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on a coordinate plane. 

For any n E N* , prove that there exist two points on the broken 

line with same ordinate, whose abscissas differ 1- from each other. 
n 

45. There are a black box and n white boxes marked by 1, 2, ... , 

nand n white balls placed in the white boxes. The following operations 

are allowed: If there are exactly k white balls in the box labeled by k , 

then take all the k balls out, and place one ball respectively in the 

black box and white boxes labeled by 1, 2, ... , k -1. For any n E N* , 

prove that there exists only one way of placement such that the n balls 

are placed in the white boxes at the beginning, and are placed in the 

black box after limited times of operations. 

46. LetRo be an array with n elements, whose elements belong to 

{A, B, C}. Define sequencesRo, R 1 , R 2 , ••• as follows. IfRj = (Xl' 

... , x n ), thenR j +1 = CY1' Yu ••• , Yn), where 

{
Xi' if Xi = X i+l , 

Yi = {A, B, C}\{Xi' Xi+l}' if Xi =FXi+l' 

and X n+l = Xl. For instance, if Ro = (A, A, B, C), then Rl = (A, 
C, A, B), R2 = (B, B, C, C), .... 

(1) Find all n E N* such that there exists m E N* satisfying that 

Rm = Ro for any Ro. 

(2) Find the minimal positive integer m satisfying (1) for n 

3k Ck E N*). 
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From the result above, we continue the discussion by substituting 

(m, n) by (m -n, n), which implies that solving the greatest common 

factor of F m and F n is essentially taking a division algorithm on 

subscripts m and n. So, (F m' Fn) = Fcm. n). 

Explanation. The following proposition can be proved by the 

result of this example. If F n is a prime number, then n = 4 or n is a 

prime number. 

In fact, if n :;i: 4 and n is not a prime number, then n can be represented 

as n = pq, 2 ~p ~q andq ?3. Now (Fn , Fq) = FCn. q) = Fq. Meanwhile, 

Fq ? 2, Fn > F q , which derives that Fn is a composite number. 

Example 2. Prove that every positive integer m can be expressed 

in the following form uniquely. 

m = (anan-l···a2)F 

= anFn +an-1Fn-l + ... +a2 F 2. 
CD 

Here ai = ° or 1, an = 1. Also, there is no subscript satisfying 2 ~ i ~ 

n -1 such that ai = ai+l = 1. In the formula, Fi is the ith term of the 

Fibonacci sequence. 

Proof. The positive integer expression by formula CD is regarded 

as F -expression of m. It is similar to the binary system. This result is 

the famous Zerkendorf Theorem. 

It will be proved by induction on m . 

When m = 1, m = F 2 • The proposition is proved. Now suppose 

the proposition is true for any positive integer k less than m. 

There is a unique n E N * such that F n ~ m < F n+l. If m - F n = 

0, then m is expressed in the form of CD. Otherwise, if m - Fn > 0, 

from the inductive hypothesis, m - Fn is expressed in the form of 

CD. Let 

Here if at = 1, then m = Fn +atFt + ... +a2F2. Now if l ? n -

1, then m ? F n + F n-l = F n+l , which is contradictory. So l ~ n - 2. 
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Positive integer m can be expressed in the form of CD. 
The following part demonstrates the uniqueness of expression CD 

ofm. 

In fact, if 

where an = b1 = 1. and n ~ l. 

If n > l, there is no subscript 1 ~ i ~ l - 1 satisfying bi = bi+1 

1. Noting the definition of {F n } we have 

{ 
F I + F 1-2 + ... + F 3' m is even, 

(b 1 ···b2 h ~ 
Fl + F I - 2 + ... +F4 +F2, m is odd, 

{ 
F 1 + F 1-2 + ... + F 3 + F 2 = F 1+1 , m is even, 

< Fl + F I - 2 + ... +F4 +F2 +F1 = F 1+1 , m is odd. 

Hence (b 1 ···b2 ) F < F 1+1 ~ F n. Equal signs cannot be taken at the 

same time in @. 

Therefore n = l and then m - F n has two expressions, which 

is contrary to the inductive hypothesis. There is a unique way to 

expressm. 

In summary, by the second form of mathematical induction, the 

proposition is true. 

Example 3. It is well-known that the product of n consecutive 

positive integers is a multiple of that of the first n positive integers 

(namely n!). The Fibonacci sequence has a similar property. For any 

k E N* , please prove that the product of any k consecutive terms of 

{Fn} is a multiple of that of the first k terms. 

Proof. Notation is imported. [nJ! = F j F 2 ···Fn , n = 1,2, 

Set [OJ! = 1. And write 

R(m, n) [m +nJ! 
[mJ!. [nJ!' m, n EN. 

To prove the proposition, we need only proveR(m, n) E N*, for 

anym,nEN*. 
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Taking a similar derivation as in example 1, we know 

Therefore, we have 

Fm+n • [m + n -lJ! R(m, n) F m+n • [m + n - 1J ! 
[mJ! . [nJ! Fm • Fn • [m -lJ! . [n -lJ! 

= F n+1 
[m+n-1J! +F [m+n-1J! 

• [m -lJ!. [nJ! m-l· [mJ!. [n -lJ! 

= F n+1 ·R(m -1, n) + F m- 1 ·R(m, n -1). 

The formula above holds for m, n E N*. Noting the initial 

conditionR(O, n) =R(m, 0) = 1 (it holds for anym, n E N*) and by 

mathematical induction, we can prove that R (m, n) is a positive integer. 

Hence, the proposition is true. 

Example 4. 1 
Let j(x) = x + 1 (x > 0). Prove that 

(1) For any positive integer n , 

gn (x) = X + j(x) + j(j(x» + ... + f(j( ·"j(x» > 
v 

n iterations 

is an' increasing function on (0, + 00) ; 

(2) gn (1) = Fl + F2 + ... + F n+1 where {Fn} is the Fibonacci 
F2 F3 F n+2 ' 

sequence. 

Proof. For convenient formulation, we notate 

j<n) (x) = f(je "·jex» ). 
v 

n iterations 

This function iteration problem is discussed locally. 

(1) It is familiar that y = x + -.l is monotonically increasing on 
x 

(1, + 00). Accordingly, 

1 1 
hex) =x+j(x) =x+ 1 +x =C1+x)+1+x-1 



84 Sequences and Mathematical Induction 

is monotonically increasing on Co, + (0). 

Noting that 

j(jCx) ) 
1 

1 + jCx) 
1 

1 
l+l+x 

l+x =1 __ 1_ 
2 +x 2 +x 

is an increasing function on (0, + 00 ), we have that the function 

j(2k) (x) is an increasing function on (0, + (0) for any kEN' . Since 

h (x) is increasing on eo, + (0), j(2k) ex) + j<2k+1) ex) is also increasing 

on (0, + (0). 

With the conclusions above, when n is odd, function 

gn(x) = (x + jex)) + Cj(2)(x) + j(3)ex)) + ... +epn-ll(x) + pn)(X)) 

. h f n + 1 . . f' (0 ) IS t e sum 0 ~2~ mcreasmg unctIOns on , + 00 . 

When n is even, j<n) (x) and g n (x) - j<n) (x) are both increasing 

functions on (0, + 00 ). Hence, g n (x) is also an increasing function on 

(0,+00). 

Therefore for any n EN' , g n (x) is an increasing function on eo, 
+ (0). 

(2) With the definition of g n (X), we need only to prove that 

j<n)o) = F n+1
, for anyn EN' (herej(l))(x) = x). 

F n+2 

Utilizing that 1 = ;: and j(1) = ~ = ;:' we get that the 

statement is true when n = 0, 1. Now suppose that j<n) (1) 

(i.e., the proposition is true for n). Since j<n+1) (x) 

we have j<n+1l e 1 ) 1 Hence 
1 + j<n) 0)" 

Therefore (2) holds. 

F n+2 F n+2 

F n+3 • 

1 
1 + j<n) (x)' 
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Example 5. Consider sequence {Xn}: Xt = a, X2 = b, X n+2 = 

Xn+1 + X n , n = 1, 2, 3, ... , where a, b are real numbers. If there exist 

positive integers k and m, k * m, such that Xk = X m = c, then real 

number c is called "Double Value". Prove that there are real numbers 

a, b such that at least 2,000 different "Double Values" exist. Moreover, 

prove that we cannot find a, b such that infinitely many "Double Values" 

exist. 

Proof. A sequence with 2,000 different "Double Values" is 

established with the Fibonacci sequence. 

The idea is to extend the subscripts of {Fn} to negative integers 

corresponding to the original recurrence relation. We have 

Fo = F2 - FI = 0, 

F -t = F 1 - Fo = 1 = F 1 , 

F-2 =Fo -F-I =-1 =-F2 , 

F -3 = F -I - F -2 = 2 = F 3 , 

and so on. Now we know F-2m =- F2m , F-(2m+1l = F2m+ 1 , m = 1, 2, 

Hence for any m E N* , let a = F 2m+ 1 , b = F 2m • Then the sequence 

{xn} is displayed as 

F 2m+l' - F 2m' F 2m-I' - F 2m-2' ••• , - F 2' F I' F 0 , 

F 1 , F 2 , ••• , F 2m- l , F 2m , F 2m+l , •••• 

Terms F I' F 3' ••• , F 2m+l are all 'Double Values' in sequence 

{Xn }. Specifically, the required sequence {xn} is obtained by taking 

m = 1999. 

On the other hand, if we can find a, b such that infinitely many 

'Double Values' appear in sequence {xn}. Then any two adjacent 

terms in {xn} have opposite signs. (Otherwise, the sequences become 

strictly increasing (or strictly decreasing) starting from the next term. 

There can't be infinitely many different "Double Values". ) 

Note that the characteristic equation of {xn} (also the 

characteristic equation of the Fibonacci sequence) is A 2 = A + 1 which 
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have two distinct real solutions. Hence we assume that 

Xn =A· (1 i15)" +B· (1-;15)". n = 1.2. 

Because 11 -;151 < 1 and 11 i 15
l > 1. if A >0 thenxn >0 when 

n is sufficiently large. So two positive adjacent terms occur. Similarly. 

if A < O. then two negative adjacent terms occur in {xn}. Both 

situations lead to contradictions. Therefore A = O. Then Xn = B • 

(1 -;15 r. Noting that 11 -;151 < 1, we have that the sequence { I Xn I} 

is monotonically decreasing. There is no "Double Value" when B =1= O. 

WhenB = O. however. there is only one "Double Value". 

In conclusion. the proposition is true. 

Explanation. The general formula of the Fibonacci sequence can 

be solved by its characteristic equation and initial values. 

F = _1 (1 +15)n __ 1 (1 _15)n = 1 2 
n 15 2 15 2 .n •• 

But the recurrence relation is more useful than the general 

formula when solving practical problems. 

Example 6. Arrange terms in the Fibonacci sequence in order: 

1. 1. 2. 3. 5. 8. .... Sort all the Twin Primes (if p and p + 2 are both 

primes. then p and p + 2 are Twin Primes) by size: 5. 7. 11. 13. 17. 

19. 29. 31.···. Find the positive integers that appear in both sequences. 

Solution. Comparing several terms at the beginning of the two 

sequences. we observe that only number 3. 5 and 13 show up in both 

sequences. We may guess that these positive integers are all what is 

required. 

Due to the difficulty of understanding the patterns of Twin Prime 

sequence. in order to testify the conjecture above. we should begin 

with the properties of the Fibonacci sequence. If n is fairly large. 

either F n is composite or F n ± 2 are both composite numbers. then F n is 
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not in the Twin Prime sequence. With this idea, we need to tell some 

properties of the Fibonacci sequence first. 

List several first terms of the Fibonacci sequence. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 

F" 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... 

We find that F 2n (when n ~ 3) is a composite number. F 2n ± 2 

(when n ~ 4) are composite numbers too. Besides, there are some 

formulas as follows. 

(1) F 2n = Fn (F n+1 + F n- I ) , with Fa = 0; 

(2)F 4n+1 +2 =F2n-I(F2n+1 +F2n+3 ); 

(3) F 4n+1 -2 = F2n+zCF2n-2 +F2n ); 

(4) F 4n+3 + 2 = F 2n +3 CF2n+1 + F 2n - I ); 

(5) F 4n+3 -2 = F2n(F2n+2 +F2n+4 ). 

Note that if these five formulas are proved, then only 3, 5 and 13 

appear in both sequences. 

Now we prove 0)-(5) by mathematical induction. 

When n = 1, it is obvious that (1)-(5) hold by data listed in the 

previous table. Now assume (1)-(5) are proved for integers no larger 

than n. By the recurrence formula of the Fibonacci sequence, forn +1, we 

have 

F 4n+2 = F 4n+1 + F 4n = F 4n+1 + F 4n - 1 + F 4n - Z 

i. e. 

=CF4n+1 +2) +CF4n - 1 -2) +F4n - 2 

=F2n-I(F2n+l +F2n+3 ) + F 2n - 2 (F 2n +F2n+2 ) +F2n-I(F2n-Z +Fzn) 

= F 2n+1 F 2n-1 + F 2n-1 F 2n+3 + F 2n-2 (F 2n + F 2n-1 ) 

+ (FZn-2F2n+2 + F2n-IF2n) 

=FZn+l F 2n- J + F2n-2F2n+1 + F 2n - 1 (F 2n+3 + F 2n ) + F2n-2F2n+2 

=F2n+1 F2n + 2F2n - 1 F2n+Z + (F 2n - F 2n- 1 )F2n+Z 

=F2n+IF2n + F 2n +2 (F 2n- 1 + F 2n ) 

=F2n+l(F2n +F2n +2 ) , 
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Similarly, we can prove 

1. e. , 

F 2(2n+2) = F 2n+2 (F 2n+2-1 + F 2n+2+1 ). 

From CD and @ we know (1) holds for2n +1 and2n +2. Therefore it 

is true for all n E N* . 

F4n+S + 2 = F 4nH + (F4n+3 + 2) 

=F2n+2(F2n+l + F Zn+3) + F Zn+3(F 2n+1 +F2n- 1) 

= F 2n+l (F 2n+2 + F 2n+3) + F 2n+3 (F 2n+2 + F 2n-l ) 

= F 2n+l F 2nH + 2F 2n+3 F 2n+1 

=F2n+l(F2n+3 +F2n+S) , 

1. e. (2) is testified for n + 1. Similarly, (3), (4), (5) hold for n + 1. 

(Details are left to readers. ) 

Generalizing all above, (1)-(5) are true for alln E N*. Only 3,5 

and 13 appear in both sequences. 

Explanation. With example 1, we can see that F 2n is a composite 

number when n ~ 3. The result here is more powerful. 

10 Several Proofs of AM-GM Inequality 

From this section, we are going to discuss some other forms and 

techniques of applying mathematical induction. 

AM-GM Inequality Let aI' a2' ••• , an be n positive real numbers. 

Then 

CD n 

~ (a 1 + ... +a n ) is called the arithmetic mean of aI' az, ••• , an' while 
n 

:!ala2"·an is called the geometric mean of aI, az, "., an. 
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Proof 1. When n = 1, it is obvious that CD holds; when n = 2, CD 

is equivalent to al +a2 ~ 2 ~, i. e. (~ - ;-;;;)2 ~ O. Hence CD 
holds. 

Now we suppose that CD holds for n C ~ 2) and consider the case of 

n+1. 

1 Let A = n + 1 Cal + ... +a n+l). Then by inductive hypothesis, we 

have 

1 1 
= -Ca + ... +a ) +-Ca + +A + ... +A) 2n ' n 2nn' ~ 

n-l items 

~ ; Clal"'an + ]an+I~) 
n-l items 

Noting that a I + ... + a n +l = (n + 1)A, we can deduce that 

n-l items 

Therefore 

moreover, A n+l ~ a I"'a n+l , then we get 

Hence CD holds for n + 1. 

Thus, for any n E N* , inequality CD holds. 

Explanation. This is a proof of CD given by the first form of 

mathematical induction, which is quite skillful. 

Proof 2. Since CD holds for n = 2 C the proof is same to Proof 1) , 
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it can be proved easily by mathematical induction that CD holds for all 

n = 2k Ck E N* ). 

In fact, if CD holds for 2k , then for n = 2HI , there holds 

That is, CD holds for all n = 2k , k = 1, 2, .... 

Let's discuss the case of n. For any n E N* , take kEN satisfying 

1 that 2k ~n <2Hl and denote A = -Cal + ... +a n ). From the previous 
n 

result, we can deduce that 

Noting that al + ... + an = nA, we have 

Moreover, An? a I ···an. Hence CD holds for n. 

Explanation. This proof comes quite naturally. Both of the proofs 

needs to piece together terms. 

Proof 3. It can be inferred from the previous proof that CD holds 

for n = 2k, which shows that there exist infinitely many positive 

integers n such that CD holds. 

Now suppose that CD holds for n + 1. As to the case of n, denoting 

A = .-lCal + ... +a n ), we have 
n 

Noting that a 1 + ... + an = nA, we get A ? n+~ a 1" 'a n • A. And 



Selected Topical Discussions 91 

thus, A ?': :jal "·a n , which implies that CD holds for n. 

Hence CD holds for any n E N* . 

Explanation. Here we apply the idea of patching up a hole, 

which is a basic application of inverse mathematical induction. 

Inverse induction is also called backward induction, whose basic 

structure is as follows: suppose a proposition (or property) pen) about 

(of) positive integer n satisfy the following conditions 

true. 

(1) P (n) is true for infinitely many positive integers n. 

(2) It can be inferred from the validity of P (n + 1) that P (n) is 

Then for any n E N* , pen) is true. 

Proof. Let's prove by contradiction. 

If there exists m E N* such that P (m) is not true. We can prove 

by mathematical induction that for any n ?': m, P (n) is not true (then 

there can be only a finite number of n E N* such that pen) is true, 

which is contrary to condition (1». 

In fact, P(m) is not true according to the assumption. 

Now suppose that P(n)(n ?': m) is not true. Then it can be 

inferred from (2) that pen + 1) is not true (by the contrapositive of 

(2». 

Hence by mathematical induction, we have that for any n ?': m, 

P (n) is not true, which is contradictory. Therefore inverse induction 

holds. 

Both of the two latter proofs of AM-GM inequality proved first 

that the proposition is true for infinitely many n E N* . Then they 

prove that the proposition is true for every n E N*. This idea is 

applied in many cases. 

AM-GM inequality may be the theorem with most proofs in 

mathematics. Here we only give some most common methods with 

mathematical induction. These ideas and methods can be applied to 

other questions. 
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Example 1. Let function f: N * -- [1, + 00) satisfy: 

(1) f(2) = 2; 

(2) for anym, n E N*, f(mn) = fCm)f(n); 

(3) when m < n, f(m) < fCn). 

For any positive integer n, prove that fen) = n holds. 

Proof. It can be inferred from condition (1) and (2) that f (1) = 1. 

Now suppose that f(2k ) = 2k , kEN. Then f(2H1 ) = f(2k ) f(2) = 2k X 

2 = 2Hl. Hence for anyk EN, f(2k ) = 2k. 

Now let's discuss the value of fCn). Set fen) = l. Then by (2) 

and mathematical induction, we have fCn m) = lm, for any m E N* . 

Letting 2k ~ n m < 2Hl , by (3), we get fC2k ) ~ fen m) < f(2H1 ). 

Therefore it can be deduced from the previous result that 2k ~ lm < 
2Hl. Noting that 2k ~ n m < 2Hl , we have 

1 (n )m 2 < T <2. 

This inequality holds for any m E N* . 

If n > l, let's take m > n ~ r Then 

n -l 
~1+m·-l->2, 

CD 

which is contrary to CD. Similarly, if n < l, we can take m > l : n' 

( 
l )m . ( n )m 1 Then ---;; > 2, 1. e., T < 2' which is also contrary to CD. 

Therefore we can only have n = l. 

Generalizing all above, for any n E N* , fCn) = n. 

Explanation. If function f is a mapping from N* to N* , then the 

question is simpler, and it is left to readers. 

Similarly, this method can be used to prove the famous lensen's 

Inequality. 

Example 2. Find all functions f: N* -- N* , satisfying that for 
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anym, n E N* , 

CD 

Solution. Let f be a function satisfying the conditions. Set m = 

n = 1 in CD. Then (J(1)2 + f(1» 14. That is, f(1)(J(1) +1) 14. If 

f (1) ~ 2, then f (1) Cf C 1) + 1) ~ 6. Hence there can only be f (1) = 1. 

For any prime number p, let's first prove that 

fCp -1) = p-l, 

In fact, for any prime number p , set m = 1, n = p -1 in CD. Then 

(J(1) + f(p -1» Ip2, i.e. C1 + fCp -1) 1 p2. HencefCp -1) +1 = 

P or p2. If the former one is true, then (2) holds; if the latter, i. e. , 

fCp -1) = p2 -1, then setm = p -1, n = 1 in CD. We have (J(p-

1)2 + f(1) 1 (Cp _1)2 +1)2, i.e. ((p2 _1)2 +1) 1 CCp _1)2 +1)2. 

However 

CCp _1)2 + 1)2 ,s;;; CCp _1)2 + Cp _1»2 

= p2 Cp - 1)2 < Cp + 1)2 Cp _1)2 + 1 

= Cp2 - 1)2 + 1, 

which is contradictory. Therefore (2) holds. 

Now for any n E N* , let's prove that fen) = n. 

In fact, for any positive integer n, we can take k E N* such that 

k + 1 is a prime number C there are infinitely many k of this kind). Set 

m = k in CD. Combing with (2), we have 

Note that 

(k 2 +n)2 = (k 2 + fCn) +n - fCn»2 

=A(P + fen»~ +(n - fCn»2, 

where A is an integer. By ®, we have 

This formula shows that Cn - f(n»2 is divisible by infinitely many 

positive integers Csince there are infinite ways to take k). Hence Cn -
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fCn))2 = 0, i. e. , fCn) = n. 

In conclusion, there is only one function satisfying the condition, 

fCn) = n. 

Explanation. Essentially, it suffices to prove that fCk) = k holds, 

for infinitely many k E N* . Then patch up other holes. We break through 

the question from @ because we expect the factors of the dividend as 

few as possible. This technique is often applied in the theory of 

divisibility. 

Example 3. Find all of the functions f: N* -- N* satisfying that 

for any n E N* and prime number p, 

fCn)P = n CmodfCp)). 

Solution. For any prime number p, taking n = p in CD, we have 

p - fCp)P =0 CmodfCp)). 

Hence fCp) I p and then fCp) = 1 or p. 

Now denote S = {p I p is prime, fCp) = p}. The question can be 

divided into three cases: 

Case 1. S is an infinite set. We can prove, by the method in the 

previous example, that for any n E N* , fCn) = n. 

In fact, there exist infinitely many prime numbers p such that 

fCp) = p. Hence for any n E N*, there exist infinitely many prime 

numbersp such thatn - fCn)PCmodp). By Fermat's little theorem, we 

havefCn)P - fCn) Cmodp). ThereforefCn) -n Cmodp), which 

shows thatfCn) -n is a multiple of infinitely many prime numbers. So 

fCn) = n. 

Case 2. S is empty. Then for any prime number p, f Cp) = 1. 

At this time, for the rest of positive integers n, fCn) can take any 

positive integer Csuch that CD holds). 

Case 3. S is a nonempty finite set. 

Let p be the greatest prime number in S. If P ~ 3, we will prove 

this leads to a contradiction. Therefore S = {2}. 
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Since p is maximal, for any prime number q > p, f (q) = 1. From 

CD, it can be inferred that q = fCq)P = 1 Cmod p), i. e. , q - 1 Cmod p). 

Now let Q be the product of all odd prime numbers no greater than 

p. Then each prime factor of Q + 2 is greater than p Cnote that we 

applied that p ~ 3 here). Then combining with the result above, we 

have Q + 2 - 1 Cmod p) , leading to p I Q + 1 , which is contrary to the 

fact that p I Q. 

The discussion above shows that S = {2}. So f(2) = 2. For odd 

prime number p, fCp) = 1. By CD, we only need to prove thatfCn)2 = 

n (mod 2). Hence for other positive integer n, f(n) suffices to take on 

a positive integer with the same odevity with n. 

Checking directly, we can find that each function in the three 

cases satisfies the conditions. They are what we are finding. 

Explanation. Finding functions from N* -N* is essentially equivalent 

to discussing questions on sequences of positive integers {f C n) }. Here 

we applied the analysis of prime factors, which is transferred from the 

method of number theory. Similarly, some ideas in functional 

equations can also be used in these questions. 

Example 4. Given a positive integer k, find all functions f: N* -

N* , satisfying that for any m, n E N* , 

(fem) + fCn)) I em + n)k. CD 

Solution. Obviously, function fCn) = n satisfies the condition. 

Then is it the unique one? We are going to prove this. 

First, let's prove that f is an injective mapping. 

In fact, if there exist a , b E N* such that a =l=b andf(a) = f(b), 

then it can be inferred from CD that for any n E N* , 

(f(a) + fen)) I Ca +n)k, (fCb) + fCn)) I Cb +n)k. 

Hence for any n E N* , fCa) + fen) is the common divisor of 

(a +n)k and (b +n)k. 

Now take a prime number p > max{a , I b -a I}. Letn = p -a. 
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Since 

(a + n, b + n) = (a + n, b - a) = (p, b - a) = 1, 

We have «a +n)k, (b +n)k) = 1. Consequently, f(a) + fen) = 1, 

which is contrary to the fact that f(a), fen) are both positive 

integers. Therefore f is an injective mapping. 

Next, for any m E N* , let's prove that I f(m + 1) - f(m) I = 1. 

Applying the result of (m, n) and (m + 1, n) to CD, we have 

(f(m) + f(n» I (m + n)k, 

(f(m +1) + fen» I em +1 +n)k. 

As (m + n, m + 1 + n) = 1, it follows that 

(fem) + f(n), fem + 1) + fen» = 1. 

Moreover when m is fixed, for any n E N* , 

(fen) + fem), f(m + 1) - fem» = 1. 

If I f em + 1) - f (m) I oF 1, then there exists prime number p such 

thatp II fem +1) - fem) I. Now take a E N* such thatn = pa -m 

is a positive integer. Then it can be inferred from CD that fen) + 

f(m) I rk and thus, fen) + f(m) = pi, where I is a positive integer. 

Consequently, 

(f(n) + f(m), fCm + 1) - f(m» = Cpl, f(m + 1) - fCm» ~ p. 

This is contrary to @. 

At last, for any n E N* , let's prove that fen) = n. 

We can deduce from the previous result that for any m E N* , 

thereholdsfem +1) - fem) = lor f(m +1) - fem) =-1. If these 

two situations occur in the same function f satisfying the conditions, 

then there exists m E N* such that (f(m + 1) - f(m), fem + 2) -

fem + 1» = (1, -1) or e - 1, 1). Either of the two results leads to 

the equation that fem + 2) = fem), which is contrary to that f is an 

infective mapping. Therefore either of the formula that fem + 1) 

fem) = lor f(m + 1) - fem) =-1 holds for anym E N* . 
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Since f is a function from N* - N* , it can only hold that for any 

m E N* , f(m + 1) - f(m) = 1. Therefore for any n E N* , fen) = 

n +c Cwherec = f(1) -1 ~O). 

If c > 0, we can take a prime number p > 2c. By CD, we have 

f(1) + f(p -1) I pk. Then p + 2c I pk, which needs p + 2c to be a 

power of p. Thus, pip + 2c. Then p I 2c, which is contradictory. 

Hencec = O. 

In conclusion, only the function fen) = n meets the condition. 

11 Choosing a Proper Span 

From this section on, in the following four sections, we will introduce 

some common techniques that may be used in proving questions by 

mathematical induction. 

Logic Structure Let PC n) be a proposition (or property) about 

(of) positive integer n, k a given positive integer. Suppose that 

(1) PO), P(2), ... , P(k) are true; 

(2) it can be inferred from the validity of P (n) that P (n + k) is 

true. 

Then for any n E N* , pen) is true. 

Here k is a span. When k = 1, this is the first form of mathematical 

induction. For some questions, it is more convenient to choose a larger 

span. 

Example 1. For any positive integer n ~ 3, prove that there 

exists a perfect cube, that can be written as the sum of the cube of n 

positive numbers. 

Proof. We can have an understanding of the background of the 

question by comparing it with the result that the indeterminate 

equation x 3 + y3 = Z3 has no positive integer solution. 

When n = 3, from equality Y + 43 + 53 = 63
, we can deduce that 

the proposition is true for n = 3; 

When n = 4, from equality 53 + 73 + 93 + 103 = lY (which was 
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discovered first by Euler), we can deduce that the proposition is true 

for n = 4. 

Now suppose that the proposition is true for n( ~ 3), i. e. , there 

exist positive integers Xl < X2 < ... < Xn < y, satisfying that 

x1 + x~ + ... + x~ = y3. 

Then by equality 63 = 33 + 43 + 53 , we have 

(6y)3 = ( 6x n)3 + ... + (6X 2)3 + (6X I)3 

= (6xn)3 + ... +(6X2)3 +(5XI)3 +(4XI)3 +C3XI)3. 

This shows that the proposition is true for n + 2. 

Therefore for any n ~ 3, the proposition is valid. 

Example 2. Let n be a positive integer no less than 3. Prove that 

an equilateral triangle can be divided into n isosceles triangles. 

Proof. When n = 3, let 0 be the excentre of equilateral triangle 

ABC. Then DAOB, DB 0 C and DC OA are all isosceles triangles. 

Hence the proposition is true for n = 3. 

When n = 4, let D, E, F be the middle point of BC, CA, AB. 

Then DAEF, DFBD, DDCE, and DDEF are all isosceles triangles. 

Hence the proposition is true for n = 4. 

When n = 5, as shown in Figure 6, let 0 be 

the excentre of equilateral triangle ABC, and D , 

E the middle point of BC, CA, respectively, and 

F the middle point of BO. Since the bisector is 

half of the hypotenuse in a right triangle, 

DABO, DBFD, DFOD, DDEC, and DADE 

are all isosceles triangles. Hence the proposition 

is true for n = 5. 

A 

Figure 6 

Now suppose that any equilateral triangle can be divided into n ( ~ 

3) isosceles triangles (i. e., the proposition is true for n). Then for 

equilateral triangle ABC , let D, E, F be the middle point of BC, CA, 

AB respectively. We can divide equilateral triangle AEF into n 
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isosceles triangles. Then combining these n triangles with DBDF, 

DCDE and DDEF, we divide equilateral triangle ABC into n + 3 

isosceles triangles. Hence the proposition is true for n + 3. 

Generalizing all above, the proposition is true for any n :;? 3. 

Example 3. For any n E N* , prove that there are infinitely many 

positive integer solutions to the indeterminate equation 

CD 

Proof. When n = 1, for any x, y E N* , (x, y, x 2 + y2) is a 

positive integer solution to CD; when n = 2, taking m > n :;? 1, m, n E 

N * and letting x = m 2 - n 2, Y = 2mn, z = m 2 + n 2 , we have x 2 + y2 = 

Z2. Therefore the proposition is true for n = 1, 2. 

Now suppose that the proposition is true for n. For positive 

integersx, y, z, if x 2 + y2 = zn, then (XZ)2 + (YZ)2 = zn+2. Hence 

there are infinitely many positive integer solutions to the indeterminate 

equation x 2 + y2 = zn+2. Noting that the proposition is true for n = 1, 

2, we have that the proposition is true for any n E N* . 

Explanation. This question can also be solved this way: let z = 

a + bi, where a, b E N* and 0 < arg z < ~ C there are infinitely many 
n 

pairs of a, b such that the values of a 2 + b2 are distinct). Then by the 

Binomial Theorem, we have zn = (a + bi)n = x + yi, x, y E Z and 

xy * 0 (since arg zn E (0, 11:». Taking the modulus of both sides, we 

get ( ja 2 +b2 r = jx2 +y2, i.e. x 2 +y2 = Ca 2 +b2)n. HenceCI x I, 

I y I , a 2 + b 2) is a positive integer solution to x 2 + y2 = zn. 

Example 4. Find all of the functions f: N -- N satisfying that 

(1) For any m, n EN, there holds that 

(2) f(1) > O. 

Solution. Letting m = n = 0 in C 1), we have f(O) = 2f(0)2. 
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Then fCO) = 0 or ~. Since fCO) EN, f(O) = O. Hence, by (1), we 

have that fCm 2) = fCm)2 holds for any mEN. 

First let's find the value of fen) forn E {1, 2, ... , 10}. 

From the condition and the previous result, we can deduce that 

f(1) = f(2) = fO)2. SincefO) > 0, f(1) = 1. 

Moreover, 

f(2) = f(12 + 12) = f(1)2 + fO)2 = 1 + 1 = 2; 

f(4) = f(22) = f(2)2 = 4; 

f (5) = f C 22 + 12) = f (2) 2 + f 0) 2 = 5; 

f(8) = f(2 2 + 22) = f(2)2 + f(2)2 = 8. 

Noting that 

25 = f(5)2 = f(5 2) = f(32 + 42
) 

= f(3)2 + f(4)2 = f(3)2 + 16, 

and that f(3) EN, we have f(3) = 3. Therefore, 

f(9) = f(3)2 = 9, 

fOO) = f(32 + 12) = f(3)2 + fO)2 = 10. 

We can find that f(7) = 7 with the help of condition (1) and the 

fact that 72 + 12 = 52 + 52. Then by the fact that 102 
= 62 + 82, we have 

fOO)2 = f(6)2 + f(8)2 and f(6) = 6. 

Hence, for any 0 :S:; n :S:; 10, fen) = n. 

Now let's prove by induction with step length of 5 that for any n EN, 

fen) = n. 

For this purpose, we need the identities below. 

(5k + 1)2 + 22 = (4k + 2)2 + (3k _1)2; 

(Sk +2)2 +12 = (4k +1)2 +(3k +2)2; 

(5k +3)2 + 12 = (4k +3)2 + (3k + 1)2; 

(5k +4)2 +22 = (4k +2)2 +(3k +4)2; 

(5k +5)2 = (4k +4)2 + (3k +3)2. 

Each term on the right side of the identities is less than the first term 
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on the left for k ~ 2. Thus, by condition (1) and the inductive 

hypothesis, we can determine the function values of the first terms on 

the left side of the identities. That is, the proposition is true as we 

make use of induction every five numbers. 

Therefore, for any n E N, fen) = n. 

Explanation. From the example above, we can find that proving 

that pen) is true by induction with step length of k is essentially partitioning 

{pen)} intok sets of propositions and proving them respectively. It is 

certain that we can combine this idea with the second form of 

mathematical induction and make use of one set of propositions to 

prove another. This idea is shown in the example above. 

12 Choosing the Appropriate Object for Induction 

Statements that are relevant to positive integers will sometimes involve 

multiple variables. When we deal with them using mathematical induction, 

we need to decide which of the objects is the right one to conduct 

mathematical induction on first. 

Example 1. Suppose that m, n E N* . Prove that for any positive 

real numbers Xl' "', Xn; Yl' "', Yn' if 

Xi + Yi = 1, i = 1, 2, "', n, 

CD 
Proof. We make use of mathematical induction on n. When 

n = 1, from the given condition, we know that 

C1 - Xl)m + C1 - yj) = yj + C1 - yj) = 1. 

So CD holds true for n = 1. 

Now we suppose CD is true for some n -1(n ~ 2). We consider n. 

(1-Xl"'X n )m +C1-yj)'''(l-y';:) 

=(1-Xl'''Xn-1C1-Yn»)m +C1-yj)"'(1-y';) 

~C1 - XI"'Xn-1 + Xl'''Xn-IYn)'" + (1 - (1 - Xl'''Xn-l)m) (1 - Y';). 
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Let us denote a = 1 - XI'" X n-I , b = Y n' From the above equations, 

we know that in order to prove CD to be true for n, we only need to 

prove: 

holds true for any a , b E (0, 1). That is to prove 

(a +b -ab)m ?:-a m +bm -ambm. 

To deal with (2), we proceed by inducting on m. 

When m = 1, obviously (2) is true. Now we suppose (2) to be true 

for some m - 1 (m ?:- 2). Then, 

(a +b -ab)m -am -bm +ambm 

?:-(a m- I +bm - I -am- 1 bm- I )(a +b -ab) -am -bm +ambm 

=2a mbm +abm- 1 +ba m- I -ambm- I -am-Ibm -amb -abm 

We notice that a, b E (0, 1), so 

Therefore, 

i. e. , (2) holds true for m. 

From this, we know that CD is true. 

Explanation. This is a problem involving two variables that are 

both positive integers. It naturally comes to mind that we induct with 

respect to n while treating m as a constant, because the second addend 

on the left side of CD seems easier to deal with while in the process of 

inducting on n. 

Example 2. Prove that for any m, n E N* , 

is a positive integer. 
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Proof. We choose n to be our object of induction. 

When n = 1, 5 (m, 1) = (tan ~ ) 2m = 1, so the statement is true 

for n = 1 for all m E N* . 

Now we suppose the statement is true for some n - 1 for all m E 

N* . We consider the case for n. 

1 - tan2a 1 ) From cot 2a = 2 = -2 (cot a - tan a ,we know that 
tan a 

tan2( ~ -2a) = ! (cota -tana)2 = ! (tan2 a +cot2a -2). 

So, we rewrite the summation as a pairing of the beginning and 

ending terms of the original sum (i. e. the paired sum of the i th and 
(2 n

-
1 -1 _i)th terms) to see that: 

5(1, n) 

= 22~1(tan2(2i ;1)1': +tan2(2(2n-1 -~n-i) +lh)+2n-1 
1=0 

S05(1,n) EN*. 

Next, we suppose 5(1, n), 5(2, n), 5(m - 1, n) are all 
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positive integers. Thus, we consider S em, n) noting that for all k E 

N, we have 

by the Binomial Theorem. 

Therefore, 

(! (x +x- I -2) r 
= ~ i: C~ (x + X-I)k • (- 2)m-k 

4 k~O 

= 4~((xm +x--n1) +bl(xm- I +x-<m-1l) + ... +bm-I(x +x-I
) +bm), 

as from CD, where b l , ••• , bm E Z. 

2 (2i + 1 h f h b . Let x = tan 2n +1 or tea ove equatIon, and we sum the 

terms up for i = 0, 1, 2, ... , 2n
-

2 
- 1. By making use of calculations 

similar to S (1, n) we may know that 

then we have 

Therefore, S (m, n) E Z. Since every term of S (m, n) is greater than 

zero, we have S(m, n) E N* . 

Generalizing from above, for any m, n E N* , all S(m, n) are 

positive integers. The statement is thus proved. 

Explanation. Essentially, we adopted a method of inducting with 

respect to m, a second variable, during the process of inducting from 

n -1 ton. In statements where two variables are involved, the method 

we have used is one of the common ways that we follow when using the 

principles of mathematical induction. 

Example 3. Suppose the non-negative integers aI' a2' , at 
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satisfy 

where 1 ~ i , j ~ t, i + j ~ t. 
Prove that there exists x E R such that for all n E {1, 2, t} , 

we have an = [nx]. 

Proof. Denote In = [:n, an n+ 1), forn = 1, 2, ... , t. We need 

t 

to prove that there exists a real number x E n In. 
n=l 

CD 

L L an U . an + 1 If bl L U et = max ~ , = mIn ~-. we are a e to prove < , 
l~n~t n l~n~t n 

t 

then CD is true since n In = [L, U). In the mean time, in order to 
n=l 

prove L < U true, we only need to prove the following: for any m, 

{ 1 2 } h an am + 1 I n E , , ... , t ,we ave - < ---, name y, 
n m 

Next, we prove @ true by inducting on m + n. 

When n +m = 2, we havem = n = 1. Then @ is obviously true. 

Suppose @ holds for all positive integer pairs (m, n) which satisfy n + 
m ~ k. Then when n +m = k + 1, if m = n, then @ is obviously true. 

If m > n, then we know from the induction hypothesis that (m - n)an < 
n(a m- n +1). We known(a m- n +a n ) ~nam fromai +aj ~ai+j by the 

given conditions. Therefore, man < n(am + 1), i. e., @ is true. If 

m < n, then we know man-m < (n - m) (am + 1) by the induction 

hypothesis. We may deduce that man ~m(am +an-m +1) fromai+j ~ 

ai +a j +1 given by the conditions. So man < n (am + 1) , i. e. , @ holds 

true. 

Generalizing all above, for any m, n E {1, 2, ... , t}, @ is always 

true. 

Explanation. Generally speaking, for any x E R, i, j E N* , it is 

always true that [ixJ + [jx ] ~ [(i + j)x ] ~ [ixJ + [jxJ + 1. This 

actually is a property of the greatest integer function, and we come to 
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the conclusion of this problem when we discuss it the other way 

around. Please be aware that the conclusion from this problem is only 

valid for an arbitrary number of finite terms and we are not able to 

find an x which satisfies the requirement for an infinite sequence al , 

a2' ••• with properties described by the problem. 

From a point of view regarding methodology, the strategy of 

inducting with respect m + n is convenient and appropriate. 

Example 4. Suppose m, n are distinct positive integers. A sequence 

comprised of integers satisfy the following condition: the sum of any 

consecutive m terms is negative, while the sum of any consecutive n 

terms is positive. Please state at most how many terms this sequence 

has. 

Solution. Suppose em, n) = d, m = mid, n = n I d , then em I , 
n I) = 1. We also suppose that the sequence ai' ... , at satisfies all 

condi tions. Denote Ai = a (i-1)d+1 + ... + aid' i = 1, 2, .... 

On one hand, if t ?: em I + n I - 1)d, we consider the following 

number array 

AI, A z , ••• , Am j ; 

A 2 , A 3 , ••• , A mj+1 ; 

From the given conditions, the sum of all numbers on each row is 

negative, and the sum of each column is positive. Note that the sum of 

all the numbers in this array should be negative if by row but the sum is 

positive if by column. This is self-contradictory. Thus, we may deduce 

thatt ~ eml +nl -1)d -1, i.e., t ~m +n -em, n)-1. 

On the other hand, we need to prove: there exists an integer 

sequence with length of m + n - em, n) - 1 that meets the requirements. 

For that, we need to prove the statement below: 

Proposition. Suppose d E N*, and 5, t are distinct positive 

integers such that (5, t) = 1, then there exists a rational number 
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sequence of length (s + t - 1)d - 1, the sum of whose arbitrary 

consecutive sd terms is a negative number, and the sum of whose 

arbitrary td terms is a positive number. (Attention: If we multiply 

every number of this sequence in this proposition by the common 

denominator of all numbers in sequence, then we can get a desired 

integer sequence. ) 

We use mathematical induction in terms of max{ s, t} = r. 

When max{s, t} = 2, without loss of generality let s = 2, t = 1 

(otherwise, we may multiply every number in the sequence by - 1), 

then we may take arbitrarily 2d - 1 positive rational numbers so that 

we may get a sequence which satisfies the proposition. 

Suppose that the proposition is correct for max{ s, t} < r (r ~ 3) , 

then we consider the case max{s, t} = r. 

Without loss of generality, we may let s > t, and notice that 

(s - t, t) = 1. Then, by the induction hypothesis, there exists a 

rational number sequence b1 , b 2 , ' •• , b Cs-!)d-1 , whose sum of arbitrary 

consecutive (s -t)d terms is a negative number, and the sum of whose 

consecutive td terms is a negative number. We prove that there exist 

rational numbers ai' a2' .'., a,d such that the system of inequalities 

below holds: 

{

ad+1 + ... +al +b1 + ... +bC,-lld-1 < 0, 

~.~~~. ~ ~~~ .~.~.I .. ~.~: .. ~ .. ~~.~. ~.~'~1:~~2 .. ~~' 
a,d + ... +a1 +b1 + ... +bCs-'ld < 0. 

and, 

{

atd + ... +a1 >0, 

~.~~1 •• ~ •••••••• ~~:.~.~.~.~.~: 
al +b l + ... +btd- I >0. 

Then, the sequence a,d' a,d-I' ... , aI' b l , b Cs-1 ld-1 is a 

sequence that satisfies the proposition with length (s +t -1)d -1. So, 
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the proposition is proved. 

As a matter of fact, if the systems of inequalities are to hold 

simultaneously, we only need to choose rational numbers aI' a2' 

ad' such that 

al >-(bl + ... +btd- I ), a2 >-(al +b l + ... +btd- 2), 

ad > - (ad-I + ... +al +b l + ... +b<t-Ild) , 

then we take ad+! such that it is a rational number satisfying 

- (ad + ... +al +bl + ... +b<t-Ild-I) < ad+1 

<- (ad + ... +al +bl + ... +bCs-lld-I). 

Note that the right-hand side of ® when subtracted from it the 

left-hand side will equal- (b<t-1ld + ... +bC,-]ld-l) >0 (here we used the 

induction hypothesis). Therefore, an ad+1 satisfying the conditions 

does exist. Then we can deduce in the same manner rational numbers 

aI' "', a,d satisfying the systems of inequalities CD and @ exist. 

We go back to the original question. The integer sequence that 

satisfies the conditions has at most m + n - (m, n) - 1 terms. 

Explanation. The cases m = 11, n = 6 for this question once 

appeared as a competition question. While the example for m = 11, 

n = 6 is easy to get, it is hard to find a generic example for m, n. 

When this example appeared on a quiz in the China National Math 

Olympiad Trainee Team in the year 2000, a very small number of 

students correctly solved it. 

13 Make Appropriate Changes to the Propositions 

When we use mathematical induction to prove propositions, we sometimes 

need to deal with them by strengthening conditions, making use of 

auxiliary propositions, or making the proposition more general, etc. 

Example 1. For any positive integer n, we have 



Selected Topical Discussions 109 

1 3 2n -1 1 -.- ..... --<--
2 4 2n ffn' CD 

Proof. If we deal with it directly using weak induction, during 

the inductive step we would need to show that the inequality 

2n + 1 • _1_ <: 1 
2(n + 1) ffn ~ 13(n + 1) 

is true, which requires (n + 1)(2n + 1)2 ~ n(2n + 2)2, and this is 

equivalent to (2n + 1)2 ~ n(4n +3). However, this inequality is not 

true. So it is hard to prove CD to be true by directly applying mathematical 

induction. 

We instead prove a strengthened proposition of CD: 

-1 . ~ . ... . 2n - 1 <: 1 
2 4 2n ~ 

13n +1 

When n = 1, the left-hand-side of @ is equal to ~ , and the right­

hand side is equal to ~. So @ is true for n = 1. 

Now we suppose @ is true for some n, then for n + 1 , we have 

1 3 2n - 1 2n + 1 1 
2 . 4 ..... -2-n- • 2(n + 1) ~ -,j~3=n=+=71 

2n + 1 
2(n + 1)' 

In order to prove @ is true for n + 1, we only need to prove that 

1 • 2n + 1 <: 1 
-/~3=n=+=1=- 2n + 2 ~ 13n + 4 

That is to prove 

We note that CD is equivalent to 

3(2n +1)2 ~ On +1)((2n +2)2 -(2n +1)2) = On +1)(4n +3) 

812n 2 + 12n + 3 ~ 12n 2 + 13n + 3 

8n ;? O. 
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So, Q) is true. Therefore (2) is true for n + 1 , that is to say, for an 

arbitrary n E N* , we have (2) holds true. 

Considering /3n + 1 > ffn, we know that CD is true for any n E 

N* . 

Explanation. It is sometimes difficult to realize the inductive step 

from n to n + 1 when using mathematical induction for proposition 

P(n), where n is a positive integer. However, it is sometimes easier 

for a strengthened proposition QCn) to be proved using mathematical 

induction. Therefore, we sometimes need to strengthen the proposition 

ourselves. Of course, when we do that, we need to make appropriate 

choices under the premise of getting the essence of the proposition. 

The aim is to help realize the inductive step for induction. 

Example 2. Suppose At, A 2, ... , Ar is an arbitrary r-partition 

for N* Ci. e. , intersection of any two from At, ... , Ar is an empty set 

and UAi = N* .) Prove: There is a setA among At , ... , Ar which has 
i=l 

the following property: There exists an mEN * such that for any k E 

N* such that we can take k numbers a I' ••• , ak from A, satisfying that 

for 1 ~ j ~ k -1, we have 1 ~ aj+t - aj ~ m. 

Proof. Suppose that P c N* . If there are connected segments of 

positive integers of arbitrary lengths in p, then we call P a Long 

Subset. 

We will strengthen the proposition as follows: 

For any Long Subset P, any r-partition A I , A 2, ... , Ar on P must 

have one set A which enjoys the property required of the problem. 

We apply mathematical induction with respect to r. 

When r = 1, according to the definition of Long Subset, we know 

that the proposition is correct by taking m = 1. 

We suppose the proposition is true for the case r = n. We consider 

the case r = n + 1. 

Suppose P = (AI U A2 U ... U An) U A n+1 , Q = AI U A2 U ... U 

An. If Q is a Long Subset, we know that the proposition is correct by 
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the induction hypothesis. If Q is not a Long Subset, then there must 

exist an l E N* such there is no consecutive positive integer segments of 

length l in Q. Since P is a Long Subset, for any k E N* , there exists a 

consecutive positive integer segment of length kl, within which there 

are at least k numbers which belong to A n+!. Now we take out the least 

k numbers belonging to An+! from this consecutive positive integer 

segment of length kl. Then the difference of two consecutive numbers 

in P is no bigger than 21. Then, we take m = 21, and the set A n +! 

enjoys the property required of the problem. 

For all above, the strengthened proposition is proved true. Since 

N* itself is a Long Subset, the original proposition is correct. 

Explanation. The problem essentially requires to prove that for 

each r - Partition of N* , there exist sets A andm E N* , such that after 

we partition the numbers in N* into continuous integer segments of 

length ; , for any k E N* , there are adjacent k "consecutive integer 

segments" such that each of the "consecutive integer segments" has 

within it a number that belongs toA. Hence, if the union set of other 

subsets does not contain consecutive integer segments of arbitrary 

lengths, then we can find k numbers that satisfy the given conditions 

within A. By this we thought of introducing the concept of "Long 

Subset", and then appropriately strengthened the problem. 

Example 3. Prove that: there exist infinitely many n E N* such 

that 

n I (2n + 2). CD 

Proof. n = 2 satisfies CD. The next integer that satisfies CD is 

positive integer n = 6. The relationship between them is 6 = 22 + 2. 

This hints us to deal with this problem using the following method. 

Suppose n (> 1) is a positive integer with property CD, if we are 

able to prove: (2n +2) I (2 2n+2 +2), then we may deduce in this manner 

that there are infinitely many positive integers n that satisfy CD. 
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We note that (2"-1 + 1) I (22"+1 + 1) holds under the condition 

(n -1) I (2" + 1). We deal with it by adding one more requirement. 

Noting that n = 2 enjoys the property, now we suppose n ( ? 2) 

enjoys the above property. Let m = 2n + 2, we are to prove m also 

enjoys the above property. 

As a matter of fact, since (n -1) I (2" + 1), and 2n + 1 is an odd 

number, we may suppose 2" + 1 = (n -1) q, where q is an odd number. 

Then 

2m- 1 + 1 = 22"+1 + 1 = (2n - 1 )q + 1 

= (2n - 1 + 1) ((2n - 1 )q--l - (2 n - 1 )q--2 + ... + 1) , 

so (2n
-

1 + 1) I (2m
-

1 + 1), and also (2" +2) I (2m +2), i. e. , m I (2m +2). 

On the other hand, by (n -1) I (2" + 1), we know that n -1 is an 

odd number so n is an even number. Thus, by n I (2n + 2), we may 

assume that 2n + 2 = np, where p is an odd number (here we use 

4{(2n +2», then, 

2m + 1 = (2")P + 1 = (2" + 1) ((2")P-l - (2")p-2 + ... + 1), 

i. e. , we have (2n + 1) I (2m + 1), and that leads to (m -1) I (2m + 1). 

Generalizing above, we know that the proposition is true. 

Further thought: 

If the problem is like follows: Prove that there exist infinitely 

many positive integers n (> 1) such that n -1 I 2" +1. Do we still need 

to strengthen it to be proposition @? 

Example 4. Find all the functions j: Z -- Z such that for any x , 

y, z E Z, we have 

Solution. It's not hard to see that the following three functions 

j(x) = 0, j(x) = x, j(x) =-x 

satisfy the conditions in the question. 

Next, we are to prove that they are exhaustive. 
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Take (x, y, z) =(0, 0, O),wegetf(O) =3f(0)3. This equation 

of the third degree about f(O) has only one integer solution. So f(O) = O. 

Then we take (x, y, z) =(x, -x, 0) and we may getf(x) =-f(-x), 

so f(x) is an odd function. Meanwhile, we let (x, y, z) = (1,0, 0), 

and we may get f(1) = f(1)3, then f(1) E {-1, 0, 1}. 

Next, we are to use mathematical induction to prove: 

For any x E Z, we have f(x) = f(1)x (Then by considering the 

value of f (1) we complete the solution of this problem. ) 

We conduct induction with respect to 1 x I. Let (x, y, z) = 

(1,1,0), we havef(2) = 2f(1)3 = 2f(1). Let (x, y, z) = (1,1, 

1) and we have f (3) = 3 f (1). Then considering the fact that f (x) is 

an odd function, we know that the conclusion CD is true for 1 x 1 ~ 3. 

Now we suppose thatfCx) = f(1)x is true for 1 x 1 <kCk E N*, 

k > 3). We discuss the case for f(k) and f( - k). Since f( - k) is an 

odd function, we only need to prove f (k) = f (1) k. 

For this aim, we need to use the auxiliary proposition below. 

Proposition. For any k E N* , k ~ 4, the number k 3 can be expressed 

as the sum of five cubes, and every term of the five addends has its 

absolute value less than k 3
• 

As a matter of fact, from 

43 
= 33 + 33 + 23 + 13 + 13 , 

53 = 43 + 43 + (_1)3 + (_1)3 + (_1)3, 

e = 53 +43 +33 +03 +03
, 

73 
= 63 +53 +1 3 +1 3 +(? 

For odd numbers that are no less than 9, namely, 2m + 1 (m E 

N* , m ~ 4), we have 

(2m + 1) 3 = (2m - 1) 3 + (m + 4) 3 + (4 - m) 3 + (- 5) 3 + ( - 1) 3. 

@ 

So, the proposition is true for k = 4 or 6 and odd numbers that are 

no less than 3. 

Note that for any k > 3, k E N* , there exists the factored form 
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k = my, where m E N* , y = 4 or 6 or an odd number bigger than 3. 

By what we proved before, there is an expression y3 = y~ + ... + y~, in 

which I Yi I<y, 1 ~i ~5. Thenk 3 
= CmYl)3 + ... +Cmys)3, and 

I mYi I < my = k. So, the auxiliary proposition holds true. 

By the above proposition, for any k > 3, k E N* , we may know 

k 3 
= x~ + ... + x~, I Xi 1< k. So we know from conditions that 

jCk)3 + jC- X 4)3 + jC- x s)3 = JCX1)3 + jC X 2)3 + JC X 3)3. 

Combining the induction hypothesis, jCXi) = j(1)Xi' jC - Xi) 

- j(1)Xi' we have 

5 5 

jCk)3 = ~jCXi)3 = j(1)3 ~xf = k 3 j(1)3, 
i=l i=l 

sojCk) = j(1)k. 

So the conclusion CD is proved, and the problem is solved. 

Explanation. This problem essentially was made from the identity 

®. In the process of proof, the method of introducing an auxiliary 

proposition is sometimes used for the sake of realizing inductive step 

for induction, but this is not only intended for proving propositions by 

mathematical induction. A math problem, no matter how hard it is, is 

often integrated by creatively combining some simple conclusions. 

Example 5. There is one black and one white ball in a jar. We 

also have another 50 white and 50 black balls. We conduct the following 

operation for 50 times: Randomly pick out a ball and then put in two 

balls that have the same color as the one picked. Finally, there are 52 

balls in the jar. What is the most likely number of white balls in the jar 

at the end? 

Solution. We prove that for any 1 ~ k ~ 51, the probability of 

having k white balls is always 5\. 

We make the problem more general. After n operations, the 

probability of having k white balls is P n Ck), 1 ~ k ~ n + 1. 

Next, we are to prove that 
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When n = 1, the above proposition is obviously true. We suppose 

the proposition to be true for n, then we consider the case n + 1. We 

note that the following recursive formula holds. 

where 1 < k < n + 1, and P n (0) = O. (The recursive formula is 

obtained by conducting classified discussions for the number of white 

balls ( k - 1 and k ) in the jar before the n + 1 th operation. ) 

Then, through P n (1) = P n (2) = ••. = P n (n + 1) = n ~ 1 (induction 

hypothesis) we know that 

1 
n +2· 

n+2 

By combining the fact that ~ P n+1 (k) = 1, we can prove that 

1 
P n +1 (n+2) =n+2· 

So, the proposition holds true. 

Explanation. To make the proposition more general is only a 

means to an end. Here we do it because we want to make use of the recursive 

method. Idea and connotation determine the form we present. 

Example 6. Prove that there exist positive integers n 1 < n 2 < ... < 
n so such that 

Here S (n) represents the sum of the digits of the number as 

represented by the decimal system. 

Proof. We make the proposition more general. We use mathematical 

induction to prove the conclusion below. 

For anyk E N*, k ~2, there exist positive integersn1 <n2 < ... < 



116 Sequences and Mathematical Induction 

nk such that 

When k = 2, we take n 1 = 107, n 2 = 98. Noting that 107 + 8 = 98 + 

17 = 115 - 7(mod 9), we know that the proposition is true for k = 2. 

We suppose that the proposition is true for k (~ 2), and we also 

suppose that n 1 < n 2 < ... < n k satisfies CD. We consider the case k + 1. 

Let mEN * , and we make 9m - 2 = n i + S (n i ), 1 ~ i ~ k. We 

take positive integer n'i = 9 x 10m +n i , 1 ~ i ~ k, n~+l = 89~, then 

n: C1 ~ i ~ k + 1) are all positive integers with m + 1 digits, (Be careful 

that, for k = 2, it is obvious that for k in the induction hypothesis, we 

have ni < Hr, son: is a number withm +1 digits, 1 ~i ~k), and that 

for 1 ~ i ~ k , we always have 

At the same time, 

So,n~+S(n'l) = ... =n'HI+S(n'HI) -7(mod9), and we can 

conclude from induction hypothesis and the made structure that n~+1 < 
n~ < n; < ... < n~. Therefore the proposition is true for k + 1. 

By all above, the proposition holds true. 

Explanation. Here in CD, ni + SCni) - 7(mod 9) is required 

because it is important to find n'H! for the inductive step. It is a 

necessary strengthening found when in the process of structuring the 

induction. 

14 Guessing Before Proving 

Guessing before proving is a basic procedure for math discoveries. If 

the guessed proposition cannot be proved then it becomes a mathematical 

conjecture. By first using case study on small examples to examine a 
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proposition in terms of positive integers n, then using methods like 

analogy and incomplete induction, we may guess a general conclusion, 

and attempt to prove it through mathematical induction. This kind of 

process often occurs in our problem-solving experiences. 

Example 1. We have a function defined by f: N* - N, and f (1) = 

O. For any n E N * , n ~ 2, we have 

f C n) = max {I (j) + f C n - j) + j I j = 1, 2, "', [; ] } . 

Find the value of f(2004) and prove it to be correct. 

Solution. Let's try calculating the values of fCn) for small values 

of n, and we may find the following results: f(2) = 1, f(3) = 2, f(4) = 

4, f (5) = 5, .... During the process of calculating these values, we 

may find that when 1 ~ j ~ [ ; J, the maximum value of fCj) + fCn -

j) + j is reached when j = [; J. Therefore, we may guess 

fC2n) = 2fCn) + n, fC2n + 1) = fCn) + fCn + 1) + n. CD 

Next, we will prove CD to be true by mathematical induction. 

When n = 1, we know from the above discussions that CD is true. 

Now we suppose that CD is true for 1, 2, "', n - 1. We consider 

the case n. 

We first find the value of f (2n ). 

f C 2n) = max {f (j) + f (n - j) + j I 1 ~ j ~ n} 

~ f (n) + f (2n - n) + n 

= 2fCn) +n. 

Hence, we only need to prove thatfC2n) ~2f(n) +n . 

. Now we discuss the cases 1 ~j ~ n, and separate the cases whenj 

is even or odd. 

Whenj = 2k, 1 ~k ~ [; J, by induction hypothesis, we have the 
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following: 

jCj) + jC2n - j) + j = jC2k) + jC2Cn -k)) +2k 

= C2jCk) +k) +C2jCn-k) +n-k) +2k 

=2(jCk) +jCn-k) +k) +n ~2jCn) +n. 

The final inequality is obtained through the definition of j Cn). 

When j = 2k - 1, 1 ~ k ~ [n ;-1], we know from induction 

hypothesis that 

j Cj) + j C 2n - j) + j 
= j C 2k - 1) + j C 2 C n - k) + 1) + 2k - 1 

= CjCk) + jCk -1) +k -1) +(JCn-k) + jCn-k +1) +n-k) +2k-1 

= (jCk -1) +jCn-Ck -1)) +k -1) +CjCk) +jCn-k) +k) +n-l 

~jCn) + jCn) +n = 2jCn) +n. 

Here we deem JCO) = O. When n is even, [n ;-1] = [; J; When 

n is odd, assume n = 2m + 1, then when k = [n ;- 1 ] ' 

jCk) + jCn-k) +k = j(m +1) + jCm) +m +1 ~jCn) +1, 

so the deduction of the above inequality is correct. Therefore j C 2n) ~ 

2jCn) + n. 

When we try to evaluate jC2n + 1), similar to the above discussions, 

we know that we only need to prove: 

j(2n +1) ~jCn) + j(n +1) +n. 

Similarly, we discuss the cases 1 ~ j ~ n, and separate the cases 

when j is even or odd. 

When j = 2k, 1 ~ k ~ [ ; J, by induction hypothesis, we have the 

following: 

jCj) + jC2n + 1 - j) + j 

= j(2k) + jC2n +1 -2k) +2k 
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= C2jCk) +k) +(JCn-k) + jCn-k +1) +n-k) +2k 

= CjCk) + jCn-k) +k) +(JCk) + jCn +l-k) +k) +n 

~jCn) + jCn +1) +n. 

When j = 2k - 1, 1 ~ k ~ [n ; 1 J. we have 

j(j) + j(2n + 1 - j) + j 
= j(2k -1) + jC2n-2k +2) +2k-l 

119 

= (J(k -1) +jCk) +k -1) +C2j(n-k -1) +n-k +1) +2k-1 

= (J(k -1) + jCn-Ck -1» +k -1) + (JCk) + jCn +1-k) +k) +n 

~ jCn) + jCn + 1) +n. 

Therefore, jC2n + 1) ~ jCn) + jCn + 1) + n. 

Using all of the above, for any n E N* , CD is always true. 

Now we make use of CD to recursively calculate in turn and we can 

get the following: 

j(2) = 1, j(3) = 2, j(4) = 4, jO) = 9, j(8) = 12, j(15) = 

28, j(6) = 32, j(31) = 75, j(32) = 80, j(62) = 181, j(63) = 186, 

j(25) = 429, j(26) = 435, j(250) = 983, j(251) = 989, j(501) = 

2222, JOO(2) = 4945, j(2004) = 10892. 

The value in question is thus jC20(4) = 10892. 

Explanation. When we make guesses, it might be not very rigorous. 

But when we are doing the deductions or proofs, we must be very 

careful, otherwise, it is very easy to come to wrong conclusions and it 

is harmful as a scientific attitude and habit. 

Example 2. For positive integers k ?': 1, we let p (k) be the 

smallest prime number that cannot divide k. If P Ck) > 2, we denote 

q Ck) to be the product of all prime numbers that are less than p (k). If 

P Ck) = 2, then we let q (k) = 1. 

We define the sequence {Xn} as follows: Xo = 1, and 
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Find all n E N* such that Xn = 111 111. 

Solution. We try calculating some initial values of Xn and is tabulated 

below. 

If we write n as a binary number, then according to the above 

data, we may know that the number of Is in the binary system for n is 

the number of prime numbers whose product is Xn. Taking a step 

further, we arrange the prime numbers from the smallest to biggest, 

assuming Po < PI < pz < .... Checking it with the data in the above 

table, it is not hard to come to the conjecture below: 

For any n E N* , we suppose under the binary system, 

n = 2r, + 2r
2 + ... + 2rk , rl > rz > ... > rk ~ O. 

That is, the binary number that corresponds to n has altogether 

e r 1 + 1) digits, among which the elements on the digits r k + 1, r k-1 + 1, ... , 

r1 + 1 are Is, on other digits the elements are all zeros. Then Xn = 

P r, P r
2 

••• P r
k 

' where P r
i 

represents the r i + 1 th largest number among all 

prime numbers. CD 
We are to prove the above conclusion by inducting with respect to n. 

When n = 1, from Xl = 2 = Po we know that CD holds. 

Now we suppose the proposition is true for some n, i. e. , Xn = 

Pr, Pr
2 
···Prk' Consider the case n + 1. 

If rk ~ 1, that is, the last digit of the binary expression of n is 0, then 

n +1 = 2r, +2r
2 + ... +2r

k +2°. At this time, Xn is an odd number, so 

P ex n) = 2 and further, q ex n) = 1. By the induction hypothesis, 

we know 

If rk = 0, suppose i is the largest positive integer that makes ri-l ~ 

ri +2, i.e., if we count from the second to last digit of the number in 

binary corresponding to n towards the left, among all the binary 

digits, only the (ri + Dth digit is the first, whose binary digit at the 

left-hand side contains at least one O. That is, 
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n 1 0· .. 0 1 0···0 0···0 1 
r 1 +1 th r2 +1 th T i- 1 +1th r

l 
+1th 

digit digit digit digit 
r

1 
items 

At this time, rk-j = j , where 0 < j < k - i. Then 

n + 1 = 2r1 + 2r
2 + ... + 2ri--1 + 2ri+1 

( If i does not exist, then n + 1 = 2"1+1). 

At this time, we know by induction hypothesis that P (x n) = Pri+1 , so 

q(x n ) =POP1"'Pri =POP1"'Pk-i =PrkPrk-1"'Pri' 

So 

Pr, "'Pri_, Pr,+lPr, "'Prk 
X n+l 

Pr, •.• Pr
k 

So, Q) is correct for n + 1, i. e. , for any n E N* , Q) holds. 

Now from 

111111 =3 X7 X11 X13 X37 =P1hP4PSP11' 

we can get the binary expression for the positive integer n which 

satisfies x n = 111 111 as follows, 

So, the number n we look for is n = 2106. 

Example 3. The integer sequence {a n} is defined as follows: 

Find the explicit formula of the sequence {an}. 

Solution. It is not easy to find an at first glance of the recursive 

formula given by the question. Can we get the linear recursive formula 

with constant coefficients from the condition? We may boldly guess 

a n+l = Pan + qa n-l , where P, q are constants to be determined. 

Let's try calculating the ini tial few terms and get a 1 = 2, a 2 = 7, 

a3 = 25, a4 = 89, .... We may calculate the coefficients by using these 
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initial terms and come to a conjecture: an+1 = 3a n + 2a n-l, n ;:?c 2. 

Next, we are to prove the above conjecture using mathematical 

induction. 

The above conjecture is correct for n = 2, 3. 

Suppose for k :0( n, we have ak+l = 3ak + 2ak-l. Then for the case 

k = n + 1 , we have 

Notice that 

12(an+,a~~, -a~) 1= 12
::-

1 II an+1 

s-: ~ 12an
-

, I ~ 2 an . 

By the induction hypothesis, we know an > 2a n-,. So 

S· .. d I a~+1 1--- 1 mce a n+Z 1S an mteger, an a n+Z - ----;;: ~"2' we get 

+ 2a n ) I 

So an+z = 3a nH +2a n. Then the conjecture is true for the case k 

n+1. 

Generalizing all of above, we know the sequence {an} satisfies 

al = 2, az = 7, an = 3a n-l +2a n-z, n = 3,4, .... By utilizing the 

characteristics equation of recursive sequences, we solve the linear 

recursive formula with constant coefficients and get 

17 +5,/17 (3 +,/17)n + 17 -5,/17 (3 _,/17)n 
~ 2 ~ 2 
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Example 4. The function j: N* --N* is defined as follows: j (1) = 

1, for n E N* , the number jCn + 1) is the greatest positive integer m 

that satisfies the following conditions: There exists an arithmetic sequence 

at, az, ... , arn comprised of positive integers Chere a sequence with 

less than 3 terms is also regarded as an arithmetic sequence), such that 

at <az < ... <am =n, andjCat) = j(az) = ... = Jearn). Prove that 

for any positive integer n, we have j(4n + 8) = n + 2. 

Proof. The question does not require us to evaluate each function 

value at n. But if we look at the definition of j, only when each 

previous value of j(n) is found can we easily find the next one. 

We do calculations for initial values by using the definition of j so 

that we may know that: 

j(1) = 1, j(2) = 1, jO) = 2, j(4) = 1, j(5) = 2, j(6) = 2, 

j(7) = 2, j(8) = 3, j(9) = 1, JOO) = 2, j(1) = 2, j(2) = 3, 

j(3) = 2, j(14) = 3, j(5) = 2, j(6) = 4, j(7) = 1, j(8) = 3, 

j(9) = 2, j(20) = 5, j(21) = 1, j(22) = 2, j(23) = 2, j(24) = 6, 

j(25) = 1, j(26) = 4, j(27) = 2, j(28) = 7, j(29) = 1, j(30) = 4, 

j(1) = 2, j(2) = 8, j(33) = 1, j(4) = 5, j(5) = 2, j(6) = 9, 

These listed values show that when 1 ~ n ~ 7, we have j (4n + 8) 

n + 2. Further, it pushes us to guess that when n ;;?o 8, we have 

j (4n + 1) = 1; j (4n + 2) = n - 3 ; 

j(4n +3) = 2; j(4n +4) = n + 1. 

Next, we want to prove that when n ;;?o 8, CD is always true by 

inducting with respect to n. 

When n = 8, we know that CD is true by using the listed values 

above. 

Now we suppose that CD holds true for 8, 9, ... , n -1. We consider 

the case n(;;?o 9). 

By making use of the calculated values from j(t) to j(6) together 

with our induction hypothesis, we may know that j(4n) = n is the 

maximum value amongj(1), j(2), ... , jC4n). SojC4n +1) = 1. 
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Now we study the items that are equal to 1 from f(1) to f(4n + 

1), and we findf(17) = f(21) = ... = f(4n +1) = 1. Combined with 

the definition of f we come to f (4n + 2) ?'o n - 3. On the other hand, 

for the arithmetic sequence a I < a2 < ... < am ( = 4n + 1) with 4n + 1 

as the ending term, if f(a,) = ... = fCa m ) = 1, then the common 

difference of this sequence d ?'o 4, for if d ~ 3, then at least two of 

f(4n - 2), fC4n - 1), f(4n), fC4n + 1) should be equal to 1; 

however, by the induction hypothesis, there is only f C 4n + 1) = 1. If 

d > 4, then by the induction hypothesis and the values shown from 

(4n + 1) -1 f C 1) to f (36) we know that d ?'o 8. So, m ~ 1 + 8 < n - 3. 

Hence, f(4n + 2) = n - 3. 

Then we evaluate the values from f(1) to f(4n +2), there is only 

f(4n - 12) = fC4n + 2) = n - 3 CHere we made use of n ?'o 9), 

therefore f C 4n + 3) = 2. 

Finally, by a similar manner of discussing the value of f C 4n + 2) , 

we may know that 

f C 4n + 4) = n + 1. 

So, for any n E N* (n ?'o 8), CD always holds. Furthermore, for 

anyn E N*, we havefC4n +8) = n +2. 

Explanation. To guess the result from a regular pattern, the number 

of initial values we need to calculate can be different for different 

problems. In this case, carefulness and confidence are both important. 

Example 5. For any n E N* , denote pCn) to be a non-negative 

integer k that satisfies 2k I nand 2k+l 1'n. The sequence {xn } is defined 

as follows: 

1 
XI) =0, - = 1 +2pCn) -Xn-I' n = 1,2, .... 

Xn 

Prove that every non-negative rational number will appear exactly 

once in the sequence X I)' X I , 
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Proof. 
Pn 

If we write Xn = - CPn' qn E N* , CPn' qn) = 1), then 
qn 

the condition will be 

qn Pn~ 
= (1 +2p(n)) --. 

Pn qn-l 

It is the most convenient to eliminate the denominator when Pn 

qn-l. This guess brings out the following proof. 
Define the sequence {yn} as follows: 

Yl = Y2 = 1, Yn+2 = (1 +2pCn))Yn+l - Yn' n = 1,2, 

We come to the following conclusions in turn. 

Conclusion 1. For any n E N* , we always have Xn 
Yn 

We will prove it by inducting with respect to n. The inductive step 

for induction could proceed as follows. 

1 Yn 
= 1 + 2p C n + 1) - X n = 1 + 2p Cn + 1) --

Yn+l 

SOX n+l 
Yn+l 

Conclusion 2. For any n E N* , we always have Y2n+l = Yn+l + Yn , 

Y2n = Yn. 

We will induct with respect to n. As a matter of fact, if Conclusion 2 

is true for n, then 

Y2n+2 = (1 +2pC2n +1))Y2n+l -Y2n =Y2n+l -Yn =Yn+l; 

Y2n+3 =(1 +2pC2n +2))Y2n+2 - Y2n+l 

= (1 + 2(1 + pen + 1))) Y2n+2 - Y2n+l 

=2Yn+l + C1 + pen + 1)) Yn+l - (Yn+l + Yn) 

= Y n+l + C1 + pC n + 1) ) Y n+l - Y n 

=Yn+l + Yn+2. 
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By this and the initial conditions, we may know that Conclusion 2 

is correct. 

From Conclusion 2 combined with mathematical induction method, it 

is easy to prove for any n E N* , we always have (Yn' Yn+l) = 1. 

Conclusion 3. For any p, q E N*, (p, q) = 1, there exists a 

unique n E N* such that (p, q) = CYn' Yn+l). 

We will prove by inducting with respect to p + q. When p + q = 2, 

P = q = 1. At this time (p, q) = (Yl , Y2)' while from Conclusion 2 

we know that when n ?': 2, at least one from Yn and Yn+l is bigger than 

1. So, (Yn' Yn+l) oF (Yl' Y2). Therefore, Conclusion 3 is true for 

p +q = 2. 

Now we suppose Conclusion 3 is true for all positive integer pairs 

(p, q) satisfying p + q < m (m ?': 3, m E N* ) and (p, q) = 1. 

Consider the case p + q = m. At this time p oF q, and we may discuss 

under two cases, p < q and p > q. 

Case 1. p < q. From (p, q) = 1 we know that (p, q - p) = 1, 

however, (q - p) + p = q < m. By induction hypothesis, there exists 

a unique n E N* , such that (p, q - p) = (Yn' Yn+l). Then Cp, q) = 

(Yn' Yn + Yn+l) = (Y2n' Y2n+l). (Here we used Conclusion 2.) 

On the other hand, if there exists k < I, k, I E N* , such that 

(p, q) = (Y k' Y HI) = (Y 1 , Y 1+1 ) , then Y k = Y 1 , Y HI = Y /+1. At this 

time, if k and I are both even numbers, then by Conclusion 2 we know 

that (p, q - p) has two different expressions, which is contradictory 

to the induction hypothesis. But when k is odd, Yk > YHI , and this is 

contradictory with p < q. So k is an even number. By the same 

reasoning l is an even number. Therefore, there exists only one n E 

N* such that (p, q) =(Yn' Yn+I). 

Case 2. p > q. Discuss in a similar manner as Case 1. 

By all above, Conclusion 3 holds. 

By Conclusion 1 and 3, and Xo = 0, we may know that the proposition 

is true. 
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15 Problems Regarding Existence with Sequences 

Problems regarding existence appear on all branches of mathematics. 

They also showed up in previous sections of this book. Here we 

dedicate one section to discuss the existence problems of sequences 

with the aim of stressing it and bringing it attention. We discuss the 

ways to handle this kind of questions in the form of examples. 

Example 1. Suppose a, b are integers that are bigger than 2. 

Prove that there exist a positive integer k and a finite sequence n 1 , n 2' ••• , 

n k of positive integers such that n 1 = a, n k = b, while for 1 < i < 
k -1, it is always true that (n i + n i+1) I n in i+1. 

Proof. We use the notation "a ~ b" to imply that the positive 

integers a, b can be "connected" by the above-like sequence, then "if 

a ~ b holds, then b ~ a also holds". 

A natural idea is to prove: for any two adjacent positive integers 

(both bigger than 2), they are "connectable". We can meet this 

objective by use of the following two conclusions. 

2n. 

Conclusion 1. For any n E N* , n ~ 3, it is always true that n ~ 

The following sequence shows that Conclusion 1 holds. 

n, n(n-1), n(n-1)(n-2), n(n-2), 2n. 

Conclusion 2. For any n E N* , n ~ 4, it is always true that n 

n-1. 

We use the sequence 

n, n(n-1), nCn-1)(n-2), nCn-1)Cn-2)Cn-3), 2Cn-1)Cn-2). 

Combining Conclusion 1 from which we know that 2 (n - 1) (n -

2) ~ (n -1) (n -2), with (n -1) Cn -2) +(n -1) = (n _1)2 is a divisor 

of (n - 1) (n - 2) • (n - 1), we know that Conclusion 2 holds. 

For integers a, b that are greater than 2, without loss of 
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generality, suppose a ~b. Ifa =b,thenusinga ~a+l ~b(=a)we 

know that the proposition holds. If a < b, then using a ~ a + 1 ~ a + 

2 ~ ... ~ b we also know that the proposition holds. 

Explanation. The key to solving this problem was the direct 

construction of Conclusion 1 and Conclusion 2. This is the most natural 

way of thinking when dealing with problems of existence. 

Example 2. Suppose m E N* . Tell whether there exists a polynomial 

I(x) of degree n with integer coefficients such that for any nEZ, any 

two terms from the sequence {ak} defined by the following method are 

coprime: al = I(n), ak+l = I(ak)' k = 1, 2, .... 

Solution. When m = 1, this kind of polynomial does not exist. 

As a matter of fact, if there exists a function I (x) = ax + b that 

meets the requirements, without loss of generality, suppose a > O. 

Then for any n E Z, we have 

ak =a k 
0 n + (a k- 1 + ... +Db. CD 

This conclusion could be reached by inducting with respect to k. 

If b = 0, then for any positive integer n that is bigger than 1, we 

may know from CD that every term of the sequence {ak} is a multiple of 

n; therefore, there are no terms that are coprime. 

If b oF 0, since a is a positive integer, we know that there exists a 

k E N* such that I (a k- 1 + ... + 1)b I> 1. Denote c = (a k
-

1 + ... + Db. 

We take n as a prime factor of I c I, then the ak corresponding to this n 

is a multiple of n. From CD we know that 

a2k = a 2k 
0 n + (a 2k- 1 + ... + 1)b 

= a 2k 
0 n + (a k + 1) 0 (a k

- 1 + ... +1)b 

=a 2k on +(a k +1)c. 

So n is also a divisor of a2k , which makes ak and a2k not coprime. 

So, when m = 1, there does not exist a polynomial with integer 

coefficients that meets the requirements. 

Next, we are to prove that when m ~ 2, this kind of polynomial 
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always exists. 

We will prove: When I(x) = x m
-

I (x -1) +1, for any nEZ, any 

two terms from the corresponding sequence {ak} are coprime. 

We notice that for anyk E N* ,we haveaHl =a'k-1(ak -1) +1-

1 (mod a k ), and also, 

Following this, we may know by mathematical induction that, for 

any positive integer t > k, it is always true that at - 1 (mod ak). So, 

any two terms from the sequence {ak} are coprime. 

From all above, when m = 1, this kind of polynomial does not 

exist. When m ;?o 2, we can always find such polynomials. 

Explanation. For the case m ;?o 2, we take an arbitrary polynomial 

g (x) of degree m - 2 with integer coefficients. 

Let I ex) = x ex - 1) g (x) + 1. By a similar method as above, we 

may prove that for nEZ, any two terms from the corresponding 

sequence {ak} are coprime. 

Example 3. Suppose q is a given real number which satisfies 

1 ~J5 < q < 2. The sequence {Pn} is defined as follows: If the 

binary expression of a positive integer n is n = 2m + a m-l • 2m
-

1 + ... + 

al ·2 +ao, whereai E {O, 1}, then 

Prove that there exist infinitely many positive integers k such that 

there does not exist a positive integer l which satisfies P 2k < PI < P 2HI . 

Proof. For m E N* , suppose under the binary system, 

2k = (10···10)2. 
'-----y-----' 

m itetl4'> 

We prove that there doesn't exist an l E N* , such that P2k < PI < 
P2HI. 

As a matter of fact, for this kind of k E N* , we have 
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PZk = q2m-1 + q2m-3 + ... + q, PZk+1 = PZk + 1. 

If there exists an l E N* , such that P2k < PI < P2k+1' then we 
, 

suppose the binary expression for l is l = 2.: a i • 2i , where a i E {o, 1}, 
i=O 

, 
a, = 1, then PI = 2.: a i • qi. 

(1) Ifm = 1, thenq <PI <q +1. At this time, ift ?2, then PI ? 

q2 > q + 1 (since 1 i J5 < q < 2, we have q + 1 < q2 ). This causes 

a contradiction. If t = 1, then PI = q, or q + 1 , also contradictory. 

(2) Suppose when it is m - 1 (m ? 2), we may come to a 

contradiction. Consider the case m. 

If t ? 2m, then 

PI? qZm ? q2m-l + q2m-2 ? q2m-l + q2m-3 + q2m-4 ? ... 

?q2m-l + .. +q +1 = P2k+l. 

Contradiction. 

If t ~ 2m - 2, then 

P I ~ q2m-2 + q2m-3 + ... + 1 

= (q2m-2 + q2m-3) + (q2m-4 +q2m-5) + ... + (q2 + q) + 1 

~ q2m-1 + q2m-3 + ... + q3 + 1 

< q2m-1 + ... +q3 +q = P2k. 

Contradiction. 

During the above reasoning process, we have used qi+2 ?qi+1 +qi , 

= 0, 1, 2, .... 
,-I 

So t = 2m -1. At this time, we denote l' = l _22m- I = 2.: ai • 2i. 
i=O 

Furthermore, we have Pi' = PI _q2m-l. Then, fromp2k <PI <P2k+1' 

we know that 

P2(k-1) = q2m-3 + ... + q3 + q < Pi' < P2Ck-1) + 1. 

This is inconsistent with the induction hypothesis. 

From all of above, the proposition holds true. 
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Example 4. State whether there exists a sequence {an} of positive 

integers such that every positive integer appears only once in this 

sequence, and that for any k E N* , we have k I (al + ... + ak). 

Solution. There exists such a sequence. 

We construct such a sequence by a recursive method. Takea\ = 1, 

and we suppose a 1 , a2' "', am (all different) are already chosen. Let t 

be the least positive integer that doesn't show up in al' "', am. Since 

(m + 1, m + 2) = 1, then by using Chinese Remainder Theorem, we 

may know that there exist infinitely many positive integers r such that 

(Denotes = al + ... +a m ) 

{ 
s + r - 0 ( mod m + 1) , 

s + r + t = 0 (mod m + 2). 

Take such an r which makes r > max{ a l' "', am' t}. Let a m+l = 

r, a m+2 = t. A sequence defined like above will meet all requirements. 

Explanation. The recursive method applied to solve problems of 

existence, in essence, is a technique of direct construction. The 

sequence we defined could be 1, 3, 2, 10, 4, .... Every time we have 

two more terms and this practice will make sure that the sequence 

covers all positive integers without repetition. 

Example 5. A sequence {an} of all integers satisfies the following 

conditions. For any subscript k ~ 2, we have 0 ~ ak ~ k -1, and also 

al + ... +ak -0 (modk). Prove that no matter what initial valueal is 

chosen, there exists a positive integer m, such that for this sequence, 

starting from the mth term, all the terms are constants. 

Proof. The starting point is to prove that for anya1 E Z, there 

exists a subscript k such that al + ... + ak = dk, where 0 ~ d < k. CD 
If the above conclusion is successfully proved, thenal + ... +ak + 

d = d • (k + 1). Note that aH1 is the only integer that satisfies al + ... + 
a Hl - 0 (mod k + 1) in the set {O, 1, 2, "', k}. Then a Hl = d. 

According to this and reason recursively, we can prove that when n ~ 
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k + 1, we always have an = d. 

Now we will prove that CD holds true. If this is not true, suppose 

there exists an a I such that the subscript k that satisfies CD does not 

exist. Since when a I < 0, if for the sequence {a n }, there is no term 

starting from which all terms are all zeros, then there will be infinitely 

many terms in the sequence {an} that are positive integers. Hence, 

there exists anm E N* such thatal + ... +a m ;?oO. Hence, without loss 

of generality, we may suppose a I > O. (Attention: If a I = 0, then we 

can know that for any n E N* , we always have an = O. ) At this time, 

for any m E N* , it is always true that al + a2 + .,. + am > O. 

By the conditional + ... +am 0 (modm) , we may SUPposeal + ... + 
am = d m 0 m. Combining the counter-hypothesis that there is no 

subscript k that satisfies CD, we know that for any m E N* , we have d m ;?o 

m, henceal + .,. +am ;?om 2. Whenm ;?o2, we have am ~m -1, then 

This leads to a I ;?o m (m
2 
+ 1) , and it is not always true for all m E 

N* . The contradiction we arrived at shows that CD is true. 

From all above, we know that the proposition holds true. 

Explanation. Proof by Contradiction (and Drawer Principle or 

the Pigeonhole Principle) is a basic indirect method to solve problems 

of existence. It is more common to use this kind of method to deal 

with non-existence problems. 

Example 6. The sequence {an} is defined as follows: If a positive 

integer n under the binary system, the number 1 appears for even number 

of times, then let an = 0, otherwise let an = 1. Prove that: there do 

not exist positive integers k , m such that for any j E {O, 1, 2, '.', m-

1}, it is always true that 

a k+j = a k+m+j = a k+2m+j . CD 

Proof. By making use of the definition of {an} we know that 
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{

a 2n = an (mod 2), 

a2n+l ~ a2n + 1 = an + 1 (mod 2). 

If there exist k , mEN * such that for j E {O, 1, "', m -1 } , CD is 

always true, then by Principle of the Minimum Natural Number (the 

Well-ordering Principle), we may suppose (k, m) is the positive 

integer pair that makes the sum k + m the smallest. 

Case 1. m is an even number. Then we supposem = 2t, t E N* . 

Ifk is an even number, thenwetakej =0,2, "', 2(t-1)inCD, 

J 
where 0 :s;; 2" :s;; t - 1, and 

From@we have al.~ = al.+t+L = al.+2t+L. This shows that ( k2 ' m
2 

) is 
22 2 2 2 2 

also a positive integer pair that makes CD true for 0 :s;; j :s;; ; - 1, 

contradicting the previous conclusion that k + m is the smallest. 

If k is an odd number, then we take j = 1, 3, "', 2t -1 in CD. By 

similar discussions as above, we have 

which shows that (k ; 1, ;) also makes CD true for 0 :s;; j :s;;; - 1, 

contradicting the previous conclusion that k + m is the smallest. 

Case 2. m is an odd number. 

When m = 1, it is required thatak = ak+l = ak+2. At this time if k 

is an even number, then a2n = a2n+l =a2n + 1 (mod 2), contradicting 

what we know. If k is an odd number, then we let k = 2n + 1, and we 

have a2n+2 = a2n+3 = a2n+2 +1 (mod 2), also contradicting what we know. 

When m ?:; 3, let j = 0, 1, 2 in CD, then we have 

{

ak = ak+m = ak+2m , 

ak+l = ak+m+l = ak+2m+l , 

ak+2 = ak+m+2 = ak+2m+2. 
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If k is an even number. let k = 2n. m = 2t + 1. then from (2) we 

know that aH1 * ak • aHm+1 * aHm+2. Then by combining CD. @ and 

® we can know that 

(Attention: every term in the sequence that we use is either 0 or 1. ) 

Now. if n is an even number. let n = 2t. then 

contradicting ®; If n is an odd number. then from the fact that m is 

an odd number we get k + 2m - 0 (mod 4). By similar discussions we 

have aH2m * aH2m+2 • combining CD. (5) and ® we come to a contradiction. 

If k is an odd number. combining the fact that m is an odd number 

and from (2) we know that aHm * aHm+1 • aH1 * aH2. By referring to 

CD. @ and (5). we have 

Now. if k -1 (mod4). then we can come to a contradiction from 

ak = aH2 in (j). If k - 3 (mod 4). then by the fact that m is an odd 

number we can know thatk +2m = 1 (mod4). soaH2m *aH2m+2' i. e .• 

ak * aH2' contradicting (j). 

From all above. the proposition holds true. 

Exercise Set 2 

1. Suppose S is a set with 2011 elements. and N IS an integer 

satisfying 0 < N < 22011 . 

Prove that we can dye every subset of S into black or white 

such that 

(1) the union of any two white subsets is still white. 

(2) the union of any two black subsets is still black. 

(3) there are exactly N subsets that are white. 

2. Place 2048 numbers on a circle. which are all + 1 or - 1. Now 
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we multiply each number by its right neighbor and we replace the 

original number by the product we get, giving a circle of new numbers. 

Prove that after a finite number of operations like this, all numbers on 

the circle will become + 1. 

3. Suppose Xl' "', Xn are any real numbers. Prove that: 

4. Suppose n E N* , and the complex numbers ZI , "', Zn; WI' "', 

W n satisfy for any vector CE: ] , "', E: n ) , E: i E { -1, 1}, i = 1, 2, "', n. 

it is always true that 

1 E:1 Z l + ... +E:nZ n 1<1 E:IWI + ... +E:nW n I. 

Prove that 1 ZI 12 + ... +\ Zn \2 <\ WI \2 + ... +\ Wn \2. 

5. Suppose P eXl> X2' "', xn) is a polynomial with n variables. 

We replace all the variables in P by + lor -1. If there are even -1 s, 

then the value of P is positive. If there are odd - 1 s, then P is negative. 

Prove that P is a polynomial with at least degree n. CNamely, there is 

a term in P such that the sum of all degrees of the variables in this 

term is no less than n. ) 

6. Suppose a I' "', an is a sequence of all non-negative real 

numbersCnot all of them are zeros). Define 

- ak-i+l + ak-i+2 + ... + ak k 1 2 m k - max . , =, ,"', n. 
1~i~k z 

Prove that for any positive real number f.1' the number of 

. a +a + ... +a 
subscripts k that satisfy m k > f.1 IS less than 1 2 f.1 n 

7. (Jensen's Inequality) Suppose fex) is a convex function on 

[a, b] ( namely, for any x, y E [a, b], we always have f (X ~ Y ) < 

~ (Jex) + fCy))), 

Prove that for any n numbers XI , 

true that 

Xn E [a, b], it is always 
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8. Suppose the real numbers XI' ••• , Xn satisfy XI + ... + Xn = 1, 

where n E N* , n ~2. Prove that 

9. The Fibonacci sequence {Fn} satisfies: FI = F2 = 1, F n+2 

F n+l + F n. Prove that 

n F 
~ -f; <2. 
i=l 

10. Find the smallest positive integer k such that there exist at 

least two sequences {an} of positive integers which satisfy the following 

conditions: 

(1) For any positive integer n, we have an ~ an+1 ; 

(2) For any positive integer n, we have a n+2 = an+1 + an; 

(3) a9 = k. 

11. The Fibonacci Sequence {Fn} is defined as follows: FI = F2 = 

1, F n+2 = F n+1 + F n , n = 1, 2, .... , Find all positive integer pairs (k , 

m), m > k, such that the sequence {xn} defined below contains 1: 

{

2Xn -1 
Fk _, 

XI = F' Xn+1 = 1 Xn 
m 1, 

if Xn =1= 1, 
(n = 1, 2, ... ) 

if Xn = 1. 

12. Mr. Zhang takes randomly a number from {1, 2, ... , 144}. 

Mr. Wang wants to know the number Mr. Zhang got with the following 

game: Mr. Wang takes a subset M from {1, 2, ... , 144} and then asks 

Mr. Zhang whether the number he took belongs to M. If the answer is 

a Yes, then Mr. Wang will pay Mr. Zhang 2 RMB. If the answer is a 

No, then Mr. Wang will pay Mr. Zhang 1 RMB. What is the minimum 

amount of money Mr. Wang needs to pay so that it is guaranteed he 

knows the number Mr. Zhang got? 

13. The Fibonacci sequence {F n} satisfies F I = F 2 = 1, F n+2 = 
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F n+1 + F n' n = 1, 2, .... 

Prove that for any positive integer m, there exists a subscript n, 

such that 

14. We call an infinite sequence of positive integers an F -Sequence, 

given that from the 3rd term, every term in this sequence is equal to 

the sum of the two terms immediately before it. Is it possible to 

decompose the set of positive integers into the union of 

(1) finite number of (2) infinite number of F -Sequences? 

15. Suppose the integers k , aI' ... , an satisfy 0 < an < an-l < ... < 
al ~k,andthatforanyl~i,j ~n,itistrue[a;,ajJ~k. 

Prove that for anyi E {1, 2, ... , n}, it is true thatia; ~k. 

16. Suppose that ao < al < ... < an' ao, ... , an are all positive 

integers. Prove that 

17. Define the sequence {u n };;~o as: u 0 = 0, U 1 = 1, and that for 

any n E N* , the number u n+1 is the smallest positive integer that meets 

the following conditions: 

(1) for anyn E N*, U n+l >u n ; 

(2) there are no three numbers from the sequence U 0' U 1 , 

U n+1 that form an arithmetic sequence. 

Find the value of u 100. 

18. The positive integers a, b, n (b > 1) satisfy (b n -1) I a. Prove 

that under base b, within the expression for number a , there will be at 

least n non-zero numbers. 

19. Suppose n E N * , n > 1, and denote h (n) to be the biggest 

prime factor of n. Prove that there exist infinitely many n E N* such 

thath(n) <hen +1) <hen +2). 

20. Suppose n E N* , n > 1, and denote w(n) to be the number of 

distinct prime factors of n. Prove that there exist infinitely many n E 
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N* such thatwCn) <wCn +1) <wCn +2). 

21. We use an to express the sum of the initial n prime numbers. 

Prove that for any n E N* , there is at least one perfect square 

number within the interval [an' a n+l J. 
22. Prove that for any positive odd number, we may always find a 

positive integer such that the product of them, under the decimal 

system, has every digit being odd numbers. 

23. DenoteA = {x I x E N* , x has all its digits not being zero 

under the decimal system, and s Cx) I x} , where s (x) denotes the sum 

of all digits of x. 

C 1) Prove that there exist infinitely many numbers in A, whose 

expressions under the decimal system have equal times of appearances 

for the digits 1, 2, ... , 9. 

(2) Prove that for any k E N* , there is one term in A which is 

exactly a positive integer with k digits. 

24. Tell whether there exists an infinite sequence comprised of 

positive integers such that 

(1) Every term is not a multiple of any other term. 

(2) Any two terms from the sequence are not mutually prime, but 

there is no positive integer greater than 1 that can divide each term of 

the sequence. 

25. Suppose p is an odd prime number, and aI, a 2' ••• , a p-2 is a 

sequence of positive integers satisfying for any k E {1, 2, ... , P - 2} , 

it is always true that p 1'ak (ai - 1). Prove that we can take several 

numbers from aI' a 2' ••• , a p-2 such that their product = 2 (mod p ). 

26. Suppose j: N * -- N * is a one-an-one correspondence. 

C 1) Prove that there exist positive integers a, d, such that 

jCa) <j(a +d) <jCa +2d); 

(2) For any positive integer m that is no less than 5, tell whether 

there must exist positive integers a , d, such thatj(a) <jCa +d) < ... < 
jCa +md). 

27. Prove that for any real numbers a E (1, 2J, there exists a 
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unique sequence {n k } of positive integers such that n ~ < n HI , and 

m 1 
a lim IT (1 + - ). 

m-+= k~l nk 

28. Suppose m is a given positive integer, and that every term of 

the sequence {an} is a positive integer, and for any positive integer n, 

it is always true 0 < a n+l - an < m. 

Prove that there exist infinitely many pairs of positive integers 

(p, q), such thatp <q, anda p I a q • 

29. Suppose S is a set of non-negative integers. We use r, (n) to 

denote the number of pairs of ordered pairs (51' 52) that satisfy the 

following conditions: 51' 52 E S, 51 * 52' and 51 + 52 = n. 

Discuss whether we can partition the set of non-negative integers 

into two sets A and B, such that for any non-negative integer n, it is 

always true that r A (n) = rB en). 

30. Prove that any integer bigger than 1 can be expressed as the 

form of a sum of a finite number of positive integers that satisfy the 

following conditions: 

(1) the prime factors of each addend are either 2 or 3; 

(3) neither of any two addends is a multiple of the other. 

31. The functions f, g: N* -- N* are defined where f IS a 

surjective mapping, while g is an injective mapping. For any positive 

integer n, it is always true that fen) ;?- g(n). Prove that for any 

positive integer n, it is always true fen) = g en). 

32. Does there exist a sequence {an} of integers such that 0 = ao < 
al < a2 < "', and that it meets the following two conditions: 

e 1) Every positive integer can be expressed in the form of a i + a j 

Ci, j ;?- 0 and they can be the same value. ) ; 

n 2 

(2) For any positive integer n, it is true that an > 16' 
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Solutions to Exercise Set 1 

1. We induct with respect to n, the number of elements of this 

non-empty finite set. Denote this set to be 5 n • When n = 1, its subsets 

can be arranged as 0, 51 and the requirement is met. Now suppose 

that the statement is true for n, i. e. , the subsets of 5 n can be permuted 

as A 1 , A 2 , "', A 2n , such that the number of elements for consecutive 

sets differs by 1. Consider 5 n+1 = {a1' "', a n+1}. For its subset of n 

elements 5 n = {a1' "', an}, we have a permutation A 1, "', A 2n, 

which are all subsets of 5 n , which meets the requirement according to 

the induction hypothesis. Then, the following permutation: 

is a permutation of all subsets of 5 n+1 that meets the requirement. 

Explanation. Within the permutation of subsets we constructed 

here, the number of elements from any two consecutive subsets differs 

exactly by one. This is even stronger than what's required. 

2. When k = 0, the statement is obviously true. For the case when 

k > 0, the conclusion to be proved is equivalent to ~k ~ :n , and this is 

the corollary of the following statement: for k ~ 0, we always have 

We induct with respect to k to prove that CD holds true: When 

k = 0, from a 0 = 0 we know that CD holds true. Now we suppose CD is 
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true for k, then we know from the conditions that 

(k + 2)aHI = 2(k + 1)aHI - kaHI :;:;;; 2(k + 1)aHI - (k + 1)ak 

= (k +1)(2aHI -ak):;:;;; (k +1)aw. 

So, CD is also true for k + 1. The proposition is proved. 
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3. When n = 1, ai :;:;;; al - a2 < aI' so al < 1, and at the same 

. ~ 2 1 ( 1 )2 1 1 S h .. tIme, a2 ~al -al ="4 - al -2 :;:;;;"4 < 2· 0 t e propositlOn 

holds true for n = 1, 2. Now we suppose the proposition holds true for 

n(?;2),thena n+1 :;:;;;an-a~ =! -(; -ant Note that by induction 

. 1 1 1 1 1 
hypothesIs an < -;; :;:;;; 2' SO we have 2 - an > 2 - -;; ?; O. Hence, an+l < 

1 ( 1 1 ) 2 1 1 n - 1 1 . h .. h ld "4 - 2 - -;; = -;; -~ = ~ < n + 1 ,I.e. , t e proposItIon 0 s 

true for n + 1. The proposition is proved. 

4. When n = 2, the proposition is obviously true. Suppose the 

proposition is true for n (?; 2), then we consider the case n + 1. From 

the induction hypothesis, we know that 

alai +a2aj + ... +ana~+l +an+1ai 

?;a2 a i +a3ai + ... +ana~-l +ala! -ana! +ana~+l +a n+la1. 

In order to prove that the proposition holds true for n + 1, we only 

need to prove that 

For the sake of convenience, denote al = x, an = y, an+l = z, 

then x < y < z, and to prove CD true is equivalent to having to prove 

Notice that, the Left Hand Side of @ 

=xy(y3 -x3) +YZ(Z3 _y3) -ZX(Z3 -x3) 

= (xy - ZX) (y3 - x 3) + (yz - zx) (Z3 - y3) 

= - x (z - y) Cy - x) Cy2 + xy + x 2) + Z Cy - x)(z - y) (Z2 + zy + y2) 
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= (y -x)(z - Y)(Z3 +Z2y +Zy2 _Xy2 -x2y -X3) 

= Cy - X)(Z - y) (Z - X )(Z2 + ZX + X 2 + zy + xy + y2) 

1 =2(Y -x)(z -y)(z -x)((x +y)2 +(y +Z)2 +(z +X)2) 

;:?: (). 

So @ holds true. Furthermore, CD is true. The proposition is true 

for n + 1 and is proved. 

5. By condition, we know that a n+l + _1_. Combining the 
a n-l 

initial conditions and mathematical induction we may know that for 

any n E N* , we have an > o. Therefore, for n ;:?: 2, we have an+1 = an + 

1 
-- >an. Considering together withal <a2 we know that for anyn E 
an-I 

N* , it is true that an < a n+l. So, when n ;:?: 2, we have 

CD 

Froma3 a2 a l+ 1 1/ 
-"-----'---- = 3, we know thata3 >"16, i.e., whenn 

3, wehavea n >$. Now we suppose whenn =m(;:?:3), it is true am 

( 
1 )2 1 > 12m. Then from CD we know that a~+1 > am + - = a~ + 2 + 2""" 

am am 

> a~ +2 >2m +2, so a m+l > 12(m + 1). Therefore, the proposition 

holds true for m + 1 and hence is proved. 

1+a2 1 ~ 6. When n = 1, from --a- = ~ + a ;:?: 2'\j ~ • a = 2 we know 

that the proposition is true. Now we suppose the proposition is true for 

. 1+a2 +···+a2n n+1 
n, 1. e., + 3 + + 2 1 ;:?: --, then we have a a ... an n 

We notice that 
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1 + a 2 + ... + a 2n+2 a + a 3 + ... + a 2n-l 
~~~~-~~-,--- +~~=----=-~-~----=---
a +a3 + ... +a 2n+! 1 +a2 + ... +a 2n 

1 +a 2 + ... +a 2n+2 a +a3 + '" +a 2n- 1 
--=-------'---=--------'-_--=-=--__ +=---==--c--'--_-'--'=-cc_ 
aCt +a 2 + ... +a 2n ) 1 +a 2 + '" +a 2n 

1 +a 2 + ... +a 2n+2 +a(a +a3 + ... +a 2n - 1) 

aCt +a 2 + ... +a 2n ) 

Ct +a 2 + .. , +a 2n ) +a 2(1 +a 2 + ... +a 2n ) 
aCt +a 2 + ... +a 2n ) 

a 2 + 1 1 
= a +- :;::2. 

a a 

1 + a 2 + ... + a 2n+2 n n + 2 
>-2 ---

a + a 3 + ... + a 2n+l ~ n + 1 n + l' 

Namely, the proposition is true for n + 1. QED. 
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7. When n = 2, since 210 > 1000, we have Ig 2 > ;0' the proposition is 

true. Now we suppose the proposition is true for n(n :;:: 2). By the 

Ar · h . M Ge . M I l' h 1 + 2 + ... + n it mette ean- ometne ean nequa lty, we ave > 
n 

';1 x 2 x ... X n , i. e. , n + 1 > 2(n!)"~. Then, 

1 
19( (n + 1) D > 19( (n D • 2(n ! F) 

= 192 +n +1 1g(nD 
n 

> 19 2 + n + 1 X 3n (~ + ... + ~) 
n 10 2 n 

> -.l + 3(n + 1) (~ + ... + ~) 
10 10 2 n 

= 3(n + 1) (~ + '" + _1_) 
10 2 n + 1 . 

So the proposition is true for n + 1. QED. 

8. Whenn = 1, aT =ar, whileal >0, soal ="1, i.e., the 

proposition is true for n = 1. Now we suppose the proposition is true 

for 1, 2, "', n -1, i. e. ,ak = k, k = 1, 2, "', n -1. Then, 
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n-1 n n-l 
(~P)+a~ = ~a~ ((~k)+ant 
k~1 k~1 k~1 

Hence, a~ = a~ +nCn -Dan' and we solve it to get an = 0, - en -1) 

or n. Consider also an >0, we have an = n. So, the proposition is true 

forn. QED. 

9. Without loss of generality, we may set al < a2 < ... < an. 

When n = 1, the inequality aI ;? 2 i 1 al is true. Assume that the 

inequality is true for n, i. e. , aI + ... +a~ ;? 2n 3+ 1 Cal + ... +a n), and 

we consider the case with n + 1. We only need to prove 

where al < a2 < ... < an <an+l' and ai E N* . 

Noting that an ~an+l -1, an-l ~an -1 ~an+! -2, ... , al ~an+l -

I h 2 2 ~ ( ) 2n + 3 n, so we on y need to prove t ata n+l ;?3 tS a n+l -k +--3-an+1' 

h Oh o 
0 I 2 4n+3 nCn+U 0 0 I w IC IS eqmva ent to an+l - --3-an+1 + 3 ;?, 1. e. , we on y 

need to prove that (an+! - en + 1» (an+1 - ; ) ;? O. This inequality 

could be proved by making use of a n+l ;? a I + n ;? n + 1. 

So, the original inequality is true for n + 1. QED 0 

10. From the recursive formula, we can know that a~+1 

an-I a n+2' n = 2, 3, .... From the initial conditions with mathematical 

induction, we can know that an * 0. Then, we can turn the above into 

a n+2 = ~ n = 2, 3, 

Using this recursively backward, we can know that 

recursive expression and that aI' a2, a3 E Z, we can know that an are 
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all integers, and a n+2 = 2a n (Note that this equation also holds for 
a n+l 

n = 1. ). We may know that for any n E N* , a n+2 is an even number. 
a n+l 

Then, an and is the product of n even 

numbers. Hence, 2n I an. 

11, From the recursive formula, we may know that a n+l - k = 

an(a n -k), thena n -k =a n--l(a n--l -k) =an-lan-2(an-2 -k) = '" = 

a n-l"'al(al -k) = a n-l"'al , 1.e., 

CD 

For any m, n E N* , m =F n, without loss of generality, assume 

m < n, and we know from CD that 

Next, we prove: for any m E N* , we always have am - 1 (mod k). 

When m = 1, from a 1 = k + 1 we know that the conclusion is 

correct. Now we suppose it is correct for m, i. e. , am - 1 (mod k) , 

thenam+l =a~ -kam +k -a~ -1 2 =1 (modk). So, foranym EN*, 

we have am = 1 (mod k). 

By the above conclusions, we have (am' k) = 1, and further we 

get (an' am) = 1. 

12, Refer to Example 5 of the first section. Try calculating the 

first 21 terms of the sequence {an}, and the results are in turn, 

1, 2, 3, 5, 7, 9,12,15,18,23,28,33, 

40,47, 54, 63, 72, 81, 93, 105, 117, 

among which al' a2' a3' a4' all' a20 are respectively multiples of 2, 

3,5,7,11, 13. Hence, for any p E {2, 3, 5, 7,11, 13}, there is a 

term an' multiple of p. 

If a3n-l = 0 (mod p), then starting from an we can find the next 

multiple of p. If a3n-l ~ 0 (mod p), then from the recursive formula 

and an = 0 (mod p), we may know that a3n+2 - a3nH = a3n - a3n-l (mod p). 
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Denote the remainder to be r when they are divided by p. Discuss as 

the example mentioned before, the 13 numbers below 

are congruent numbers with a9n-4' aYn-4 +r, ... , aYn-4 + 12r under mod 

p. Since p ~ 13, these 13 numbers cover at least a complete system of 

residues for mod p. Then, starting from an' we may find the next 

multiple of p. Proposition proved. 

13. Induct with respect to n. Note that 

<n+1)2 2 
n 

~ {/k} = ~ {/k} + ~ {/k} 

2n 

~ ~(n2-1)+~(ln2+k -n) 
k~l 

1 1 
= 2(n 2 -1) +2(2n +1) 

= ~ ((n +1)2 -1). 

Then we can show the inductive step. 

14. When n ~ m, inducting with respect to positive integer k , it is 

easy to prove k 4 ~ 2k2 , then W ~ VF. At this time, 

~ n +m(2'i' -1), 

and the original inequality holds. 

When n > m, we notice that for any k E N* , k > m, it is always 
El 1 

true that 1 < kk2 < F < 2. 

Here k t < 2 is equivalent to k < 2k and can be proved through 
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inducting with respect to k. Then Sm (n + 1) = Sm (n) + 1. Considering 

how the inequality holds for n ~ m and mathematical induction, we 

may know that for anym, n E N*, it is always true thatSm(n) ~n + 
m(:;:r -1). 

15. We use Ak to represent the sets whose elements are the 

integers from the sequence { ~}. We assert that for any kEN * , 

Ak = {2 m 1m = 0, 1, 2, ... }. (i. e. , Ak is irrelevant of the concrete 

value of k , and is formed by powers of 2. ) 

Froman =1, we know that 1 EA k • Next, we suppose x EA k • We 

will prove that among all the numbers in Ak that are bigger than x, the 

smallest one is 2x. According to this conclusion and by mathematical 

induction, we may know that our earlier assertion is correct. 

As a matter of fact, supposex E A k , i.e., there exists ann EN, 

such that an = Xk , then for any subscript j that satisfies Xk ~ a j <' (x + 
l)k, we have aj+l = aj +x, i. e. , aj+l ~ aj (modx). From an' we can 

know that for this kind ofj, it is true thataj+' =aj ~O (modx). Now 

we take the biggest j that meets the above conditions, then at this 

time, aj < (x +1)k, whileaj+, ~ (x +1)k. Denoteaj+l = (x +1)k + 

m l' then from aj+1 = aj + x we know that 0 ~ m 1 < x, and because 

aj+l ~O (modx), it is true thatm, +1 =O(modx). Soml =x-l. 

Subsequently, a j+l = ex + l)k + X - 1. 

Repeating the above discussions, by adding x + 1 every time, we 

get the terms in the form of (x + 2)k + m2' where ° ~ m2 < n + 1. 

From x -1 ~ (x + 2)k +m2 = 1 +m2 (mod x + 1), we may ascertain 

m 2 = X - 2. Conducting the above process recursively, we ascertain 

that m i = X - i, i = 1, 2, ... , x by making use of the congruence 

mi ~(x +i +1)k +mi+l(modx +i), in general form. 

Hence the next kth power will occur in the sequence {an}' when 

m i for the first time takes on the value of zero while i = x, i. e. , 

the next k th power number is (x + X)k = (2x )k. That is to say, among 

the numbers in Ak that are bigger than x, the smallest one is 2x. 

The problem is solved. 
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16. From the recursive relationship, we know that for any n E 

N* , Xn > O. Furthermore, from 2nxn = 2(n -1 )Xn-l - X n-l we can get 

X n-l = 2(n -1)Xn-l - 2nx n. Taking the sum, and we get 

n+l 
Xl + ... + Xn = ~ (2(k -1)Xk-l - 2kxk) 

n 

= 2 ~ (kXk - (k + 1)XH1) 

= 2(Xl - (n + 1)xn+l) 

= 1 - 2(n + 1)xn+l < 1. 

The proposition is proved. 

17. From the conditions, we know that fen + 1) = (f(n) -

1)f(n) + 1. Thinking about mathematical induction and al > 1, we 

can get for any n E N* , it is always true that fen) > 1. Then, by 

taking the reciprocal, we have 

1 1 _---=-1 ____ 1_ 
fen +1)-1 f(n)(f(n) -1) fen) -1 fen)' 

. 1 1 1 B 1 .. h 
1. e. , fen) = fen) -1 - fen + 1) -1' Y te escopmg senes, we ave 

~ 1 1 1 1 
~ f(k) = fO) -1 - fCn +1) -1 = 1- fCn +1) -1' 

Coming back to the recursive formula. we have 

fen + 1) -1 = fCn)(fCn) -1) > (f(n) _1)2 > (f(n -1) _1)22 

> ... > (fC2) _1)2,,-1 = (22 - 2)2"-1 = 2r' . 

n 1 1 
So, ~ f(k) > 1- 2n-1' 

k~l 2 

On the other hand, fCn + 1) = fCn)2 - (fCn) -1) < fCn)2. So, 

f C n + 1) < f C n ) 2 < f C n - 1) 22 <... < f (1 ) 2
n 

= 22n , 

2" h ~ 1 1 h andfCn +1) -1 <2 . Furt er, L.J fCk) < 1-----:;;;. T e proposition 
k~J 2 

is proved. 
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11: 11: 
18. Denote XI = cota, YI = tan/3, here a = 6' /3 = 3. Then, 

X 2 = cot a + esc a 
1 + cos a 

Slna 
2sin ~cos ~ 

2 2 

a 
= cot~ 

2· 

According to this and mathematical induction, it is easy to prove 

that t a S··l 1 p -- tan _/3 . Therefore, Xn = co 2
n

-
l

• 1m1 ar y, we may rove Yn 2
n

-
1 

when n > 1 , we have 

2 a /3 11: 11: 
XnYn = cot --tan -- = cot ---tan ---

2n-l 2n - 1 2n X 3 2,,-1 X 3 
1 - tan2 __ 11:_ 

2n X 3 

Since tan2
--11:- E (0, tan2~), namely, tan2

-11:- E (0, 31 ), it 
2n X 3 6 2n X 3 

is true that 2 < X"Yn < 3. The proposition is proved. 

19. From the given conditions, we may know thatc n -1 = (C n-l -

1)2, then C n -1 = (C,,-I _1)2 = (C,,-2 _1)4 = ... = (co _1)2n = 32n 
, so 

C n = 32
" + 1. 

so a" 

On the other hand, 1 - a n+l 
O-a,,)2 

1 +a~ 

(
1 - a )2 
1 + a: ,moreover, 

1 -an 

1 +a n 

32n + 1· 

Noting that 

(
1 -a n _ 1)2 
1 + an-I 

(
1 - ao ) 2" 

1 +ao 

O+a n )2 

1 +a~ 

2COCI ..... Cn-I = (3 -1) (3 + 1) (32 + 1) ..... (32"-1 + 1) 

= (32 -1) (32 + 1) •...• (32n-1 + 1) 

= ... = 32n -1. 
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So the proposition is true. 

x n (a -b)Cab -n 2 ) 
20. DenotefCx)=~+~,thenfromfCa)-fCb)= bn ' 

n x a 

we know that the function f (x) is a decreasing function on the 

interval (0, nJ. 
Next, we are going to use mathematical induction with respect to 

n. Firstly we are to prove rn < an < ~, n ;::::: 3. Noting that 
n -1 

aj = 1, we know that a2 = 2, a3 = 2. Then when n = 3, the above 

inequality is true. Furthermore, suppose rn < an < ~ , n ;::::: 3. 
n -1 

From monotonicity we know that f(an) < fCrn) = n~ 1 , i. e. , 

< n +1 d 
rn ,an 

So for any n E N* , n ;::::: 3, it is always true that 

rn <an < ~. 
n-1 

Next, we are to prove that when n ;::::: 4, an < rn-TI. 
As a matter of fact, since when n ;::::: 3, a n+l = f(a n) > 

f( ~ ) = ~. So when n ;::::: 4, we have an > n -1 
n 1 n-l ~ 

Further, when n ;::::: 4, we have 

(The last inequality is equivalent to 2n 2 (n - 3) +4n -1 > O. ) And 

.. ·d h 13 '6 It IS eVI ent t at a4 = 6 <yO. 

Then, when n ;::::: 4, it is always true that rn < an < rn-TI. 
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Hence, we have [a~J = n. 

21. If there exists an n E N* , such that (a + ~)"~ + (a -

~)-; is a rational number, while denoting x = (a + ~)-;, 
y = (a - ~)-;, then x +y is a rational number, andx n +yn = 

2a is an irrational number. 

We will prove this by inducting with respect to m. If x + y E Q, 

then for any m E N* , it is always true that xm + ym E Q. CD 
Noting that x 2 + / = ex + y)2 - 2xy = (x + y)2 - 2, together 

with x + y E Q, we may know that when m = 1, 2, CD is always true. 

Now suppose xm + y'", xm+l + ymH E Q. Then from x mj
-
2 + y,"+2 = 

(x + y) (X,"+l + ym+1) - xy (x m + ym), and the fact that both x + y , 

xy( = 1) are rational numbers, we know thatxm+z +ym+Z E Q. Then CD 
is true. 

By CD we know that xn + yn E Q, and this is a contradiction. So 

the proposition is true. 

22. If t > 1 , then a2 < O. By this and mathematical induction, we 

may know that for n ~ 2, it is always true that an < 0, so a2011 * 0; If 

t < 0, by the same reasoning as above we can know that when n ~ 1 , 

it is always true that an < 0, and there is no chance that aZ011 = o. 
Hence, the t that makes aZOll = 0 satisfies t E [0, 1]. 

Now we may supposet = sin2a, where 0 ~a ~ ; , thena1 = sin2a. 

Ifa n = sin2 (2n-1 a ), thena n+1 =4sinZ(2n-1a)cos2(2n-1a) = sin2 (2na ). 

Then, from principles of mathematical induction we know that for any 

n, we have an = sin2 (2n
-

1 a). Hence, from a 21111 = 0, we get sin2 (22010 a) = 

0, and hence 2Z0lO a = k1(, i. e. , a = 2~O~1I ' k E Z. Combining 0 ~a ~ ; , 

we know that 0 ~ k ~ 2Z009 . Noting that the sine function is non­

negative on the interval [0, ; ] and is monotonically increasing, we 

know that there exist 2Z009 + 1 distinct real numbers t, such that aZOll = O. 

23. The maximum is C1 + 2 + ... + 1(05) X 2 = 1 Oil 030. It occurs 

whenx1 =1005, X2 =1004, ... , X1ll05 =1, X1006 =0, X1007 =-1, 
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X2011 =-1005. 
Now we will prove that for a sequence that meets the conditions, 

it is true that 

2011 2011 
~ IXi I-I ~Xi 1:S;;20+2+···+1005). CD 
i=l i=l 

Notice that after we rearrange XI' •.• , X201l' from biggest to 

smallest, as YI , Y2' ••• , Y2011 , for 1 :S;; i :S;; 2010, suppose Yi = X m , Yi+1 = 

X n • We may always find a subscript j , such that Xj E {YI' ••• , Yi}' 

Xj+1 E {Yi+I' ••• , Y2011}' or Xj E {Yi+l' ••• , Y2011} ' Xj+l E {YI' ••• , 

Yi}. (This conclusion may be derived through proof by contradiction, 

combining the two casesxI E {YI' ••• , Yi} andx, E {Yi+1 , ••• , Y2011}). 

Without loss of generality, we suppose the former one is true, and also· 

suppose that Xj = Yr' Xj+1 = y" then r :S;; i, t ~ i + 1. At this time, 

1 ~I Xj -Xj+l 1=1 Yr -Yt I 
=1 (Yr -Yr+I) + (Yr+1 -Yr+2) + ... +(Yi -Yi+l) + .. + (Yt-I -Yt) I 

=1 Yr -Yr+l 1+1 Yr+1 -Yr+2 1+··· +1 Yi -Yi+1 1+··· + I Yt-l -Y, I 

~I Yi - Yi+l I. 

(Here we used the decreasing permutation of Yl' ••• , Y201l.) 

Hence, we still have I Yi - Yi+1 I:s;; 1. 
201l 

Furthermore, without loss of generality, we suppose ~ Xi :S;; O. 
i=l 

2011 (If ;SXi >0, then we replace Xi by -Xi and then proceed to discussions.) 

After the re-ordering, suppose YI ~ ... ~ Yk ~ 0 ~ Yk+1 ~ ••• ~ Y201l , 

then 

2011 2011 
S = ~ I Xi I-I ~Xi I 

i=l i=l 

= (Yl + ... + Yk) - (Yk+l + ... + Y2(111) + (YI + ... + Y2011) 

= 2(Yl + ... +Yk). 

In order to prove that CD is true, we only need to prove that 
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YI + ... +Yk < 1 +2 + ... +1005. 

We deal with this with two cases. 

Case 1. If k ;?: 1006, then from Y 1 + ... + Y 2011 < 0, we know that 

Yl +"'+Yk <-CYk-I-l +···+Y2(11). 

Noting also Yk-I-I ;?: Yk -1, "', Y2011 ;?: Yk - (2011 - k), we know 

that 

YI + ... +Yk <-((Yk -1) + ... +(Yk -(2011-k))) 

=-(2011-k)Yk +1 +2+··· +(2011-k) 

<1+2+"'+(2011-k) 

< 1 + 2 + ... + 1005. 

Thus, @ holds true. 

Case 2. If k < 1005, then by similar reasoning as above, we may 

know that 

Yl + '" + Yk < (Yk-I-I + k) + (Yk-I-I + (k -1) + ... + (YkH + 1) 

= kYk-I-l + 1 + '" + k < 1 + 2 + ... + k 

< 1 + 2 + ... + 1005. 

Thus, @ also holds true. 

By all above, the maximum value is 1 011 030. 

24. We use proof by contradiction. If the proposition is not true, 

then, there exists a positive integer N, such that for any n ;?: N, it is 

always true that 

Now we define a sequence {c n } of positive real numbers: 

1 an-I 1 2 
Co = ,C n = 1 + an en-I' n = , , •••. 

Then from CD we may know that for any n ;?: N, it is always true 

that 

1 
en ;;:::2--; ·en -1o 
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Notice that for n E N* , it is true C n C1 +a n ) = a n-1 Cn-1' i. e. , Cn 

an-1Cn-1 -anc n • By using telescoping series, we get 

This suggests that the nth partial sum sequence {sn}' where Sn 

C1 + ... +c n , is bounded. 

On the other hand, from @ we can know that when n > N, it is 

true that 

~ ••• ~ CN • T(N~I+"+!;) 

= C • T( H-t+··+!; ) . 

Here C = C N • T ( 1+±+"+~) is a constant. 

For any kEN * , if 2H < n < 2k , then 

1 1 1+-+···+-2 n 

< 1 + (~+~)+ (~+ ... +~)+ ... + (_1 + ... +_1_) 
~ 2 3 4 7 2H 2k - 1 

<1+(~+~)+(~+ ... +~)+ ... +(_1 + ... +_1 )=k 
~ 2 2 4 4 2k- 1 2k- 1 • 

So, at this time, we have Cn ~ C • Tk (2H ~ n < 2k). 

Now we suppose 2<-1 ~ N < 2r 
, r E N* , then for any m > r, we 

have 

C2' +C2'+1 + ... +C2m -1 

= (C2' + ... + C 2r+1-1 ) + ... + (C2m - 1 + ... + C2m -1 ) 

~ (C • T(r+l) • 2' + ... + (C • T(m+D) • 2m 

C(m - r) 

2 

C(m - r) 
This suggests that S2m -1 > 2 . When m - + 00, we have 

S2m -l - + 00, contradictory to the conclusion that the sequence {sn} is 

bounded. 

So, the proposition is true. 
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25. In condition (1), let n = 0, and we know that F(O) = O. For 

n E N* , suppose the binary expression for n is n = (n kn k-l "'n 0) = 

n k • 2k + .. + no' 20
, where n k = 1. And for 0 :S;; i :S;; k - 1 , we have 

ni E {a, n. 
Now we prove through inducting with respect to k: for any n E 

N* , it is always true that 

CD 

Here the sequence {F m} is defined as Fo = F 1 = 1, F m+2 = F m+l + 
F m' m = 0, 1, 2, ... (It is defined by translating each subscript for a 

Fibonacci Sequence forward by one unit. ) 

As a matter of fact, from F(O) = 0 and condition (3) we may 

know that F(1) = 1. Further, we can get F(2) = 1, F(3) = F(2) + 

1 = Fo + F1 , F(4) = F(2) + F(1) = 2 = F 2. So, the proposition is 

true for k = 0, 1. Now we suppose that CD is true for k and k + 1. We 

consider the case with k +2. Now we may supposen = (nH2nHI···nO)2. 

If (nl' no) = (0, 0), then from (1) we know that F(n) 

F((nH2nH1"'nl)2) + F((nH2"' n 2)2) = nH2FH1 + ... + nJFO + 

nH2 F k + ... +n2 F O =nHl(FHI +Fk ) + ... +n2(F I +Fo) +nlFO 

nH2 F Hl + ... +n2F2 +nIFI +noFo (here we make use ofnl =no 

0), CD is true for k +2; If (n1' no) = C1, 0), then from (2) we know 

that F(n) = F( (n H2n HI "'n 2n~ n;)2) + 1, where n~ = n;) = O. Then, 

F(n) = nH2FH2 + ... +n 2F 2 + 1 

= nH2FH2 + ... +n2Fl +n1F1 +noFo, 
CD 

also holds true; if (n I' no) = (0, 1), thenF(n) = F( (nH2 "'n2n; n~)2) +1, 

where n; = n~ = O. By condition (1) and previous conclusions we know 

that CD holds true; if (n I' no) = (1, 1), then F(n) = F( (nH2 "'n I n~» + 

1, where n;) = O. By condition (2) and previous conclusions we know 

that CD holds true. So, CD holds true for any n E N* . 

Making use of CD we may know that the sufficient and necessary 

condition for F (4n) = F (3n) is that within the binary expression for 
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n, (n kn k-1 "'n 0)2> there are no two adjacent numbers who are both 1 

(here we also use the definition of the sequence {F m». For 0 ~ n < 
2m

, we denote the number of binary expressions with no adjacent 1s to 

be f m' then fo = 1, f1 = 2. In the meantime, if we delete the last 

digit no from n, then by classification according to no = 0 or 1, we 

have respectively f m-1 and f m-2 (since when n 0 = 1 , it must be true that 

nl =0). So,fm =fm-1 +fm-z. ThissuggeststhatforO~n<2m,the 

number n of F m+1 ( = F(2m+1 » satisfies the equation F( 4n) = F On), so 

the proposition is true. 

26. From the recurrence formula, we may know that 

fen) ~f(n-1) +2 ~ ... ~f(1) +2(n-1) = 2n-1. 

So, fen) - n + 1 ~ n. 

Hence, if the values of f ( 1), "', f (n) are determined, then the 

value of fen + 1) can be uniquely determined. Therefore, there exists 

a unique function f that meets the conditions. Now, let g (n ) = 

[1 i,fS nJ. Denotea = 1 i,fS ,theng(1) = 1, and for anyn E N*, 

we always haveg(n +1) -g(n) = [a(n +1)J -[anJ = [a +e:J, where 

c = {an} = an - [an]. 

On the other hand, 

g(g(n) -n +1) = [a(g(n) -n +1)J = [a(an-€ -n +1)J 

= [(a 2 -a)n +aCl -c)J = n + [aCl -c)]. 

Here we use a 2 - a - 1 = o. 
3 -,)5 . [anJ +€ 

Note that € -=F 2 - a = 2 (otherwIse 1 = a 
[anJ +2 

a 

1, leading to a contradictory conclusion that a is a rational number). 

We make use of the above conclusion and find that if 0 ~ c < 2 - a, 

then a Cl - c) > a (a - 1) = 1, then g (g (n) - n + 1) = n + 1. At this 

time, 1 <a +€ <a +2 -a = 2, i.e., g(n +1) -g(n) = 1; if2 -a < 

c < 1, thena(l -c) <a(a -1) = 1, theng(g(n) -n +1) = n. At this 

time, 2 < a + € < 3, i. e. , g (n + 1) - g (n) = 2. 
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The above discussions show that g: N* - N* meets all the conditions 

that f meets, and therefore for any n E N* , we have fen) = g(n). 

This gives the answer (2) requires for. 

Combining with CD, we know that (1) holds. QED. 

27. Suppose under base 2, for any n E N* , the total number of 

appearances of 00 and 11 among all adjacent number pairs is denoted 

as Xn , while the total number of appearances of 01 and 10 among all 

adjacent number pairs is denoted as Yn. We will prove that an = Xn ~ 

Yn. CD 
As a matter of fact, when n = 1, Xl = Yl = 0, so CD is true for 

n=1. 

Now we suppose CD is true for the subscripts 1, 2, ... , n ~ 1 (n ~ 

2). Consider the case n. 

If under base 2, the last two digits of n are either 00 or 11, then 

n - 0, or 3(mod 4). At this time, an = a [on +1, whileX n = X [on + 

1, Yn = Y [-n. So CD is true for n. 

If under base 2, the last two digits of n are either 01 or 10, then 

n = 1 , or 2 (mod 4). At this time, an = a [-I] ~ 1, while X n = X [ -I] ' 

Yn = Y [-I] + 1. So CD is true for n. 

For all above, CD is true for any n E N* . 

Now we need to calculate among 2k ~ n < 2Hl , the number of n 

that makes Xn equal to Yn under base 2. 

Note that, under base 2, n is ak +1 digit number and let it beBn. 

When k ~ 1, subtract the next digit number, left to right, from every 

digit number of Bn , and then take absolute values for each digit. We 

can then get a k-element array C n comprised of 0 or 1. (For example, 

if Bn = (101)2, then C n = (011)2. ) Note that every adjacent number 

pairs 00 and 11 change into one 0 in C n , while 01 and 10 change into 

one 1 in Cn. So, if Xn = Yn' then the numbers of 1s and Os in C n are 

the same. Conversely, for a k -element array C n = (C 1 C 2 ···C k ) 

comprised of 0 or 1, under mod 2 we may find the sums ofb t = 1 +Cl' 

b2 = b 1 +C2' ... , bk = bk- t +bk , where bu = 1. Then Bn = (bob t ···bk )2 
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is a binary expression for the number n satisfying 2k ~ n < 2k+1. This 

suggests that E" and en have a one-on-one correspondence. 

So, the answer to the original question is equal to the number of 

arrays, which are k -element arrays comprised of 0 or 1, that have 

equal number of Os and is. Therefore, when k is an odd number, the 
k 

answer is 0; when k is an even number, the answer is Cl. (note: we 

deem cg = 1. ) 

28. We are going to prove: for any n E N, it is always true that 

x S,,+I = 5n + 1, X Sn+2 = 5n + 4, X Sn+3 = 5n + 2 , 

XSn-t-4 = 5n +5, XSn+S = 5n +3. 

(By making use of this result and k 2 ~ 0, 1, or 4(mod 5), we may 

know that the proposition holds true. ) 

As a matter of fact, when n = 0, from a 1 = 1 we know that 

So CD is true for n = O. 

Now we suppose that CD is true for n = 0, 1, 2, ... , m - 1 (m E 

N* ). Now consider the case n = m. From the structure of CD (asn+1 , 

asn+s is a permutation of 5n +1, ... , 5n +5), we know thatal' a2' 

aSm is a permutation of 1, 2, ... , Sm. By making use of recursive 

relationship we may know that 

a Sm+1 = a Sm - 2 = 5m + 1, a Sm+2 = a Sm+1 + 3 = 5m + 4, 

aSm+3 = aSm+2 - 2 = 5m + 2, aSm -t-4 = aSm+3 +3 = 5m + 5, 

a Sm+S = a Sm-t-4 - 2 = 5m + 2. 

So, the conclusion CD is also true for m. 

29. Using that ~ is an irrational number, we know aI' a2' ••• , an e 
are n distinctive real numbers. To ascertain the value of the algebraic 

expression, we will look for a polynomial of degree n with aI' ••• , a" 

as roots. 

Note that eie 
= cos e + isin e, e-ie 

= cos e - isin e. Then, we have 
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sec e eiB = 1 + itan e. sec e . e-iB = 1 - it an e. So. 

1 + itan e = e2iB (1 - itan e). CD 

Let w = e2inB • then the polynomial Qn (x) = C1 + ix)n -w (1 - ix)n 

has n roots a 1 • a 2' •••• an. (This can be known from CD. since the nth 

roots of ware e2i (e+~rr) • k = 1. 2 •...• n. ) Since Qn (x) is a polynomial 

of degree n. a l' •••• a n are all the roots that Qn (x) have. 

Denote Qn (x) = cnx n + ... + co. Then by Vieta's formulas. we 

may know that a1 + ... +a n =- cn- 1• a1'" an =( _1)n • Co So. 
Cn en 

al + ... +an = (_1)n-1 • Cn-I. 

a1 "'a n Co 

We apply binomial theorem on Qn ex) and see that 

Considering that n is an odd number. we have 

al + ... +a n = C_l)n21 • n. 
a1"'a n 

The problem is solved. 

30. When n = 1. just take P ex) = x. When n = 2. 2cos 2({! = 

(2cos ({!)2 - 2. the proposition also holds true. 

Suppose the proposition holds true for n = k and k + 1. namely. 

there exist polynomials, f (x) and g (x), with integral coefficients 

whose leading coefficients are both 1, such that 

2cosk({! = f(2cos({!). 2cos(k +1)({! = g(2cos({!). 

The degrees of f, g are k and k + 1 , respectively. 

Next, we consider the case with n = k + 2. Note that 

2cos(k +2)({! = 2cos[(k +1)({! +({!J 

=2cos(k + 1)({! cos ({! - 2sin(k + D({! sin ({!. CD 
2cos k({! =2cos[ (k + 1)({! - ({!J 
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=2cos(k + 1)cp cos cp + 2sin(k + 1)cp cos cp. @ 

Add up CD and @, we can get 

2cos(k + 2)cp + 2cos kcp = 4cos(k + 1)cp cos cp. 

By making use of induction hypothesis, we can know that 

2cos(k + 2)cp = (2cos cp)g(2cos cp) - j(2cos cp). 

So, we let h (x) = xg (x) - j(x) Cit is easy to know that h (x) is 

a polynomial with integral coefficients whose leading coefficient is 1) 

and we have2cos (k +2)cp = h(2coscp). 

The proposition is true for k + 2. 

So, the proposition holds true. 

31. Denote 8 = an. Since a is a rational number, we know that 

there existsn E N* such thatn8 =2kn, k E Z, i.e., cosn8 = 1. From 

the conclusion of the above problem, we know that there exists a 

polynomial with integral coefficients j(x) = xn +an_lxn-t + ... +ao, 

such that 2cos n8 = j(2cos 8). Therefore, 

(2cos 8)n + an-] (2cos 8)n-t + ... + at (2cos ()) + ao - 2 = o. 

This suggests that 2cos 8 (attention that cos an E Q) is a rational 

root of the equation below 

However, the left-hand side is a polynomial with leading 

coefficient 1. Therefore, the rational roots of CD are all integers. So, 

2cos 8 is an integer. Considering also I cos 8 I ~ 1, we know that 2cos 8 E 

{ - 2, - 1, 0, 1, 2}, and then we have cos an E {o, ± ~ , ± 1 }. (It is 

obvious that for any value in the set, there is a value of a corresponding to 

that value. ) 

32. Without loss of generality, we suppose the equation of the 

unit circle is x 2 + y2 = 1. Now we take 8 = arccos ; , then cos 8 = ; , 

sin 8 = ~. Consider the point set M comprised of P n (cos 2n8, sin 2n8) , 
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n = 1, 2, .... 

For any i, j E N* , we have 

1 FiFj 12 = (cos 2i(J ~ cos 2j(J)2 + (sin 2i(J ~ sin 2j(J) 2 

= 2 ~ 2cos 2(i ~ j)(J 

= 4sin2 Ci ~ j)(J. 

So, 1 FiFj 1 = 2 1 sinG ~ j)(J I. 

161 

We note that cos (J, sin (J E Q, sin(n + D(J = sin necos (J + cos nesin (J 

and cos(n + n(J = cos n(Jcos (J ~ sin n(Jsin (J. Combining mathematical 

induction, we find it easy to prove that for any n E N* , it is always 

true that sin n(J, cos n(J E Q. Therefore, the distance between any two 

points in M are all rational numbers. 

Now we still need to prove: M is a point set with infinitely many 

points. 

If this is not true, let us suppose M to be a finite set, then there 

exist m, n E N* , m * n, such that 2m(J = 2n(J + 2krc, k E Z. This 

suggests that (J = arc, a E Q. Since cos (J = ~ E Q, from the conclusion 

above, we know that cos arc E {O, ± ~ , ± 1}. However, cos(J = ~ tE 

{o, ± ~, ±1}. This is a contradiction. So, M is a point set with 

infinitely many points. 

For all above, there exist an infinite number of points that meet 

all the conditions. 

33. From the conditions, we may suppose 

Herej3i ~1, i = 1,2, ... , n, and an *0. 
By making use of a~ +ala n = a~ +aOan-l' we can know that 

Then 
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Next, we prove the following statement using mathematical 

induction, inducting with respect to n: when;3 i ? 1, i = 1, 2, ... , n, 

it is always true that 

The" =" sign holds when and only when there are n - 1 numbers 

equal to 1 within;31' ... , ;3n. 

When n = 2, if ;31' ;3 2 ? 1, then the following relationship of 

equivalence holds: 

1 ( 1 1 ) 
;3 1;3 2 - ;3 1;3 2 ? (;3 1 +;3 2) - ;31 + ;3 2 

8(;31;32)2 - 1 ? (;31 +;32 )(;31;32 - 1) 

8(;31;32 -1)(;31 -1)(;32 -1) ? O. 

So, when n = 2, the above proposition holds. 

Suppose the proposition holds when n = k , then when n = k + 1 , 

let a = ;3k;3Hl. By induction hypothesis, we may know that 

HI 1 k-l k-l 1 1 
II;3i -~? (~;3i - ~ ;;-)+a --, 
i=l IIf3i z=l z=l jJt a 

i=l 

where the" =" sign holds when and only when there are k -1 numbers 

equal to 1 within;31 , ;32' ... , ;3k-l , a. 

From the n = 2 case, we may know that 

1 1 

Then, 
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where the" = " sign holds when and only when there are k -1 numbers 

equal to 1 within j31' "', j3 k-1 , a, and one of j3 k and j3 HI is a 1. This is 

equivalent to "there are k numbers equal to 1 within j31' "', j3 HI. " 

From the above conclusion and CD, we know that polynomials in 

the form of P(x) = an (x + 1)n-l (x + j3), an * 0, j3 :): 1 are all the 

polynomials that meet the conditions. 

34. Letxl =1, Xn+1 =P(xn ), n =1, 2, .... For a fixedn EN*, 

n :):2, denotexn -1 =M. Then XI -1 -Xn (modM), thereforeP(xl) = 
P (xn) (mod M), i. e. , X2 = Xn+1 (mod M). Then by making use of 

mathematical induction, we may prove that for any k E N* , it is 

always true that 

Xk - X n+k-1 (modM). CD 

From the condition, we know that one term from Xl' X2' ••• is a 

multiple of M, therefore there exists ar E N* ,such thatxr =0 CmodM). 

From CD we know that the sequence {Xk} is a sequence with period n-

1 under mod M. So, we may assume 1 ~ r ~ n -1. 

NowfromPCn) >n we can know that XI <X2 < ... <xn , SOXn-1 ~ 

Xn -1 =M. Furthermore, Xr ~M. ButM I X r ' sOX r =M =Xn -1, 

and this requires that r = n -1, i. e. , Xn -1 = Xn-l. So PCXn-l) = Xn = 

X n -l + 1. Since this equation is true for any n :): 2, as {xn} is a 

monotonically increasing sequence, we know that P (x) = x + 1 holds 

true for infinitely many distinctive positive integers. 

So P ex) = x + 1. 

35. From the conditions, we get P (- X)2 -1 = P « - X)2 -1) 

P(X2 -1) =P(X)2 -1, SOP(X)2 =P(_X)2. Now we supposeP(x) = 

a2Hlx 2Hl +a2kx2k + ... +alx +aO(a2Hl *0). Compare the coefficients 

of all terms expanded for P (x) 2 and P ( - x) 2 and we can get a 2k = 

a2k-2 = ... = ao = O. So, P(x) has only non-zero terms with odd­

number degrees, i.e., Pc-x) =-P(x). Therefore, peO) =0, and, 
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P( -1) = P(OZ -1) = P(O)Z -1 =-1, PO) =- P( -1) = 1. 

Consider the sequence b1 = 1, bn+1 = ~, n = 1, 2, .... 

Notice thatb 1 <b2 =fi. Now we supposebn <bn+1 , thenbn +1 <bn+1 + 
1, ~ < /b n+1 + 1, i. e., bn+1 < bn+z• From this and by 

principles of mathematical induction we know that {b n } is an 

increasing sequence. 

Moreover, P(b 1 ) = PO) = 1 = b1 • Now we suppose P(b n ) = bn , 

then 

P (b n+1)2 = P (b~+l - 1) + 1 = P (b n ) + 1 = bn + 1 = b~+l. 

So P (b n+1 ) = ± bn+1 • But if P (b n+1 ) = - bn+1 , then P (b n+2 )2 

P (b n+1 ) + 1 = 1 -bn+1 = 1 -~ < 0, and this is a contradiction. 

So P (b n+1 ) = bn+1 • Therefore, by principles of mathematical induction 

we can know that for any n E N* , it is always true that P (b n ) = bn • 

From all above, there are infinitely many distinctive real numbers 

x, such that P (x) = x. So for any x, it is always true that P (x) = x. 

36. From (2), without loss of generality, we suppose k is the smallest 

positive integer number which makes P k
) (0) = o. If k ? 3, then 

I f (0) I = I f (0) - 0 I ? I P2) (0) - f (0) I ? ... 

;?; I P k ) (0) - PH) (0) I = I PH) (0) I, 

while I PH) (0) I = I P k- 1l (0) - 0 I ? I f Ck ) (0) - f(O) I = I f(O) I. 
SO I f(O) 1=1 Pk-I) (0) I. 
If f(O) = f Ck- ll (0), then f(j(O» = f Ck ) (0) = o. This is a 

contradiction. 

If f(O) =-PH) (0), then from (1) we can know that 

I f(O) I = I f(O) + 0 I = I P k) (0) - Pk-I) (0) I 
~ I fCk-1) (0) - f Ck- 2) (0) I ~ ••• 

~ I P2) (0) - f(O) I ~ I f(O) - 0 I = I f(O) I. 

So, the above "inequality" signs are all replaced by "equal" signs. 

Noting that all following numbers f(O), ••• , Pk-I) (0) are non­

zeros. So, from the system of equations below, 
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1
1 f(2) (0) - f(O) 1 = 1 f(O) I, 

1 f(3) (0) - P2) (0) 1 = 1 f(O) I, 

1 Pk-I) (0) - f(H) (0) 1 = 1 f(O) I. 

We know that for 2 <j < k -1, we always have f(J) (0) - f(J-1l (0) = 

± f(O). Then P2) (0) = 2f(0), f(3) (0) E {f(0) , 3f(0)}, P4) (0) E 

{2f(0), 4f(0)}. Conducting this recursively, we can know that 

PH) (0) is a positive integral multiple of f(O), which is contradictory 
to f(H) (0) =- f(O). 

From all above, the proposition holds true. 

37. We build a combinatorics model: Use fen) to represent the 

number of strips of 1 X n we have which are made of red cubes of 1 Xl, 

blue cubes of 1 Xl, and white cubes of 1 X 2. 

B d· I I . k h f() "0 (i + j + k) ! y Irect ca cu atlOns, we can now t at n = L.J ., . 'k' . 
I.J. . 

Here the summation process is for all non-negative integer arrays 

(i, j, k) satisfying i + j + 2k = n. 

On the other hand, we calculate the value of fen) by a recursive 

method and we get f(1) = 2, f(2) = 5. While for the strips of 1 X 

(n + 2) , with lengths of n + 2, if the first cube is red or blue, after 

being removed, there are altogether fCn + 1) strips that meet the 

conditions. If the first cube is white (whose length is 2), after being 

removed, there are altogether fen) strips that meet the conditions. So 

fCn + 2) = 2f(n + 1) + fen). 

Comparing the initial values of the sequences {f(n)} and {Pn}, 

noting the recursive formulas, we may know that for any n E N* , it is 

always true that fen) = Pn. 

So, the proposition holds true. 

38. Lemma: For any n E N* , it is always true that 

{
f3 1 f32 f3n I . } 2 + 22 + ... + 2n f3 i E {- 1, 1}, I = 1, 2, ... , n 

= {~n Ij is an odd number, and 1 j 1 < 2n }. 
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The proof of the lemma can be conducted through inducting with 

respect to n. 

When n = 1. the lemma obviously is true. Now we suppose the lemma 

holds for all positive integers less than n. Consider the case with n. 

For/3i E {-1. 1}, denote} = 2n
-
1/31 +2n

-
2/32 + ... +2 IJ/3n. then 

~ /3,'.. J L..J = 2n • and} is an odd number. Furthermore. we have 
i~1 2 

I in I = I ~ ~; I ~ ~ I~: I = ~ ii = 1 - in < 1 • 

so I} 1< 2n. 

Conversely. for odd numbers} • and I} I < 2n 
• we note that one of 

} ~ 1 and} ~ 1 is odd, and the other is even . We suppose} ° is the odd 

number of these two numbers} ~ 1 and} ~ 1 • then I } 0 I ~ 1 (1 + I ) I) ~ 

2n
-

1 + 1. Concerning also that} 0 is an odd number. we know I } 0 I < 

2n
-

1
• Hence from induction hypothesis we know that there exist /31 , 

/31 /32 /3n-1 JIJ 

/3 2' "'. /3 n-l E {- 1, 1}, such that 2 + 22 + ... + 2n-1 2n-1 . 

Let/3n =} -2}o. then/3n E {-1, n, and that 

So, the lemma is proved. 

( 1) From the conclusion of the lemma and the structure of all 

elements in An. we may know that An = { 1 + i-IJ + }-IlJ2l} • k is an 

odd number. and I } 1< 2--IJ. k < i-Il}. So, from J2 being an 

irrational number we may know that I A I =2L-IJ. 21-Il = 2n. 

(2) DenoteS = 2.= ab, thenS = 1 (( 2.=af - 2.=a 2
). 

a, bEAn aEAn aEAn 
a<b 
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W . h 1 ~ k M2 dl-~ __ k_M2 . 
e pan tee ements, 1 + 2L~J + 21~lY~ an 2L~J 21~lY~' III 

An and sum them up. Making use of the conclusion of (1), we can 

know that ~a = 2n. 

Furthermore, we make use of the conclusion: if X, Yare both 

finite sets, and ~x = ~y = 0, then 
xEX yEY 

xEXyEY xEX 

Concerning the structure of An' we can have 

2k2 • 2L~J 

2z1~l 

yEY 

From all above, the answer to (1) is 2n 
, and the answer to (2) is 

~ (2 2n 
- 2n+1 + 1). 

39. Lemma: Suppose n E N* , and we may express it in the form 

of a combination of several 3s and 4s. The ordered divisions of n can 

be arranged in form of a matrix, thenx n is the sum of all entries on the 

first column of the matrix. 

For example, when n = 15, we may get the matrix as follows. 

4, 4, 4, 3 

4, 4, 3, 4 

4, 3, 4, 4 

3, 4, 4, 4 

3, 3, 3, 3, 3 
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Directly using the recursive formula, we can calculate and get XIS 

18, the sum of all entries on the first column of the above matrix. 

The proof of the lemma: We will prove through inducting with 

respect to n. When n = 1, 2, 3, 4, we may know that the proposition 

holds by direct verification. Now we suppose the lemma is true for all 

subscripts less than n (~5). We consider the case with n. 

According to the ordered divisions of n into combinations of 3 and 

4, we may classify the divisions into two categories by the last term 

being 3 or 4. For the ordered divisions with last term 3, we remove the 

last term 3 and we get all the ordered divisions of n - 3. For the 

ordered divisions with last term 4, we remove the last term 4 and we 

get all the ordered divisions of n - 4. Concerning n ~ 5, if the division 

is still possible, then at least there are two terms. Then we know that 

the matrix comprised of the ordered divisions of n has the sum of all 

entries on the first columnx n-3 +X n -4 (here the induction hypothesis is 

used). So, the lemma is true for n, and the proposition is proved. 

Going back to the original question, we know when p = 2, 3, X p = 

0, the proposition holds true. For prime numbers p (~5), suppose the 

matrix we get by expressing p into ordered divisions of 3 and 4 is M. 

Then the length l for each row of M satisfies p < l <!..... 
4 3 

We analyze the sub-matrix T made of all the rows of the same 

length in M: Suppose the sum of all elements on the first column of T 

is S. Since for every row of T, 3 and 4 must appear at the same time 

(when only 3 or 4 appears, then p is a multiple of 3 or 4, and then is 

not prime). Hence the division of p by exchanging positions of 3 and 4 

in this particular row is another row of T. This suggests: the sums of 

elements on any two columns of T should be the same (since if the 

numbers in corresponding positions of these two columns are different, 

then there must be numbers obtained by one row intersecting with 

these two columns that are just a swap of the numbers mentioned 

before). Denote the sum of each column of T is S. Suppose the 

number of columns of T is l, then the sum of all numbers in T is sl , 
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while the sums of all numbers in each row of T are all p, so sl IS a 

multiple of p. As 1. ~ l ~ E., we know that pis. 
4 3 

By above discussions, we can know that for the sum of all 

numbers on the first column of M, it is also a multiple of p, 1. e. , 

p I Xp. The proposition holds. 

40. Suppose aI' ••• , an are the posItIve integers that meet the 

requirements. Then by (1) we know that for 1 ~ k ~ n, it's always 

true that ak > ak-l (otherwise the left-hand side? 1, the right-hand 

side < 1). Therefore, it is true that ak > 1. Hence, from (2) we know 

ak Summing up for k = i + 1, ... , n -1, we have 
ak+l -1· 

n-I 

Let i = 0 in CD, and by (1) we have -.l ~ 19090 = ~ ~ < ~1 ' 
al i~O ai+l al 

so a 1 = 2. Similarly, take i = 1 in CD, also concerning (1), we have 

1 49 1 
and we have a2 ~ 200 < a2 -1' then we know a 2 = 5. Repeating these 

discussions, and we take i = 2, 3 in CD, then we can get a 3 = 56, a 4 = 

25 X 562 
= 78 400. So, 

1 1 ( 99 1 2 5 56) 
as ~ a4 100 -:2 - 5 - 56 - 25 X 562 = 0, 

and a 5 does not exist. 

By all of above, only when n = 4 does this kind of sequence exist, 

and the corresponding aI' a2' a3' a4 are 2, 5, 56, 78400. 

41. Let Xn = nYn' n = 2,3, ... , thenx2 = 2, X3 = 3, and forn ? 

3, we have (n - 2)Xn+1 = (n 2 - n - 1 )xn - (n _1)2 Xn-I , i. e. , 
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Xn+l -Xn = (n -1) Xn -Xn-l 

n-1 n-2 

Let us use CD and conduct reasoning recursively, then we can get: 

= (n -1) • Xn - X n-l = (n -1) (n - 2) • X n-l - X n-2 

n-2 n-3 

= ... = (n-1) ... 2. X3 ~X2 = en-1)!, 

and we get X n+l - Xn = n! - (n -1)1. By using telescoping series, we 

know that 

n~ n~ 

Xn = X2 + ~ (Xk+1 - Xk) = X2 + ~ (k! - (k -1) 1) 
k~2 k~2 

= X2 + (n -1)! -1 = (n -1)! + 1. 

From Wilson's Theorem which claims n I (n -1) ! + 1 if and only if 

n is a prime number, we know that the necessary and sufficient 

condition for Yn E Z is that n is a prime number. 

42. Lemma: Suppose n, k E N* , n ::? kp, then 

k 

an = ~ Cia n-i(p-1l-k. 
i=O 

CD 

Induct with respect to k. When k = 1, CD is actually an = an-l + 
a n - p , so CD is true for k = 1. 

Now we suppose CD is true for k, then we consider the case with 

k + 1. So, n ::? (k + 1) p, and the minimum value of the subscripts 

n - i (p - 1) - k (0 < i < k) is reached when i = k , and the minimum 

value is n -kp ::? p. So, every term of the following summation process 

can apply the recursive formula in the condition: 

By induction hypothesis, when n ::? (k + 1) p, we have 

k 

an = ~ Cia n-i(p-1)-k 
i=O 

k 

= ~ C" (a n-i(P-ll-k-1 + a n-i(p-ll-k-p) 
i=O 

k k-I 

= C~an-k-I + ~ Cia n-i(p-ll-k-l + ~ Cla n-i(p-1)-k-p + C~an-(k+1)p 
i=1 i=O 
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k-l 

= C~+l a n-CH1) + 2j Ck+
1a n-Ci+1)(P-1l-CHl) 

i=O 

i=O 

k-l 

= C2+1an-CHl) + 2j (Cl+1 + C~ )a n-Ci+l)CP-1HHll + C~+lan-(H1)p 
HI 

= 2j Cl+1 a n-Ci+l)Cp-])-CHll. 
i=O 

171 

For the last step, Ck+1 + Ck = Clt\ is used. So, Q) holds true for 

k + 1, and the lemma is proved. 

Next, we are going to deal with the original problem by making 

use of the lemma. When n ~ p2, letk = P in the lemma, then we have 

p 

an = 2j Ci,un-iCP-ll-p. 
i=O 

It is well-known that when 1 ~ i ~ P ~ 1, we have cp - 0 (mod p ). 

So, an = a n- p + a n_p2 (mod p), concerning an = a n-l + a n - p , we have 

a n-l - a n_p2 (mod p). This suggests that for any t ~ p2 ~ 1, we have 

at = a t+p2_1 (mod p). 

Since p3 = P (p2 ~ 1) + p, a p3 = a p+pCp2_l) a p (mod p) , and also 

sincea p =aO+a p-l =p~1,thenwehaveap3 =p~l (modp),i.e., 

the remainder is p ~ 1 when a p' is divided by p. 

43. For the sake of convenience, denote m = n ~ 1, bi = ai + 1, 

then 1 ~ a 0 ~ 2m, and 

{
2a i ' 

ai+l = 2ai ~(2m +1), if ai > m. 

This suggests that ai+l - 2ai (mod 2m + 1), and 1 ~ ai ~ 2m, 

1, 2, .... 

(1) The p (2, 2k) and p (2, 2k + 1) in question are equivalent to 

finding pO, 2k ~ 1) and p(l, 2k) for {ai}. The former one is 

equivalent to finding the smallest I E N* , such that 21 -1 (mod 2(2k ~ 

1) + 1) , and the latter one is equivalent to finding the smallest I E N* , 
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such that 21 - 1 (mod 2Hl + 1). 

Obviously, 2Hl =1 (mod2(2 k ~1) +1). For 1 ~t ~k, it is always 

true that 

1 ~ 2' ~ 1 < 2Hl ~1 = 2(2k ~ 1) + 1, 

so p C1, 2k ~ 1) = k + 1. 

Since 22(H]) _ 1 (mod 2Hl + 1), then p (1, 2k) I 2 (k + 1). While 

for 1 ~ t ~ k + 1, it is always true that 1 ~ 2' ~ 1 < 2Hl + 1, then 

p C1, 2k) > k + 1, so P (1, 2k) = 2 (k + 1). 

So, for {b,} , we have p (2, 2k) = k + 1, and that p (2, 2k + 1) = 

2(k + D. 
(2) We still go to {ai} to proceed with the discussion. It is 

required to prove: p (ao, m) I p C1, m). Now we suppose p (1, 

m) = t, then 2' = 1 (mod 2m + 1), therefore, 2' a 0 = a 0 (mod 2m + 1). 

This suggests that p (a u, m) I t (here we make use of some property of 

"order" in basic number theory). That is to say, p (au, m) I p (1, m) , 

and the proposition is true. 

44. First, we set up a lemma: for any a E (0, 1), there exist two 

points on a broken line such that they share the same ordinates, and 

their abscissae differ by a or 1 ~ a. 

As a matter of fact, suppose r is the given broken line in 

question, r 1 is the broken line obtained by shifting r to the left by a 

units, and r 2 is the broken line obtained by shifting r to the right by 

1 ~ a units. It is easy to get that there is at least one point of 

intersection for rand r 1 U r 2' and this is the result that the lemma 

needs (as shown by Figure 7, we will know that there will be points of 

intersection for rand r 1 U r 2' if we start from the highest and lowest 

points of r). 

Figure 7 
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Next, we make use of the lemma to prove the conclusion we need. 

Take a = 1 ' and we may know that when n = 2, the conclusion 

holds; Take a = ~ , and we have two points A, B on the broken line, 

such thatAB II the x-axis, and 1 AB 1 = ~ , or 1 AB 1 = ;. If 1 AB 1 = 

~ , then n = 3 already holds. If 1 AB 1 = ;, then we consider the 

sub-broken line joining A with B. Referring to the lemma and the 

conclusion with n = 2, we may know that there exist points C, D on 

the sub-broken line, such that CD II AB, and 1 CD 1 = 11 AB 1 = ~. 

Hence, the conclusion holds true when n = 3. Conduct the reasoning 

likewise, together with mathematical induction, we may know that 

the conclusion holds true for any n ;?:; 2. 

45. We first use mathematical induction to prove the existence. 

When n = 1, obviously the method exists. Suppose when n, there 

is a method T that meets the conditions. We now consider the case 

with n + 1. Then we first put the n balls into the white boxes labeled 1 , 

2, "', n, and we suppose after this placement, the smallest labeling 

number of the empty box is i (1 ~ i ~ n), then we follow the method 

described below to put in the n + 1 th ball: We take one ball 

respectively from the white boxes labeled 1, 2, "', i - 1 and put them 

in the box labeled as i, and we put the n + 1 th ball also in the box 

labeled as i. It is easy to know that this way of placement meets the 

conditions. 

Then we use mathematical induction to prove that the method of 

placement is unique, inducting still with respect to n. 

When n = 1, 2, the uniqueness obviously holds. Suppose for 

n(;?:; 2), there is only one method of placement, denoted by T. 

It is easy to know when n + 1 ;?:; 3, among all the methods of 

placement, the n + 1 th white box must be empty. Then, when n + 1, 

there exist two methods of placement T 1 and T 2. We notice that the 



174 Sequences and Mathematical Induction 

n + 1 th white box, which is empty, can be removed, and after one­

step operation for T I and T 2' there are n balls in the white box, and 

the number of white boxes is n, so they both become T. 

Suppose the labeled number of white boxes that were operated 

under T I and T 2 respectively are iI, i 2 • If il > i 2 , then after the first 

operation under T I' the white box labeled i2 has at least one ball, 

while after the first operation under T 2' there is no ball in the white 

box labeled i 2 • They cannot both change into T, so i , ~ i 2 • By the 

same reasoning, i2 ~ iI, i. e. , i , = i 2 • Thus, under T I and T 2' the 

numbers of balls in the white boxes whose labels are bigger than il are 

the same. The numbers of balls in the white boxes whose labels are less 

than i I are also the same (otherwise, T I and T 2' after one operation, 

they cannot both change into T. ) So, the numbers of balls in the boxes 

labeled i I should also be the same, therefore T I = T 2. 

This suggests that there exists a unique method of placement that 

meets the conditions. 

46. (1) We use 0, 1, 2 to express A, Band C, respectively. 

Under modulus 3, we watch the changing status of the sequence R o , 

R
" 

Let R j = (Xl' ••• , X n ), R j +1 = (YI' yz, ... , Yn)' then for 1 ~i ~ 

n, it is always true that Yi -- (Xi + Xi+l) (mod 3). 

Ifn is an even number, takeR o = (1,2,1,2, ... , 1,2). Then 

for any m ? 1, it is always true thatR m = (0, 0, ... , (), 0). So at this 

time, there does not exist any positive integer m that meets the 

requirements. If n is an odd number, since there are at most 3n distinct 

n-element number arrays in form of (XI' ••• , x n ), then for any R o , 

there exists an m R E N* , and kEN, such that Rk = RmR +k. We will 
() {) 

prove that if k ? 1, then R k- 1 = RmR +k-1 (therefore by inferring 
() 

likewise we get Ro = RmR ). 
() 

As a matter of fact, suppose R k- I = (Xl' ••• , x n ), RmR H-I = 
II 

(YI' ••• , Yn), then fromR k = RmR +k' we can know that - (Xi + Xi+l) -
o 

- (Yi + Yi+l) (mod 3). So 
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n n 

~(-1)j(Xj +Xj+l) -~(-1)j(Yj +Yj+l) (mod3). 

Concerning also n is an odd number, we know that - x I + 
(-1)nXn+l =-Yl + (-1)nYn+1 (mod 3) , i.e., -2x, --2Yl(mod3), 

XI = YI (mod 3). SO, XI = YI. By the same reasoning, we can prove 

thatfori E {2, "', n}, it is always true that Xi = Yi' so R k - I = 

RmR +k-I· 
o 

By above we know that for any R o, there exists an m Ro such that 

Ro = RmR . Then, while Ro changes, we take the least common 
o 

multiple m of all m Ro' Then for any R o, it is always true Ro = Rm. 

From all above, there exists an m that meets all conditions if and 

only if n is an odd number. 

(2) For n = 3k
, k E N* , the smallest value of m that meets the 

condi tions (set in (1» should be m = 3k
• 

As a matter of fact, for any Ro = (XI' "', x n ), suppose R3k = 

(YI' "', Yn)' then from the relation we inferred before under modulus 

3k 

3, it is easy to know that Yp -- ~C3kXi+P (mod 3), where the 
i=O 

subscript of X i+p takes on values under the meaning of modulus n, 

where p = 1, 2, "', n. We also notice that for 1 ~ i ~ 3k -1, Cjk -

o (mod 3), so YP =- Xp - X3k +p =- 2xp = Xp (mod 3), therefore, 

R3k = Ro. 

On the other hand, supposeRo = (0, 0, "', 0, 1), then for 0 < m < 
Jk, the 3k -m th component of Rm is not equal to O. So, the minimum 

value of m that satisfies (1) is 3k 
• 

Solutions to Exercise Set 2 

1. We make the proposition more general by changing 2011 into 

n, and we prove that the proposition holds true for the n -element set S 

and 0 ~ N ~ 2n. 

When n = 1, the subsets of S areS and 0 only. ForO ~N ~2, we 
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dye any N subsets into white, and the others into black, then we know 

that the proposition holds true. 

We suppose the proposition holds true for n, then we consider the 

case with n + 1. We partition the subsets of S into the part containing 

an+1 and the part not containing an+l. Thus, S = {aI, ... , an+I}. 

Suppose the subsets of S that do not contain an+1 include AI, ... , A 2" , 

the subsets of S that contain an+! include B I , ... , B 2" , where 

If 0 ~ N ~ 2n 
, then by induction hypothesis, we dye N sets from 

AI, ... , A 2n into white color, and others into black color. We dye all 

Bi into black color after meeting all conditions set by the question. 

Then we know that the proposition is true for n + 1. If 2" < N ~ 2"+1 , 

then suppose N = 2" + k, where 0 < k ~ 2" . We use the method we 

applied in induction hypothesis for AI, ... , A 2" , which is to dye k of 

them into white color, and others into black color such that all 

conditions are met. Then we dye all Bi into white color. 

Generalizing, we know that the proposition is true for all nand 

then of course true for n = 2011. 

2. We extend 2048 into the case 2". Namely, we prove: for any 

n E N* , we place + 1 and - 1 , totaling 2n terms, on a circle. By 

operations described by the question, after a limited number of 

operations, all the numbers will become + 1. 

When n = 1, by the given conditions, we can get the following 

sequence for operations: 

(+1, -1)-(-1, -1)-(+1, +1). 

Then we know that the proposition holds true for n = 1. 

Suppose the proposition holds true for n, then for the case n + 1 , 

we use XI' X2, ... , X2n+1 to express the 2n+1 numbers permuted on the 

circle. Then, we have the following sequence for operations: 
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We "combine" the two operations into one operation. Then we 

know that if the 2n numbers (Xl' X}' "', X2n+l~l) and (X2' X4' "', 

X2n+l ) on the circle can all be changed into + 1 after a limited number 

of operations, the proposition is proved. Since this requirement is 

exactly the induction hypothesis, the proposition is hence true. 

3. Without loss of generality, we suppose Xl , "', Xn ~O. Whenn = 

1, 1 :lXT < ~ < 1, so the proposition is true for n = 1. If we suppose 

the proposition holds true for n, then we consider the case n + 1. Let 

Xi Y i~l = , i = 2, 3, ... , n + 1, then 
/1 +xT 

n+l n 

~ Xi Xl 1 '" Yi 

i~l 1 +xT + ... +xf = 1 +xT + /1 +xT 72 1 +YT + ... +Y7 

Xl rn 
< 1 + XT + /1 + xt 

Now we suppose Xl = tana, 0 <a < ~, then 

= sin aCOS a +rn cos a < sin a +rn cos a 

= rnTI sin(a + cp) < rnTI, 

Where cp = arctan rn. 
So, the proposition is true for n + 1. QED. 

Explanation. There is a very smart solution to this problem. Let 

Xu = 0, then by Cauchy-Schwartz Inequality we know that 
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n 1 1 
= n ~ (1 + x~ + ... + xf-l - 1 + x6 + ... + xf ) 

-n(l- 1 ) 
- 1 +x6 + '" +x~ 
<no 

So the original inequality is true. 

4. First, we prove a lemma: 

n 

~ 1 C1Z1 + ... +CnZn 12 =2n 0 ~ 1 Zk 12 , 
(£1' ''', En) k=1 

where the summation process is meant for all possible vectors (C 1 , 

C n ), where C i E {- 1, 1}. 

When n = 1, it is obvious that the lemma is true. When n = 2, we 

notice that 

1 ZI -Z2 12 +1 ZI +Z2 12 = (ZI -Z2)(ZI -Z2) +(ZI +Z2)(ZI +Z2) 

= 2(ZlZ1 +Z2Z2) = 2(1 ZI 12 + 1 Z2 12 ), 

(This conclusion can be interpreted as the sum of squares for lengths of 

diagonals of a parallelogram is equal to the sum of squares for its four 

sides.) and by this, we know that the lemma is true for n = 2. 

Now we suppose the lemma is true for n, then from 

~ 1 C1Z1 + ... +Cn+IZn+1 12 
(e: l' ...• € n+l) 

~ (I CIZI + ... +CnZn +Zn+l 12 +1 C1Z1 + ... +C'nZn -Zn+1 12) 
(e: 1 ' •••• € n) 

= 2 ~ (I CIZI + ... +CnZn 12 +1 Zn+1 12) 
(e: 1 ' "', € n) 

= 2n+1 1 Zn+l 12 +2 ~ 
(e: 1 • "', € n) 

n 

= 2n+1 1 Zn+l 12 + 2 n+1 ~ 1 Zk 12 

n+l 

= 2n+1 ~ 1 Zk 12. 
k~l 

We know that the lemma is true for n + 1. So for any n E N * , the 
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Lemma is true. 

Coming back to the original problem, by conditions we know that 

1£IZI+"'+£nznI2~ ~ 1 £ I W 1 + ... + £ nW n 12. 
(e: 1 ' "', € n) (e: 1 ' "', e: n) 

n n 

Then by the lemma, we know that 2n ~ 1 Zk 12 ~ 2n ~ 1 Wk 1
2

, 

k~1 k~1 

then the proposition is proved. 

5. A polynomial that obviously satisfies the condition is P = 

XIX2"'Xn' If we are able to prove one term of P(XI' "', xn) is a 

multiple of X1X2"'Xn (i.e., Xl' "', Xn all appear in this term), then 

the degree of P is no less than n. 

Now we prove the strengthened conclusion: One term of P(XI' "', 

Xn) is a multiple of X1X2·"Xn. 

When n = 1, from the condition P (1) > 0, P ( - 1) < (), then we 

know that P (XI) is not a constant, and one term is a multiple of Xl. 

The proposition holds. 

Suppose the proposition is true for any polynomial with n - 1 

variables that meets the conditions. We consider the case with n. 

For P (XI' X2' "', Xn) that meets the conditions, we let 

which is the sum of all coefficients of the odd-degree terms of x n , 

when we treat P as a polynomial of Xn (other variables XI' "', Xn-I are 

all treated as constants) . 

Since when X I' "', X n-l are all replaced by + 1 or - 1, if the 

number of - 1 is an even number, then P(XI' "', Xn-I' 1) > 0, 

P(Xl' "', Xn-I' -1) < 0, so Q(Xl' "', Xn-I) > 0; similarly, if the 

number of - 1 is an odd number, then Q(XI' "', Xn-I) < 0. By 

making use of induction hypothesis we may know that one term from 

Q(Xl' "', Xn-I) is a multiple ofx,x2'''xn-'. Note thatP(x, , "', xrJ 

originates from summing up all the terms by first multiplying every 
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term in Q(Xt, ••• , X n-l) by a certain odd-number power of Xn. So, one 

term of P(Xt, .", Xn) is a multiple of XjX2···Xn. 

From all above, the proposition holds true. 

6. When n = 1, m j = at. If fl ~ aI, then the subscript k that 

satisfiesmk > fl does not exist, and at this time, the proposition is 

obviously true. If fl < aI' then there is exactly one subscript k that 

meets the requirements. From 1 < al we know that the proposition 
fl 

holds true. 

Now we suppose the proposition holds true for 1, 2, ... , n -1 (n ~ 

2). Suppose for the case n, r is the number of subscripts k that satisfies 

mk >fl. Ifmk ~fl' then for the sequence at , ••• , an-I' the number of 

subscipts k that satisfies m k > fl is also r. Then from induction 

a +···+a a +···+a hypothesis, we can know that r < I n-I ~ tn. The 
fl fl 

proposition is true for n. 

If m n > fl' then there exists i E { 1, 2, "', n} such that 

an-i+1 + ... + an . > fl. For this i, concerning the sequence aI' a2' .", 
1 

an-i' there are at least r - i subscripts k that satisfies mk > fl. Hence, 

from induction hypothesis, we know that r - i < al + ... +an-, 
fl 

Then, (al + ... +an-i) + (an-i+1 + ... +an) > (r -i)fl +ifl = rfl' 

al +a2 + ... +a 
SOr < n. 

fl 

The proposition is proved. 

7. Compare to the second proof for the Arithmetic Mean­

Geometric Mean Inequality in Section 10. We use the method in that 

proof to prove the widely used Jensen's Inequality. 

When n = 1, 2, it is obvious that the inequality is true. 

Now we suppose the inequality holds for n = 2k (k E N* ). Then 

from the definition of f, we may know that 
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2k+1 

= 2k~! ~j(Xj). 
j=! 

Hence, the inequality is true for any n = 2k (k E N*). 

More generally, for n E N* (n ~ 3), suppose 2k ~ n < 2H !, k E 

N* . DenoteA = ..l(X! + ... +xn). Then since the inequality holds for 
n 

2H! , we know that 

j(X! + .•• +x2kt(2H!-n)A)~2k~!(~jCXj) +C2H1 -n)jCA»). 

At the same time, 

Then, we have 

n 

2H1 jCA) ~ ~jCXj) +C2H1 -n)jCA). 
j=l 

So j(A) ~..l ~ j(Xj)' i. e. , the inequality holds for n. 
n j=l 

The proposition is proved. 

8. Lemma: Suppose j(x) is a convex function on the interval 

(0, 1), n E N* , n ~ 2. The positive real numbers XI' ••• , Xn satisfy 

X I + ... + Xn = 1, then 

Proof of the Lemma: From Jensen's Inequality, we know that 



182 Sequences and Mathematical Induction 

So, the Lemma holds. 

Let's go back to the original question. Let fCx) = In 1 +x. We 
x 

notice that for any x, y E CO, 1), it is always true that 

fCx) + fCy) = In 1 +x + In 1 + y = In 1 +xy +x + y 
x y xy 

= In (-.l + x + y + 1 ) 
xy xy 

~ In [ 1 + x + y + 1 
(X ~yr (X ~yr 

= In( 4 +_4_ +1) = In(CX +y +2)2) 
Cx + y)2 X + y Cx + y)2 

= 2ln 1 + x ~ y = 2f (X ; Y). 

2 

S f() 1 1 + x . f· (0) C ·d· 0, x = n -- IS a convex unction on ,1. onSI enng 
x 

this, together with previous conclusions, we may know that the 

proposition holds. 

n F 1 1 1 3 
9. Denote5 n = ~ 2,"then 51 =2,5 2 =2+4 =4· While 

n ~ 3, it is true that 
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= ! + ~ (5 n - 1 - ~ ) + ~ 5n - 2 

111 
= 2 + 2 5n- 1 + 4 5n- 2 • 

By use of 51 = ~ and52 = !, we may know that forn = 1,2, it 

is always true 5 n < 2. Now we suppose for n = k, k + 1, it is true that 

5 n < 2, then we have 

1 1 1 1 1 1 
5 H2 = 2 +25Hl +45k <2 +2 X2 +4 X2 = 2. 

So, the proposition holds true. 

10. By making use of a n+2 = a n+l +an, we know that a9 = as +a7 

2a 7 + a 6 = '" = 21 a 2 + 13a 1. According to the conditions set by the 

question, we can know that the following indeterminate equation has 

at least two sets of positive integer solutions ex, y), such that x ~ Y : 

13x +21y = k. CD 

We notice that if CD has two sets of positive integer solutions (Xl' 

Yl) and (X2' yz), such that Xl ~Yl' Xz ~Yz, then 13xl +21Yl = 13x2 + 

21yz = k. By symmetry, without loss of generality, we may suppose 

Xl ~ X2. Then 13(x2 - Xl) = 21 (Yl - Y2). Thus, by Xl = X2 we know 

that Yl = Y2' which leads to (Xl' Yl) = (X2, yz) and causes a 

contradiction. SoXI <X2. Therefore, we have 21 I X2 -Xl' 13 I Yl - Yz 

(it makes use of (13,21) = 1). SoX2 -Xl ~21, and getx2 ~21 +Xl ~ 

22. From Y2 ~ X2' we know that k ~ 13 x 22 + 21 x 22 = 748. 

On the other hand, when k = 748, CD has two sets of distinctive 

positive integer solutions, and they are (22, 22) and (1, 35), 

corresponding to (al' a2) respectively, and we then have two 

sequences that meet all the requirements. 

Generalizing all above, the least positive integer we look for 

is 748. 
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11. If m ;?: k + 2, then F m ;?: FH2 = FHI + Fk ;?: 2Fk (since the 

sequence {F n} is a non-decreasing sequence). Then x I ~ ~. From the 

definition of {Xn} we may know that X2 ~ 0, and further we may use 

mathematical induction to easily prove: for n ;?: 2, it is always true that 

Xn ~ O. At this time, the sequence {xn} does not contain any term 

equal to 1, so m < k + 2. Since m > k , our conclusion has to be m = 

k+1. 

On the other hand, for any k E N* , if m = k + 1, then from the 

definition of {x n }, we can know that X2 = 2Jk -!;+I (unless k = 1, 
HI k 

m = 2, then x I = 1, meaning there is a 1 in this sequence already). 

And Fk - F k- I Fk- 2 W d h· . we get X2 = F -F . e con uct t IS reasomng 
k-I k-I 

recursively to find that: when k is an odd number, supposing k = 2n + 

1, we have X3 = FF 2n
-

3
, ••• Xn+1 = FFI = 1. This is in accordance with 

2"-2 2 

the question; when k is an even number, supposing k = 2n, we have 

x 3 = ~ ~:=:, ... , X n = ~: = ~ , after which every term in the sequence 

is no bigger than 0, and this is not in accordance with the question. 

Generalizing all above, the positive integer pairs we look for is 

(k, m) = (2n-1, 2n), n E N*. 

12. The answer is 11 Yuan. 

Suppose fen) is the smallest amount of money that needs to be 

paid to confirm the number Mr. Zhang takes from {1, 2, ... , n} , then 

fen) is a non-decreasing sequence. And, if the first subset chosen by 

Mr. Wang is a set with m elements, then 

fen) ~ max{jem) + 2, fen - m) + 1}. 

Next, we make use of the Fibonacci Sequence {Fn} and prove the 

following conclusion: suppose x is a positive integer, and F n < X ~ 

F n+1 (n ;?: 2), then 

f(x) = n-1. CD 
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We first prove that for any n E N* (n ;:;,; 2), it is always true that 

As a matter of fact, when n = 2, F3 = 2, it is easy to know that 

j (F 3) ~ 2. We suppose for positive integers less than n, @ is always 

true. Then we consider the case with n. Mr. Wang for the first time 

takes one subset and makes its number of elements F n-l , then it is true 

j(Fn+1 ) ~ max{f(F n - t ) + 2, j(Fn+1 - F n- t ) + 1} = max{f(Fn- t ) + 
2, j(Fn) +1} ~ max{n -1, n -1} = n - 1 (here it is deemed that 

j(F2 ) = j(1) = 0). So @ holds true for all positive integers n. 

Next, we are to prove: for anyn E N* , Fn <x ~Fn+t' x E N* , 

it is always true that j(x) ;:;,; n -1. 

When n = 2, x = F3 = 2. Now, it is easy to know j(2) ;:;,; 2, so 

the conclusion is true for n = 1. Suppose the proposition is true for 

positive integers less than n. We consider the case with n. For any n E 

N*, Fn <x ~Fn+l. (Attention, here we haven ;:;';3, sox ;:;';3.) 

If the number of elements in the subset that Mr. Wang takes for 

the first time is ~ F n-2' then the smallest amount of money that 

Mr. Wang needs to pay;:;'; j(x - F n - 2 ) + 1 ;:;,; jCFn - 1 + 1) + 1 ;:;,; n -1; 

if the number of elements in the subset that Mr. Wang takes for the 

first time is ;:;,; F n-2 + 1, then the smallest amount of money that Mr. 

Wang needs to pay;:;'; jCFn- 2 + 1) +2;:;'; n -3 +2 = n -1. So, j(x) ;:;,; 

n-1. 

Generalizing all above, the conclusion CD holds. Making use of 

this conclusion and concerning also 144 = F 12 , we may know that 

Mr. Wang at least has to pay 11 Yuan to guarantee getting to know the 

number Mr. Zhang takes. 

13. When m = 1, it is obviously true. Now we consider the case 

m ;:;';2. 

We first prove that {Fn (mod m)} is a periodic sequence. This can 

be observed by noticing that (F n' F n+l ) has only m 2 kinds of different 

situations under mod m. By using the Drawer Principle (also known as 

the Pigeonhole Principle), we know there exists an n < k, such that 
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(F n , F n+1 ) - (F k , F H1 ) (mod m), and then together with the 

recursive formula, we may deduce that F n - 1 - F k- 1 (mod m). 

Reversely deduce in turn and we can get that conclusion. 

After that, fromF 1 = F2 = 1 (modm), we know that there exists 

ap EN*, such that FP+l =Fp+2 -1 (modm), henceF p -0 (modm), 

F p- 1 = 1 (modm), F p- 2 =-1 (modm), and further, fort E N*, we 

have F'Jd --1 (modm). Take n = tp -2, then we haveF! - Fn -2 = 

1 + 1 - 2 -0 (mod m). The proposition is then proved. 

14. (1) We can't. As a matter of fact, if we can partitionN* into 

the union of m F -sequences, then we consider the positive integers: 

2m, 2m + 1, "', 4m. Among all these 2m + 1 numbers, there must be 

3 numbers that are from the same F -sequence. However, take any 

three numbers from the 2m + 1 numbers, and the sum of any two of 

them is bigger than the third number. This becomes a contradiction. 

(2) We use the Fibonacci expression (see Example 2 in Section 9) 

for positive integers to prove: N* could be partitioned into the union 

of infinitely many F -sequences. 

We will, under Fibonacci expression, make all positive integers 

that make a2 = 1 arranged, from the smallest to biggest, on the first 

row; make all positive integers that make a2 = 0, while a3 = 1 

arranged, from the smallest to biggest, on the second row; make all 

positive integers that makea2 = a3 = 0 whilea4 = 1 arranged, from the 

smallest to biggest, on the third row; ... and a table is listed below: 

F2 F2 +F4 F2 +Fs F2 +F6 F 2 +F4 +F6 
... 

F3 F3 +Fs F3 +F6 F3 +F7 F3 +Fs +F7 ... 

F4 F4 +F6 F4 +F7 ... ... . .. 
... ... ... ... . .. ... 

By Zeckendorf's Theorem, we know that every positive integer 

appears exactly once on the above table, while every column from top 

to bottom forms a F -sequence. So, the conclusion of (2) is surely 

true. 
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15. When i = 1, it is obviously true that al :;( k. 

Suppose for 1 :;( 5 < n, we have sa s :;( k. Next, we are to prove: 

(5 + l)a s-H :;( k. 

If (5 + l)a s+1 :;( sa" then of course we have (5 + DasH :;( k; if 

(5 + 1) a s+l > sa s , i. e. , a s+1 > s (as - a s+1), then a s+1 > s. 
as -a s+1 

N .. h [ ] a sa s+1 k' f a s+1 ----ohcmg t at a" a s+l = ( ) , rna mg use 0 ( ) ::/ 
as, a.,+1 as, a s+1 

a+l > s, and concerning also ( a s+l ) E N* , we may know that 
as - a s+l as, a s+l 

( a,+l );?c s + 1. Then 
as, a s+1 

So the proposition is also true for s + 1. 

16. We use mathematical induction (inducting with n) to prove 

the following strengthened proposition: 

When n = 1, from the condition au < aI' we know that [ao, al] ;?c 

2ao, then [ 1 ]:;(~21 =1-(1- 2
1

).sowhenn=1,theinequality 
aO,al ao ao 

CD holds. 

Suppose that the inequality CD holds true for n, then for the case 

n + 1, we have 

If al ;?c 2ao, then the right-hand side of (2):;( 1 + 
[aO,al] 

1( 1) 1( 1) 1( 1). 2ao 1 - 2" :;( 2ao 2 - 2" = ao 1 - 2"+1 ; if ao < al < 2ao, then 
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from (ao, al) ~ al - ao, we know that the right-hand side of CZl 

<- al -an +~(1 _~) = ~ __ 1_ <~ _ 1 = ~(1 __ 1_) 
~ aoal al 2n ao al· 2n ao 2ao. 2n ao 2n+1

• 

So, the inequality CD is also true for n + 1. 

17. Suppose under base-2, n = (akak-I···aO)2' whereai E {O, 1}, 

ak = 1. Let tn = (akak-I "'aO)3 (which is a positive integer expressed 

under base-3), to = o. 
We use mathematical induction to prove: for any n E N* , it is 

always true that Un = tn. 

When n = 1, the proposition is obviously true. Suppose for any 

m < n, it is always true that U m = t m. Next, we are to prove U n = tn. 

On the one hand, no any three numbers in the sequence {to, tl' "', 

t n } form an arithmetic sequence. This is because for any 0 ~ a < f3 < 
y ~ n, if to + t y = 2t f3 ' then since 2t f3 under base-3 is composed only by 

numbers 0 and 2, we know that every corresponding numbers of to , 

t y ' under base-3 are exactly the same. Therefore, to = t y ' and this 

requires that a = y. This brings up a contradiction. 

The above discussions show that U n ~ tn. 

On the other hand, if Un < tn' then from induction hypothesis we 

know that Un E {t n- I + 1, "', tn -1}. At this time, under the ternary 

expression for Un' the number 2 will necessarily appear (since the 

positive integer under base-3 with only numbers 0 and 1 E {to, t l , ••• }). 

So, there exist a, bEN such that 0 ~ ta < tb < Un satisfying: 

(1) If within the ternary expression of Un' a certain digit is a 0 (or 

1), then for the ternary expression of t a , tb' the corresponding digits 

will also show a 0 (or 1) on the same position. 

(2) If within the ternary expression of Un' a certain digit shows a 

2, then on the same position of ta , it should show a 0, while tb shows a 

1 on the same position. 

Then ta + Un = 2tb. This is a contradiction. So Un;?: tn. 

Generalizing all above, we may know that Un = tn. Considering 

100 = C1 1001(0)2, we have U 100 = (1100100)3 = 981. 

18. We will discuss this problem under base- b. 



Solutions to Exercises 189 

Suppose among all the numbers that are divisible by bn 
- 1, the 

smallest value of the number of all non-zero digits under base- b is s. 

Among all the numbers whose total numbers of all non-zero digits are 

s, we take the number A with the smallest sum of all digits. 

Suppose A = alb"l +a2bn2 + ... +a,b", is the base- b expression for 

A, where n 1 > n 2 > ... >n.\ ~ 0, 1 ~ a i < b, i = 1, 2, ... , s. 

Next, we prove: n 1 , n z, ••• , n, constitute a complete system with 

modulus n, therefore s ~ n. 

On the one hand, suppose 1 ~ i < j ~ s. If n i = n j - r (mod n) , 

where 0 ~ r ~ n -1. We examine the numbers 

Obviously b" - 1 lB. If a i + a J < b, then the total number of all 

non-zero digits of B is s -1, which is contradictory to the choice for A. 

So, it must beb ~ai +aj <2b. Supposeai +aj = b +q, 0 ~q <b, 

then at this time, the base- b expression of B is 

B = bnn,+r+1 +qb""l+r +ab'{l + ... +ai_lb"i-l +ai+lb"i+l 

+ ... +aj_lbnj-1 +aj+lb"j+l + ... +asb",. 

Then, the sum of all digits of 

s 

B = ~ak -(ai +aj) +1 +q 
k=l 

S .\ 

~ak+1-b<~ak' 
k=1 k=l 

which is contradictory to the choice for A. So, any two from n 1 , 

ns are not congruent under mod n. 

On the other hand, if s < n, then we suppose n i = ri (mod n), 0 ~ 

ri < n. We examine the number C, where 

Due to b"i = b ri (mod b" -1) , we have b" -1 I C. But s < n means 

o < C ~ (b - Db + (b - 1 )b 2 + ... + (b - 1)b,,-l = b" - b < bn - 1. 

This is a contradiction. 

So, the proposition holds. 
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19. We start from every odd prime number to find n that satisfies 

the condition. 

We notice that for anym E N* , (p2m -1, p2m +1) = 2. So, from 

the formula for the difference of two squares, considering together 

with mathematical induction, we may prove that any two numbers 

from p + 1, p2 + 1, "', p2m + 1 have no same odd and prime factors, 

and none of these numbers is a multiple of p. So, there exists an m E 

N* , such that 

Take the smallest positive integer m 0 that satisfies CD. Let n = 

p2mo _ 1. We assert that h (n) < h (n + 1) < h (n + 2). 

As a matter of fact, 

while m 0 is the smallest positive integer that satisfies CD, so we have 

h (n) < p = h (n + 1). And since h (n +2) = h ( p 2m O + 1), from CD we 

know thath(n +1) <hen +2). 

The above discussion shows: for every odd and prime number p, 

there is always an n that meets the conditions (obviously different p's 

correspond to different n 's). And since there are infinitely many odd 

and prime numbers, the number of n that meet all the conditions 

should be infinite. 

20. Lemma: If k E N* , k =1= 3 and k is not a power of 2, then 

w(2k + 1) > 1. 

As a matter of fact, if 2k + 1 = pm, where p is a prime number, 

and mEN * , we denote k = 2" 0 f3, a ?- 0, f3 > 1, and f3 is an odd 

number. We discuss by two cases: 

(1)a =O,thenfromk =1=3 we know thatf3 >3. So,2 f3 +1 =(2+ 

1) (2{3-1 - 2{3-2 + ... + 1) is a multiple of 3, and 2fl + 1 > 9. If 2i3 + 1 = 

3Y , then y ?- 3. At this time, we take mod 4 on both sides, then we 

know that (-l)Y -1(moci4), soyisan even number. Denotey =2i), 
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then 2(3 = (3" - 1) (38 + 1). Since 3" - 1 and 3" + 1 are adjacent even 

numbers and their product is a power of 2, then we must have 3" -1 = 

2, which leads to 0' = 1, Y = 2. This is a contradiction. So, when a = 

0, the lemma holds true. 

(2) a > O. At this time, by making use of factoring we can know 

that 22
" + 1 I 2k + 1. If w(2k + 1) = 1, then p = 22

" + 1 is a prime 

number. At this time, we suppose 22".(3 + 1 = p«, i. e. , (p -1)(3 + 1 = 

P u, U ~ 2. We take mod p 2 on both sides and make use of the Binomial 

Theorem, then we know that p I f3. Further, suppose f3 = p v • x, p -I' x, 

and we can know from the Binomial Theorem that 

pu = p(3 _q-lp(3-1 + ... +qp2 -f3. p. 

The last term on the right is a multiple of pV+l , but not a multiple 

of pV+2, while every other term is a multiple of pV+2. So, the above 

equation is not true. So, when a > 0, the lemma is also true. 

Through the above lemma, we know that when k =I=- 3 and k is not 

a power of 2, we havew(2k) <w(2k +1). Next, we are to prove that 

there exist infinitely many such k, such that w (2 k + 1) < w (2 k + 2). 

As a matter of fact, if we have only a limited number of k as 

above such that w (2k + 1) < w (2k + 2) , then there exists k () = 2q > 5. 

For every k E {ku + 1, ... , 2ku -1}, it is always true that w(2 k + 1) ~ 

w(2 k + 2) = 1 + w(2k- 1 + 1). Then, we have 

This requires that 22k
,,-1 + 1 ~ Pl··· P ko ' where P 1 , ••• , P ko are the 

initial ku prime numbers. However, 

Pl··· Pko ~ (2 X 3 X 5 X 7 X 11) X (P6 ••• Pk,,) > 45 
• 4k

,,-5 = 22ko. 

Thus we have a contradiction. So, the proposition holds true. 

21. Suppose the permutation of prime numbers from the smallest 

to biggest iSP1' P2' ... , Pn' .... Thena n = Pl +P2 + ... +Pn. 

When n = 1, 2, 3, 4, we can then directly verify the proposition 

and then know that it holds true. Now we suppose that the proposition 

holds true with n - 1, i. e. , there exists a positive integer x, such that 
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an-I ~ x 2 ~ an. We take the biggest x which meets the requirement 

and denote it to be y, then y2 ~ an' while (y + 1)2 > an' where n ~ 5. 

Denote Pn+1 = 2k + 1. Then when n ~ 5, concerning that two 

adjacent prime numbers differ by at least 2, we know 

Hence, y2 ~ an < k 2, i. e. , y < k. Then 

(y + 1)2 = y2 + 2y + 1 < y2 + 2k + 1 = y2 + Pn+1 

~ PI + ... + Pn + Pn+1 = an+l. 

So, the proposition also holds true for n. 

From all of above, for all n E N* , the proposition holds true. 

22. We suppose a to be a positive odd number. If (a, 5) = 1, then 

(a, 10) = 1. In the sequence 1, 11, "', 1l:.::J, there are two numbers 
a ] 's 

being congruent under mod a, i. e. , there exist 1 ~ i <j ~ a, such that 

11 .. ·1 - 1 .. ·1 (mod a). Namely, a I 1· .. 1 0 .. ·0, so a I 1 .. ·1. The --....-- '-....,.-' -.....- --...,.- --...,.-

j 1 's i 1 's j-i 1 's i O's j-i 1's 

proposition is then proved. 

If 5 I a, then suppose a = 5a 
• b, a E N*, (5, b) = 1. We prove 

the following lemma in the first place. 

Lemma: For any positive integer n, there exists an n -digit positive 

integer An with 1, 3, 5, 7, 9 as digits only, such that 5n I An. 

We prove this lemma by using induction. When n = 1, just take 

An = 5. Suppose when n = k , there exists an k -digit number Ak , whose 

digits belong to the set {1, 3, 5, 7, 9}, and 5k I A k • Consider the 

following numbers 

10k + A k , 3 X 10k + A k , 5 X 10k + Ak , 

7 X 10k +A k , 9 X 10k +A k • 

If 5k+1 I Ak , then it suffices to let Ak+1 = 5 X 10k + Ak ; if 5k+1 { ak , 

then supposeak = 5k X t, where t = r (mod 5), r E {1, 2, 3, 4}. 

Noticing that (5, 2k) = 1, then we know {2k, 3 X 2k, 7 X 2k, 9 X 2k} 

becomes a reduced residue system with modulus 5. Then, we may 
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chooseS E {l, 3, 7, 9} such that 5 x2k =5 -r (modS). Therefore, 

by letting Ak+l = 5 X 10k + Ak , we have 5k+1 I Ak+1 , and all digits of 

Ak+1 belong to {1, 3, 5, 7, 9}. The lemma is proved. 

Going back to the original question. From lemma, we can know 

that there exists an a-digit number A, such that Sa I A. Then, within 

the sequence A, AA, "', ~ (here ~ means the positive 
hA's kA's 

integer we get by writing consecutively the k A's), there must be two 

congruent under mod b. By making use of the method in the first case 

we know that the proposition holds true. 

23. (1) Let Xl = 123467895, thenS(xI) = 45, and from 45 I 123467895 

we may know that XI E A. Now we suppose Xk E A, and the 

expression of X k' under the decimal system, has equal numbers of 

appearances for the numbers 1, 2, "', 9. We suppose that Xk is an m­

digit number, and we takexk+l =Xk • (10 2m +10m +1) =XkXkXk' then 

under the decimal system, the numbers of appearances for the numbers 

1, 2, "', 9 are the same in Xk+l , and 5 (Xk+l) = 35 (Xk). Since 102m + 
10m + 1 - 1 + 1 + 1 - () (mod 3), and also 5 (x k) I x k we know that 

5 (Xk+I) I Xk+l. By this, together with mathematical induction, we 

know that the conclusion (1) holds true. 

(2) Lemma: For any n E N* , there exists an n-digit positive 

integer Xn , whose digits are 1 and 2 only, such that 2n I x n • 

We can follow the proof for the lemma in the previous question to 

get this lemma proved. 

Going back to the original question. When k = 1, 2, 3, 4, 5, we 

take 1, 12, 112, 4112, and 42 112, and we see that the proposition 

holds true. 

When k :;?c 6, then our idea is to look for a k -digit number x in A: 

we will look for x whose last n digits is the Xn mentioned in the lemma, 

and then we fill in non-zero numbers in front of Xn , and the sum of all 

digits from the k -digit positive integer x formed is 2n 
, where n is to be 

determined. 

A sufficient condition for the above-mentioned n to exist is: 
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S(X n) +(k -n) ~2n ~S(Xn) +9(k -n). CD 

Since n ~ S (xn) ~ 2n, therefore, if the following is satisfied, 

then CD holds. 

2n + (k - n) ~ 2'1 ~ n + 9(k - n), 

namely, 

n +k ~2n ~9k -8n. 

Next, we prove: when k ? 6, there exists an n E N* that satisfies 

(2). 

As a matter of fact, suppose n is the biggest posItive integer 

satisfying 2'1 +8n ~ 9k, then 9k < 2'1-1 +8(n + 1). This suggests that if 

2n+1 +8(n +1) ~9(2n -n), thenn satisfies (2). 

We note thatk ?6, so the above-mentionedn satisfiesn ?4. Then 

7 X 2'1 ? 17n + 8 (this inequality can be proved through inducting with n) , 

and this means 2n+1 + 8(n + 1) ~ 9(2'1 - n). Therefore n satisfies (2). 

Generalizing all above, we know that the conclusion (2) is true. 

24. There exists a sequence that satisfies the conditions. 

We arrange all prime numbers bigger than 5 from the smallest to 

biggest, and we then get the sequence Po, P1' "'; we define a sequence 

{qn} as follows: q3k =6, q3k+1 = 10, q3k+2 = 15, k =0, 1, 2, .... Now 

we define the sequence {an} as an = Pnqn' n = 0, 1, 2, .... We will 

prove that the sequence {an} meets all the conditions. 

We notice that for subscript i oF j , we have Pi oF Pj , so there is no 

term in {an} that is a multiple of any other term. Hence, (1) is 

satisfied. We now take a step further. If i - j (mod 3), then (ai' aj) = 

(qi' qj) = 6, 10, or 15; if i c:F j (mod 3), then since 6, 10, 15 are 

mutually non-prime for any two of them, we know that (ai' aj) = 

(qi' qj) > 1. Moreover, 5{ ao, 3{ a1 , 2{ a3' and every prime number 

bigger than 5 divides at most one term from the sequence {an}. Hence, 

there is no positive integer bigger than 1 that divides every term from 

{an}. So (2) is also satisfied. 

25. We prove: when k = 2, "', P - 1, there exists a set {b k , 1 , 
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bk, 2' "', bk, k}' where bk, i = 1, or the product of some numbers from 

aI' "', ak-l satisfying that for 1 ~ i < j ~ k , it is always true that bk, i ~ 

b k, j (mod p ) . 

Whenk = 2, from the conditions, we know thatal ~ 1 (modp). 

Then just take {b k , l' bk , 2} = {1, al}. Now we suppose CD is true for 

k (2 ~ k ~ P - 2). From the condition p 1'ak we know that ak bk, I' "', 

ak bk, k are not congruent for any two of them under mod p. By the 

composition (none of the terms is a multiple of p) of the sequence 

{bk,l' "', bk,k}' and thataZ ~ 1 (modp), we know 

(ak bk, 1 )"'(ak bk, k) ~ bk, 1 "'b k, k (mod p). 

So, under mod p, (ak b k , l' "', ak b k , k) is not a permutation of 

(bk,I' "', bk,k)' therefore, there exists aj E {1, 2, "', k} such that 

any two numbers from the sequence {ak bk, j' bk ,l' "', bk , k} are not 

congruent under mod p. By this, we can know that the conclusion CD 
holds, 

Once we examine {b p-l, l' "', b p-l, p-l } we can get the conclusion 

required by the question (because they constitute the reduced residue 

system with mod p). 

26. e 1) Take any a E N* , Since there is a limited number of 

values of f that are ~ f (a), so there exists an n E N * , such that for 

d ~ n, we always have fea) < fea + d). We consider the sequence 

fCa), f(a +n), fea +2n), "', f(a +2kn), fea +2k+l n ), ..•. 

If there exists a kEN such that f (a + 2k+l n) > f (a + 2k n ) , then 

we take d = 2kn, and we know that (1) holds, So, for kEN, we have 

fea + 2k+l n) < f(a + 2k n ) (here we do not take "equal sign", since f 

is an injection), namely, f (a + n) > f (a + 2n) > .... But since it is a 

surjection, there is only a limited number of values of f that are less 

than that of f (a + n). This brings up a contradiction, 

(2) They do not necessarily exist. For example, let f: N* -- N* 

be defined below: 

n = 1;- 2; 3, 4; 5, 6, 7, 8; 9,10, ... 

fen) = 1; 2; 4, 3; 8, 7, 6, 5; 16, 15, 
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In the definition above, for n E N* , we have IC2n + 1) = 2n+l , 

IC2n + 2) = 2n+1 -1, ... , IC2n+l ) = 2n + 1, while I(1) = 1, I(2) = 2. 

Next, we prove: when m ~ 5, for a, dEN * , it is always true 

that ICa + Cm - 2)d) > ICa + (m - l)d), or I(a + (m - l)d) > 
I(a +md). 

As a matter of fact, if not true, then 

I(a + (m - 2)d) < I(a + (m -1)d) < I(a + md). 

From the definition of I, we know that I(a + (m - 2)d), 

I(a + (m -1)d), I(a +md) are separately located on three different 

decreasing intervals, while the length of the decreasing interval from 

2n + 1 to 2n+1 is 2". So, the length of the decreasing interval where a + 

(m -1)d is located is ~a + (n; -l)d. Since a +(m -2)d and a +md 

are neither located on the decreasing interval where a + (m - 1)d is 

( ( » a + (m - 1)d . 
located, SOa +md - a + m -2 d ~ 2 ' leadmg t04d ~ 

a + em - 1)d ~ a + 4d. This brings up a contradiction. Hence the 

conclusion of (2) is that they do not necessarily exist. 

27. LenIm: Iftheintegersnl' n2' ···satisfynk+1 ~nL k =1, 2, ... , 

n1 > 1, then for any j E N*, we have 

Proof of the lemma: From the conditions, we know that 

+= 1 k 

- ~ (~) -
k~O n j 

So, the lemma holds. 

From the lemma, we can prove uniqueness. (As a matter of fact, 

if 
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+00 1 +00 
a = JI(1 +;-)= JI(l +~1 ), 

k~1 k k~1 mk 

and n I = m I' ••• , n) = m) , then 

I ) 1 I j 
1 a JI(l+-)=a JI(l+~). 

k~1 nk k~1 mk 

By the lemma, the former one E (1 + _1_, 1 + 1 -1]' and the 
n j+1 n j+l 

latter one E (1 + _1_, 1 + 1 _ 1 J. Then we can come to n )+1 = 
m)+1 m)+1 

mj+l. ) 

The existence could be obtained by the following method. Denote 

a 1 = a E (1, 2J, then there exists a unique n 1 E N* , such that alE 

( 1 + --.L, 1 + ~1 J. Let a 2 = a I 1 ,then 1 < a 2 < a 1 < 2. For 
nl nl 1 +_ 

nl 

this a 2' there exists a unique n 2' such that a 2 E (1 + --.L, 1 + ~1 J. 
n2 n2 

Conducting the reasoning in turn, we may define a sequence {n k }t:I' 

Next, we prove n ~ < n HI . 

As a matter of fact, 

1+_1_ 
1 ak nk-1 1 1 +-- <aHI = --- < = 1 +-2--1' 

nHI 1 + --.L 1 + --.L nk -

Finally, from the definition of n k we may know that 

+00 
a JI( 1) < N = 1 +- < 1 + . g ( 1 + n1k ) k~N n k n N+I - 1 

Let N _+00, and then we may get a 

28. We firstly prove that there exists a pair of positive integers 

(p, q), such that p < q, and a p I a q' We examine the number table 
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below: 

Xn.l , X(). 2, "', Xn. m 

X m • 1 , X m • 2' ••• , X m • m 

Herexn.! =a!,Xn.j =Xo.j-!+l,j =2,···,m.And, 

Xi.j = (ITXi-l.k) +Xi-l,j. 1 ~i, j ~m. 
k~l 

In the above table, every row contains consecutive m positive 

integers, and for any two numbers a, b in each column, if a < b, then 

a I b. 

By the conditions, every row contains at least two numbers from 

{an}. Hence, there are at least 2(m + 1) numbers in the above table 

that are terms from the sequence {an} and therefore, there are two 

numbers from one column in the table that are from the sequence 

{an}, and we denote them to be a p ' a q , p < q, then we have a p lag. 

Now we give the value a g + 1 to Xo. 1 , and by similar methods as 

above, we may construct a table of the same property. Then we can 

find the next pair (p', q'), p' < q', such that ap' I a g'. Conduct 

reasoning like this, and we can find infinitely many pairs of (p, q), 

such that p < q, and ap I a q. 

The proposition is proved. 

29. This kind of partition exists. Let A = {n E N I The binary 

expression of n has an even number times of appearances of number 

1} = {O, 3, 5, 6, ... }; B = {n E N I The binary expression of n has an 

odd number times of appearances of number 1} = {1, 2, 4, 7, ... }. We 

say that A, B are partitions that meet the conditions. 

Next, we prove: for any n EN, it is always true that 

rA(n) = rB(n). CD 

We prove it through inducting with respect to m, the number of 

digits for n under binary expression. 
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Whenm =0, 1,wenoticethatrA(0) =rB(O) =rA(1) =rB(1) = 

0, and we know that CD holds. 

Now we suppose CD holds for n EN, whose number of digits is no 

bigger than m. Let us examine the positive integer n with m + 1 digits. 

For possible equalities n = 51 +S2' SI > S2, SI' 52 E A (we do similar 

discussions when SI' S2 E B), we will discuss with three cases. 

Case 1. If the m + 1 th digit, from right to left, of SI is 1, then 

the m + 1 th digit, from right to left, of S2 must be o. Examine the two 

numbers from the 1st digit to themth digit, from right to left. Among 

them, there is an odd number of 1 in SI , and there is an even number 

of 1 in S2. Let s~ = S2 + 2m
, S; = SI - 2m

, then both s~ and 5; have odd 

number of 1, and 5~ > 5~, S; + s~ = n, s~ , 5~ E B. Conversely, when 51' 

52 E B, we also have s~ , s~ EA. So the numbers of expressions for this 

part in two sets are the same. 

Case 2. If the m + 1 th digits, from right to left, of SI and S2 are 

both 0, and the m th digits are both 1, from right to left, then similar 

to above discussions, we may know that s~ = SI - 2m
-

l E B, 5; = 52 -

2m
-

1 E B. So (.1';, 5;) constitutes an expression of n - 2m in B. 

Conversely, when SI , S2 E B, (s;, s~) constitutes an expression of n -

2m in A. By making use of r A en - 2m
) = rB en - 2m

) (induction 

hypothesis), we may know that the numbers of expressions for this 

part in two sets are the same. 

Case 3. If the m + 1 th digits, from right to left, of SI and 52 are 

both 0, and the m th digits are not both 1, from right to left, then the 

m th digit of .1'1 , from right to left, is 1, and the m th digit of 52' from 

right to left, is o. At this time, we examine the numbers of is for 

these two numbers from the 1 st digit to the m - 1 th digit, from right 

to left. Then we know that there is an odd number of is in SI , and an 

even number of is in S2. Let 5~ = 52 + 2m
-

I
, s~ = 51 - 2m

-
I

• Similar to 

Case 1, we may know that the numbers of expressions for this part in 

two sets are the same. 

Generalizing all above, forn withm +1 digits, we also haverA (n) = 

rB en). So, A, B defined above meet the conditions. 
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30. Suppose that S is the set of all the numbers that can be 

expressed in accordance with the conditions set in the question. Let 

T = S U {1}, and denote the set comprised of all the elements in S 

that are powers of 3 and are no bigger than h to be S h , and T h = ShU {1}. 

Then the following conclusion is obviously true. 

(1) 2T c T, 3T cT. HerexT = {xt It E T}. 

(2) If h < k, then 2T h + 3k cT. Here 

2Th +3k 
= {2t +3k It E T h }. 

Next, we are going to use mathematical induction to prove: for 

any n E N* , it is always true that nET. 

From the definition of T, we may know that 1 E T is true. 

Suppose for any m E N* , m < n, it is always true that mET. Then 

we consider the case n. 

Case 1. If 2 In, then; E T. Therefore, n E 2T cT. 

Case 2. If 3 In, then ~ E T. Therefore, n E 3T cT. 

Case 3. If 2} n, and 3 } n , then there exists a kEN * such that 3k < 
n - 3k 3Hj 

- 3k n - 3k 

n < 3HI
. At this time, 0 < -2- < 2 = 3k < n. So, -2- E 

T k-j. Therefore, 

So the proposition holds. 

31. For any k E N* , since f is a surjection, we know that the set 

f- I (k) = {x I x E N* , f(x) = k} is a non-empty set. Therefore, by 

Well-ordering principle, we know that there exists an mk E N* , such 

that mk = minf-t (k). 

Next we firstly prove that 

CD 

We induct with respect tok. Whenk = 1, fromg(mj) ~f(mj) = 1 

and alsog(ml) E N*, we may know thatg(mt) = 1. Namely, CD is 
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true for k = 1. 

Now we suppose CD is true for all positive integers that are less 

than k , namely g (m 1) = 1, ... , g (m k-l) = k ~ 1. Then we discuss the 

value of g (m k ) • 

Firstly, g(mk) ~ f(mk) = k. Secondly, {g(ml)' ... , g(mk-l)} = 

{1, 2, ... , k ~ 1}. Since g is an injective mapping, and from the 

definition of m i we know that any two from m l' ••• , m k are different, 

sog(mk) ~k. Therefore, g(mk) = k. So, CD is true fork E N*. 

By CD and that g is an injection, we may know that g is a one-on­

one correspondence fromN* toN*. No'w for anyn E N*, letg(n) = 

k. Since g is a one-on-one correspondence and from CD we know that n = 

mk' therefore fen) = f(mk) = k. So fen) = g(n). The proposition 

is proved. 

32. Consider n E N * . Suppose a n is the nth term, under base 2, of 

a sequence of positive integers whose 1s are only on even-number 

positions or whose is are only on odd-number positions. We prove: 

this sequence {an} meets all conditions. 

By making use of binary expressions for positive integers we may 

know that (1) holds. We only need to prove that (2) also holds. 

Consider all non-negative integers that are less than 22r 
, and they are 

a1l2r-digit numbers under base 2 (if not up to the number of digits, 

make the vacancies at the front up by zeros). Among them, there are 

2r numbers whose even-number positions are all zeros, and there are 2 r 

numbers whose odd-number positions are all zeros. There is only 0 that 

appears in both types of numbers. Hence, there are exactly 2.-+1 ~ 1 

numbers that are less than 22r in the sequence {an}. Therefore, a 2rl-l-1 = 

22r. 

For n E N* , suppose 2.-+1 ~ 1 ~ n < 2.-+2 ~ 1, r EN. Then from the 

1 n 2 
definition of {an} we know that an ~ a 2rl-l_1 = 22r = 16 X 22

('-+2) > 16. 

SO, there exists a sequence {an} that meets both conditions. 



B ibl iography. 

1. Xiong Bin. Liu Shixiong. High School Math Competition Step-by-step. Wuhan 

University Press. 2003. 

2. Su Chun. A Casual Talk on Techniques When Applying Mathematical Induction. 

University of Science and Technology of China Press. 1992. 

3. Zheng Longxin. Induction and Recurrence. Hubei Educational Press. 1984. 

4. Chen Jiasheng. Xu Huifang. Recursive Sequences. Shanghai Educational Publishing 

House. 1988. 

5. Xia Xingguo. Overview of Mathematical Induction. Henan Press of Science 

and Technology. 1993. 

6. Pan Chengdong. Pan Chengbiao. Elementary Number Theory. Peking University 

Press. 2003. 

7. B. J. Venkatachala. Functional Equations. Prism Books Put Ltd. 2002. 

8. Feng Zhigang. Xiong Bin. An Introduction to Mathematics Olympiad. 

Shanghai Science and Technology Educational Publishing House. 2001. 

9. Feng Zhigang. Methods and Techniques to Prove Problems by Mathematical 

Induction. East China Normal University Press. 2005. 

10. Feng Zhigang. Elementary Number Theory. Shanghai Science and Technology 

Educational Publishing House. 2009. 


	Title
	Copyright
	Introduction
	Preface
	Acknowledgment
	Notations
	Table of Contents
	CHAPTER 1 Knowledge and Technique
	1 The First Form of Mathematical Induction

	2 The Second Form of Mathematical Induction

	3 Well-ordering Principle and Infinite Descent

	4 General Terms and Summation of Sequences

	5 Arithmetic Sequences and Geometric Sequences

	6 Higher-order Arithmetic Sequences and the Method of Differences

	7 Recursive Sequences

	8 Periodic Sequences

	Exercise Set 1


	CHAPTER 2 Selected Topical Discussions

	9 The Fibonacci Sequence

	10 Several Proofs of AM-GM Inequality

	11 Choosing a Proper Span

	12 Choosing the Appropriate Object for Induction

	13 Make Appropriate Changes to the Propositions

	14 Guessing Before Proving

	15 Problems Regarding Existence with Sequences

	Exercise Set 2


	Solutions to Exercises

	Solutions to Exercise Set 1

	Solutions to Exercise Set 2


	Bibliography




