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Preface

Elementary geometry is a foundaƟonal and important topic not only in
MathemaƟcs compeƟƟons, but also in mainstream pre-university
MathemaƟcs educaƟon. Indeed, this is the first axiomaƟc system most
learners encounter: definiƟons, theorems, proofs and counterexamples.
While beginners find the basic theorems and illustraƟons intuiƟve, they
may encounter difficulƟes and frequently become clueless when solving
problems. For example, the concept of congruent triangles is the most
straighƞorward and easy to understand, but many beginners find it difficult
to idenƟfy congruent triangles in a diagram, not menƟoning construcƟng
congruent triangles intenƟonally to solve the problem. In parƟcular,
drawing auxiliary lines is perceived by many learners as a mysterious skill.

Geometry problems which appear at higher level MathemaƟcs
competitions are of course more challenging and require deeper skills. Even
the most experienced contestant may spend an hour or so to solve one such
problem − while the final soluƟon may be elegantly wriƩen down in half a
page. In this case, a beginner cannot learn much from merely reading the
soluƟon. Such obstacles, with insufficient scaffolding and the lack of
guidance, hinder many learners when studying problem-solving in
geometry.

In this book, we focus on showing the readers how to seek clues and
acquire the geometric insight. One may find a few paragraphs named
“Insight” for almost every problem, where we illustrate how to start
tackling the problem, which clues could be found, and how to link the clues
leading to the conclusion. Note that such a process is inevitably a lengthy
one, during which the reader could aƩempt a number of strategies and fail
repeatedly before reaching the final conclusion. A formal proof, usually
much shorter, will be presented aŌer we obtain the insight. Occasionally, if
sufficient clues have been revealed, we will leave it to the reader to
complete the proof.

In the first few chapters, we introduce the basic properƟes of triangles,
quadrilaterals and circles. Proofs and explanatory notes are written down so
that the learners will gain the geometric insight of those results, instead of
memorizing the literal expression of the theorems. Examples, which range
from easy and straighƞorward to difficult, are used to elaborate how these
properties are applied in problem-solving.
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In the later chapters, we give a list of commonly used facts, useful skills and
problem-solving strategies which could help readers tackle challenging
geometry problems at high-level MathemaƟcs compeƟƟons. Such a
collecƟon of facts, skills and strategies are seldom found in any mainstream
textbooks as these are not standard theorems. They essenƟally focus on
ideas and methodology. We illustrate these skills and strategies using
geometry problems from recent-year compeƟƟons. The following is a list of
these competitions.

1. International, Regional and Invitational Competitions

• IMO International Mathematical Olympiad
(including shortlist problems)

• APMO Asia Pacific Mathematical Olympiad

• EGMO European Girls’ Mathematical Olympiad

• CMO China Mathematical Olympiad

• CGMO China Girls’ Mathematical Olympiad

• CWMO China West Mathematical Olympiad
(Invitation)

• CZE-SVK Czech and Slovak Mathematical Olympiad

• IWYMIC Invitational World Youth Mathematics
Intercity Competition

2. National Competitions and Selection Tests

• AUT Austria

• BLR Belarus

• BRA Brazil

• BGR Bulgaria

• CAN Canada

• CHN China

• HRV Croatia

• GER Germany
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• HEL Greece

• HUN Hungary

• IND India

• IRN Iran

• ITA Italy

• JPN Japan

• ROU Romania

• RUS Russia

• SVN Slovenia

• TUR Turkey

• UKR Ukraine

• USA U.S.A.

• VNM Vietnam

Elementary geometry is a beauƟful area of mathemaƟcs. Upon the mastery
of the basic knowledge and skills, one will always find solving a geometry
problem an exciting experience. We wish the readers a pleasant experience
with the Ɵme spent on this book. Enjoy MathemaƟcs and enjoy problem-
solving!
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1.1

(1)

(2)

(3)

(4)

Chapter 1

Congruent Triangles

We assume the reader knows the following basic geometric concepts,
which we will not define:

Points, lines, rays, line segments and lengths
Angles, right angles, acute angles, obtuse angles, parallel lines (//) and
perpendicular lines (⊥)
Triangles, isosceles triangles, equilateral triangles, quadrilaterals,
polygons
Height (altitudes) of a triangle, area of a triangle
Circles, radii, diameters, chords, arcs, minor arcs and major arcs

Preliminaries

We assume the reader is familiar with the fundamental results in geometry,
especially the following, the illustraƟon of which can be found in any
reasonable secondary school textbook.

For any two fixed points, there exists a unique straight line passing
through them (and hence, if two straight lines intersect more than
once, they must coincide).
For any given straight line ℓ and point P, there exists a unique line
passing through P and parallel to ℓ.
Opposing angles are equal to each other. (Refer to the diagram below.
∠1 and ∠2 are opposing angles. We have ∠1 = 180° – ∠3 = ∠2.)

In an isosceles triangle, the angles which correspond to equal sides are
equal. (Refer to the diagram below.)
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(5)

(6)

•
•
•

The inverse is also true: if two angles in a triangle are the same, then
they correspond to the sides which are equal.

Triangle Inequality: In any triangle ΔABC, AB + BC > AC.

(A straight line segment gives the shortest path between two points.)

If two parallel lines intersect with a third, we have:

The corresponding angles are the same.
The alternate angles are the same.
The interior angles are supplementary (i.e., their sum is 180°). (Refer
to the diagrams below.)

Its inverse also holds: equal corresponding angles, equal alternate
angles or supplementary interior angles imply parallel lines.

One may use (6) to prove the following well-known results.

Theorem 1.1.1 The sum of the interior angles of a triangle is 180°.

Proof. Refer to the diagram below. Draw a line passing through A which is
parallel to BC. We have ∠B = ∠1 and ∠C = ∠2.
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Hence, ∠A + ∠B + ∠C = ∠A + ∠1 + ∠2 = 180°.

An immediate and widely applicable corollary is that an exterior angle of a
triangle equals the sum of two non-neighboring interior angles. Refer to the
diagram below. We have ∠1 = 180° – ∠C = ∠A + ∠B.

It is also widely known that the sum of the interior angles of a quadrilateral
is 360°. NoƟce that a quadrilateral could be divided into two triangles. Refer
to the diagram below.

One sees that similar arguments apply to a general n-sided (convex)
polygon: the sum of the interior angles is 180° × (n – 2).

Example 1.1.2 Find ∠A + ∠B + ∠C + ∠D + ∠E + ∠F + ∠G in the leŌ
diagram below.
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(i)

(ii)

Ans. Refer to the right diagram above. Let BC and FG intersect at H. NoƟce
that ∠A + ∠B = ∠1 and ∠1 + ∠G = ∠2.
Now ∠2 + ∠C + ∠D + ∠E + ∠F = 540°, as this is the sum of the interior
angles of the convex pentagon (i.e., a 5-sided polygon) CDEFH.
In conclusion, ∠A + ∠B + ∠C + ∠D + ∠E + ∠F + ∠G = 540°.

Note: Using the exterior angles of a triangle is an effecƟve method to
solve this type of quesƟons. Refer to the following diagrams. Can you see
∠A + ∠B + ∠C + ∠D + ∠E + ∠F + ∠G = 540° in both cases?

Hint:
Connect EG. Can you see ∠E + ∠F + ∠G = 180° + ∠1? A similar argument
applies to ∠A + ∠B + ∠C.
Connect BG. Can you see ∠A + ∠B + ∠G = 180° + ∠1? Can you see ∠E +
∠F = ∠2? Can you find ∠1 + ∠2 + ∠3? (Consider their supplementary
angles.)

Example 1.1.3 Refer to the diagram below. ΔABC is an isosceles triangle
where AB = AC. D is a point on BC such that AB = CD. Draw DE ⊥ AB at E.
Show that 2∠ADE = 3∠B.

Insight. We are not given the exact value of ∠BAC or ∠B, but if we know
either of them, then the posiƟons of D and E are uniquely determined,
according to the construcƟon of the diagram. Let ∠B = x. Can you express
∠ADE in term of x?
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Proof. Let ∠B = ∠C = x. We have ∠BAC = 180° – 2x. NoƟce that ΔCAD is
an isosceles triangle, where AC = AB = CD. It follows that 

Now 

Hence,  (because ∠BAD + ∠ADE = 90° in the right angled

triangle ΔAED). The conclusion follows.

Example 1.1.4 Given a quadrilateral ABCD, E is a point on AD. F is a point
inside ABCD such that CF, EF bisects ∠ACB and ∠BED respecƟvely. Show

that  (Note: an angle bisector divides

the angle into two equal halves.)

Insight. Refer to the diagram below. One sees that ∠CAD and ∠CBE are
NOT related. For example, if ∠CAD is given, one may move E along AD and
∠CBE will vary. On the other hand, if ∠CBE is given, one may choose A' on
DA extended so that ∠CA'D is smaller than ∠CAD.
Hence, if we let ∠CAD = α, we cannot express ∠CBE in α (and vice versa).
How about leƫng ∠CBE = β? We should be able to express ∠CFE in α and
β.
NoƟce that ∠CFE is constructed via angle bisectors EF and CF. Let ∠BED =
2x and ∠ACB = 2y. Refer to the diagram below. Let AC and EF intersect at G.
In ΔCFG, one sees that ∠CFE = 180° – y – ∠CGF, where ∠CGF = ∠AGE =
∠DEF – ∠EAG = x – α.
Hence, ∠CFE = 180° – x – y + α. (1)
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We are to show 

How are x, y related to α,β ? Let AC and BE intersect at P. Consider ΔAEP and
ΔBCP. One sees that ∠PAE + ∠PEA = 180° – ∠APE = 180° – ∠BPC = ∠PBC +
∠PCB.

Hence, α + (180° – 2x) = β + 2y, which implies 

Now (1) gives 

Note: This is not an easy problem, but it could be solved by elementary
knowledge. When solving problems purely about angles, it is a useful
technique to set an unknown angle as a variable and apply algebraic
manipulaƟons. If one variable is not enough (to express the other angles),
one may set more variables, but remember to work towards cancelling out
those variables, simply because they should not appear in the conclusion. In
order to cancel out the variables, one should seek for equaliƟes among
angles. Useful clues include right angles, isosceles triangles, exterior angles
and angle bisectors.

The following examples give standard results which are frequently used in
problem-solving. One should be very familiar with these results.

Example 1.1.5 In ΔABC, ∠A = 90° and AD ⊥ BC at D. Show that ∠BAD =
∠C and ∠CAD = ∠B.

Proof. Refer to the diagram below. We have ∠BAD = ∠90° – ∠B = ∠C
and similarly, ∠CAD = 90° – ∠C = ∠B.
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Example 1.1.6 Refer to the diagram below. AB and CD intersect at E. If ∠B
= ∠D, show that ∠A = ∠C.

Proof. We have ∠A = 180° – ∠D – ∠AED and ∠C = 180° – ∠B – ∠BEC.
Since ∠B = ∠D and ∠AED=∠BEC, it follows that ∠A = ∠C.

Notice that ∠A + ∠D = ∠B + ∠C always holds even if we do not have ∠B =
∠D. We used this fact in Example 1.1.4.

Example 1.1.7 In an acute angled triangle ΔABC, BD, CE are heights. Show
that ∠ABD = ∠ACE.

Proof. Refer to the diagram below. We have ∠ABD = 90° – ∠A = ∠ACE.

One may also see this as a special case of Example 1.1.6, where ∠BEC =
∠BDC = 90°.

Example 1.1.8 In ΔABC, M is the midpoint of BC. Show that if AM = BC,

then ∠A = 90°.

Proof. Refer to the diagram below. Since AM = BM = CM, we have ∠1 =
∠B and ∠2 = ∠C, i.e., ∠A = ∠B + ∠C Since ∠A + ∠B + ∠C = 180°, ∠A =
90°.
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(1)

(2)
•

Example 1.1.9 In ΔABC, D is on BC. Show that the angle bisectors of ∠ADB
and ∠ADC are perpendicular to each other.

Proof. Refer to the diagram below. Let DE, DF be the angle bisectors of
∠ADB and ∠ADC respectively.

Since  and ∠ADB + ∠ADC = 180°, we

have ∠1 + ∠2 = 90°, and hence the conclusion.

Example 1.1.10 Refer to the diagram below. Let AD bisect ∠A. If BD // AC,
show that AB = BD.

Proof. We are given ∠1 = ∠2. Since BD // AC, ∠2 = ∠3. Now ∠1 = ∠3
and it follows that AB=BD.

Note:
It is a commonly used technique to construct an isosceles triangle from
an angle bisector and parallel lines. Besides giving equal angles, angle
bisectors have many other useful properƟes, which we will see in later
chapters.
Notice that the inverse also holds:

If we are given that AB = BD and AD bisects ∠A, then we must have
BD // AC.
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1.2

If we are given that AB = BD and BD // AC, then AD must be the
angle bisector of ∠A.

Example 1.1.11 Given lines ℓ1 // ℓ2 and a point P, draw PA ⊥ ℓ1 at A and
PB ⊥ ℓ2 at B, then P,A,B are collinear (i.e., the three points lie on the same
line).

Proof. Refer to the diagrams below. Suppose otherwise that P,A,B are not
collinear. Let AP extended intersect ℓ2 at C. Now ∠PCB = 90° and ΔPBC has
two 90° interior angles. This is absurd.

NoƟce that the argument holds even if ℓ1,ℓ2 are on the same side of P.
Refer to the diagram above on the right.

Congruent Triangles

Congruent triangles are the cornerstones of elementary geometry. We say
two triangles ΔABC and ΔA'B'C' are congruent if they are exactly the same:
AB = A'B' , AC = A'C' , BC = B'C', ∠A = ∠A', ∠B = ∠B' and ∠C = ∠C'. We
denote this by ΔABC  ΔA'B'C'.
Moreover, if ΔABC  ΔA'B'C', all the corresponding line segments and angles
are idenƟcal. Refer to the diagrams below for an example: Given ΔABC 
ΔA'B'C', let AH be the height of ΔABC on the side BC and A'H' be the height
of ΔA'B'C' on the side B'C'. Let M,M' be the midpoints of AH, A'H'
respectively. We must have BM = B'M' and ∠BMH = ∠B'M'H'.
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(1)

(2)

(3)

Applying the definiƟon directly could verify a pair of congruent triangles.
However, in most of the cases, this is unnecessary. It is taught in most
secondary educaƟon that one can verify congruent triangles using one of
the following criteria:

S.A.S.: If two pairs of corresponding sides and the angles between them
are idenƟcal, then the two triangles are congruent, i.e., if AB = A'B', AC
= A'C' and ∠A = ∠A', then ΔABC  ΔA'B'C'.
A.A.S.: If one pair of corresponding sides and any two pairs of
corresponding angles are idenƟcal, then the two triangles are
congruent.
S.S.S.: If all the corresponding sides are identical, then the two triangles
are congruent.

Note:
S.A.S. applies only when two pairs of corresponding sides and the angles
between them are idenƟcal. Otherwise, we cannot use this criterion.
Refer to the following counter example:
Let ΔABC be an isosceles triangle where AB = AC. P is a point on CB
extended. Refer to the diagram below. Consider ΔPAC and ΔPAB.
We have AB = AC, ∠P is a common angle and AP is a common side.
However, one sees clearly that ΔPAC  ΔPAB because ∠PBA > 90° >
∠PCA.

One may also write A.A.S. as A.S.A. In fact, it does not maƩer whether
the corresponding sides are between the two pairs of corresponding
angles, simply because two pairs of equal angles automaƟcally gives
the third pair of equal angles: the sum of the interior angles of a
triangle is always 180°.
H.L.: If ΔABC and ΔA'B'C' are right angled triangles, then they are
congruent if their hypotenuses and one pair of corresponding legs are
idenƟcal, i.e., if ∠A = ∠A' = 90°, AB = A'B' and BC = B'C', then ΔABC 
ΔA'B'C'.
Indeed, one may place the two right angled triangles together and
form an isosceles triangle. Refer to the diagram below. BC = B'C'
immediately gives ∠C = ∠C and hence, we have ΔABC  ΔA'B'C
(A.A.S.).
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(1)
(2)

One immediate applicaƟon of congruent triangles on isosceles triangles is
that the angle bisector of the vertex angle, the median on the base and the
height on the base of an isosceles triangle coincide.

Definition 1.2.1 In ΔABC, let M be the midpoint of BC such that BM = CM,
then AM is called the median on the side BC. (Refer to the diagram on the
below.)

Theorem 1.2.2 Let ΔABC be an isosceles triangle such that AB = AC. Let M
be the midpoint of BC. We have:

AM ⊥ BC
AM bisects ∠A, i.e., ∠BAM = ∠CAM.

Proof. The conclusion follows from ΔABM  ΔACM (S.S.S.).

NoƟce that in the theorem above, any point P on the line AM gives an
isosceles triangle ΔPBC. Refer to the diagram below. Indeed, AM is the
perpendicular bisector of the line segment BC.
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DefiniƟon 1.2.3 The perpendicular bisector of a line segment AB is a
straight line which passes through the midpoint of AB and is perpendicular
to AB.

Theorem 1.2.4 Given a line segment AB and a point P. We have PA = PB if and
only if P lies on the perpendicular bisector of AB. In parƟcular, if P,Q are two
points such that PA = PB and QA = QB, then the line PQ is the perpendicular
bisector of AB.

One may show the conclusion easily by using congruent triangles. We leave
it to the reader.

NoƟce that Theorem 1.2.2 states that in an isosceles triangle ΔABC where
AB = AC, the angle bisector of ∠A, the median on BC, and the height on BC
coincide. Moreover, one could show by congruent triangles that the inverse
is also true: if any two among these three lines coincide (for example, AD
bisects ∠A where D is the midpoint of BC), then ΔABC is an isosceles
triangle with AB = AC. This is an elementary property of isosceles triangles,
but it may apply in a subtle manner in problem-solving, which confuses
beginners.

Example 1.2.5 Given ΔABC where ∠A = 90° and AB = AC, D is a point on AC
such that BD bisects ∠ABC. Draw CE ⊥ BD, intersecƟng BD extended at E.
Show that BD = 2CE.

Insight. Apparently, the conclusion does not give us any clue because BD
and CE are not directly related. Perhaps we should seek clues from the
conditions.
It is given that BE bisects ∠ABC and we see that BE is almost a height: not a
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(1)

(2)

•
•

•
•

height of any given triangle, but BE ⊥ CE. If we fill up the triangle by
extending BA and CE, intersecƟng each other at F, then BE is the height of
ΔBCF. Refer to the diagram below.

Can you see ΔBCF is an isosceles triangle? Moreover, E must be the
midpoint of CF as well, which implies CF = 2CE. Hence, it suffices to show BD
= CF.
How are BD and CF related? If it is not clear to you, seek clues from the
condiƟons again! Which condiƟons have we not used yet? We are given AB
= AC and ∠BAC = 90°. How are they related to BD and CF? We should have
ΔABD  ΔACF if BD = CF. How can we show ΔABD  ΔACF ? We have a pair of
equal sides AB = AC and a pair of right angles. Showing AD = AF may not be
easy because we do not know the posiƟon of A on BF. Can we find another
pair of equal angles?

Proof. Let BA extended and CE extended intersect at F. Since BE bisects
∠ABC and BE ⊥ CF, we have ΔBEC  ΔBEF (A.A.S.) and hence, CF = 2CE. It is
easy to see ∠ABD = ∠DCE (Example 1.1.6). Since AB = AC and ∠BAD = 90° =
∠CAF, we have ΔABD  ΔACF (A.A.S.). It follows that BD = CF = 2CE.

Note:
One may derive a few conclusions from the proof above. For example,
can you see ∠ADB = ∠BCE and BC = AB + AD ?
How did we see the auxiliary lines? NoƟce that we basically reflected
ΔBCE along the angle bisector BE. This is an effecƟve technique which
utilizes the symmetry property of the angle bisector.

Recognizing congruent triangles is one of the most fundamental but useful
methods in showing equal line segments or angles. In parƟcular, one may
seek congruent triangles via the following clues:

Equilateral triangles and isosceles triangles
Right angled triangles with the height on the hypotenuse (which gives
equal angles, Example 1.1.5)
Common sides or angles shared by triangles
Parallel lines
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Medians and angle bisectors
Opposite angles (Example 1.1.6)

Equal angles sharing the common vertex: Refer to the diagram on the
below. If ∠1 = ∠2, then ∠AOB = ∠COD. NoƟce that the inverse also
holds, i.e., if ∠AOB = ∠COD, then ∠1 = ∠2.

Example 1.2.6 Refer to the diagram below. In ΔABC, draw equilateral
triangles ΔABF and ΔACE outwards from AB,CA respecƟvely. Show that BE =
CF.

Proof. We have equal sides AF = AB and AC = AE due to the equilateral
triangles.
Notice that we also have ∠1 = ∠2 = 60°.
Hence, ∠1 + ∠BAC = ∠2 + ∠BAC, i.e., ∠BAE = ∠CAF.

It follows that ΔBAE  ΔFAC (S.A.S.), which leads to the conclusion that BE =
CF.

Example 1.2.7 In an acute angled triangle ΔABC, ∠A = 45°. AD, BE are
heights. If AD, BE intersect at H, show that AH = BC.
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Insight. Can we find a pair of congruent triangles where AH, BC are
corresponding sides? It is given ∠A = 45° and BE ⊥ AC. Hence, it is easy to
see that AE = BE.
Refer to the diagram below. It seems that ΔAEH and ΔBEC are congruent.
Since ∠AEH = 90° = ∠BEC, we only need one more condiƟon. Shall we
prove CE = EH, or find another pair of equal angles? Can you see ∠CBE =
∠CAH (Example 1.1.6)?

We leave it to the reader to complete the proof.
Example 1.2.8 Refer to the diagram below. In ΔABC, ∠A = 90°. P is a point
outside ΔABC such that PB ⊥ BC and PB = BC. D is a point on PA extended
such that CD ⊥ PA. E is a point on CD extended such that BE ⊥ AB. Show
that AE bisects ∠BAC.

Insight. We are given PB = PC and one can easily see that ∠ABP = ∠EBC.
Are there any congruent triangles? It seems from the diagram that ΔABP 
ΔEBC. Is it true? We are to show AE bisects ∠BAC, i.e., ∠BAE = 45°. Hence,
we should have ΔABE a right angled isosceles triangle where AB = BE, i.e.,
ΔABP and ΔEBC should be congruent. Now can we find another pair of equal
sides or angles?

Proof. NoƟce that ∠ABP = 90° – ∠ABC = ∠EBC. We also have ∠APB =
∠BCE (Example 1.1.6, BC intersecƟng PD). Since PB = BC, we conclude that
ΔABP  ΔEBC. Hence, AB=BE, which implies ΔABE is a right angled isosceles
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triangle.

Now ∠BAE = 45° = ∠BAC, which implies AE bisects ∠BAC.

Example 1.2.9 Refer to the diagram below. ΔABC is an equilateral triangle
with AB = 10 cm. D is a point outside ΔABC such that BD = CD and ∠BDC =
120°. M, N are on AB, AC respecƟvely such that ∠MDN = 60°. Find the
perimeter of ΔAMN.

Insight. The difficulty is that M is arbitrary, i.e., it can be any point on AB.

Even though we know  it is hard to apply this condition

directly.

What if we choose a special point M, say when ΔDMN is an equilateral
triangle? Refer to the leŌ diagram below. Now ΔAMN is also an equilateral
triangle. One may show (by studying the property of the right angled

triangle ΔBDM) that  Hence, the perimeter of ΔAMN = 2AB = 20

cm.

What if we choose M to be very close to A? Refer to the diagram above on
the right. ΔAMN seems to become very narrow. AM is approaching to zero
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length while AN and MN are very close to AC. In this case, we may expect
the perimeter of ΔAMN to be 0 + AC + AC = 2AC = 20 cm.

It seems that we shall prove AM + AN +MN = AB + AC, i.e., MN = BM + CN.
However, it may not be easy to show this directly as BM and CN are far

apart. NoƟce that we encounter the same difficulty: given that Δ MDN = 

∠BDC, how to handle the remaining porƟons of ∠BDC? If we can put those
porƟons together, an equal angle of ∠MDN would appear. How can we put
∠BDM and ∠CDN, as well as BM and CN together? Cut and paste!

Ans. Extend AC to E such that CE = BM. Connect DE. NoƟce that ∠DBC =

∠DCB = (180° – 120°) = 30°. Hence, ∠DBM = ∠DCE = 90° and we have

ΔDBM  ∠DCE (S.A.S.). This implies ∠BDM = ∠CDE and DM = DE. Refer to
the following left diagram.

In order to show MN = BM + CN = CE + CN = NE, it suffices to show ΔDNM 
ΔDNE. Since ∠MDN = 60°, ∠BDM + ∠CDN = 60°.
Hence, ∠EDN = ∠CDE + ∠CDN = 60° = ∠MDN. Since DM = DE, it follows
that ΔDNM  ΔDNE (S.A.S.).
In conclusion, AM + MN + AN = AB + AC = 20 cm.

One may apply congruent triangles to prove the following useful
properƟes. These are not the standard theorems, but one familiar with
these results could have a beƩer understanding of the basic geometrical
facts and seek clues during problem-solving more effectively.

Example 1.2.10 Given a line segment AB and two points P, Q such that line
PQ intersects AB at C, if ∠APC = ∠BPC and ∠AQC = ∠BQC, then PQ is the
perpendicular bisector of AB.

Proof. Case I: P, Q are on the same side of AB. Refer to the diagram
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below. We have ∠1 = ∠AQC – ∠APC = ∠BQC – ∠BPC = ∠2.

It follows that ΔAPQ  ΔBPQ (A.A.S.), which implies AP = BP.
Since PC is the angle bisector of the isosceles triangle ΔPAB, it is also the
perpendicular bisector of AB.
Case II: P, Q are on different sides of AB. Refer to the diagram below. It is
easy to see that ΔAPQ  ΔBPQ (A.A.S.). Hence, PA = PB and QA = QB. The
conclusion follows by Theorem 1.2.4.

Example 1.2.11 Given ΔABC, draw squares ABDE and CAFG outwards
based on AB, CA respectively. Let M be the midpoint of BC. Show that AM = 

EF.

Insight. We see that ΔABC and ΔAEF have two equal pairs of sides: AB =
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AE and AC = AF. However, it is clear that ΔABC  ΔAEF because ∠BAC ≠
∠EAF. In fact, ∠BAC and ∠EAF are supplementary. (Can you see it?)
Since M is the midpoint of BC, a commonly used technique is to double AM.
Refer to the diagram above on the right. If we extend AM to A' such that AM
= A'M, can you see that ΔBAA'  ΔAEF ?

Proof. Extend AM to A' such that AM = A'M. Since BM = CM and ∠A'MB =
∠AMC, we have ΔA'MB  ΔAMC (S.A.S.), which implies ∠CAM = ∠BA'M
and hence, AC // A'B. It follows that ∠ABA' = 180°–∠BAC. Since ∠EAF +
∠BAC = 360° – 90° – 90° = 180°, we must have ∠EAF = 180° – ∠BAC = ∠ABA'.
Since AB = AE, BA' = AC = AF, we conclude that ΔBAA'  ΔAEF (S.A.S.). It
follows that EF = AA' = 2AM.

Note: It is an important technique to extend and double the median of a
triangle because this immediately gives congruent triangles.

Refer to the diagram below where AD is a median of ΔABC and we have
ΔACD  ΔA'BD.
AŌer this rotation of ΔACD, we may put together lengths and sides which
are previously far apart and perhaps obtain useful conclusions.

Example 1.2.12 In ΔABC, D is the midpoint of BC. E is a point on AC such
that BE intersects AD at P and BP = AC. Show that AE = PE.

Insight. We are given BP = AC, which should be an important condiƟon.
However, BP and AC are far apart and it seems not clear how one could use
this condiƟon. How about the median AD doubled? Refer to the diagram
below. If we extend AD and take A'D = AD, one sees immediately that ΔACD 

A' BD. In particular, we have AC = A'B.
In fact, we rotated ΔACD and hence, moved AC to A'B. Now A'B and BP are
connected: we can apply the condition BP = AC.

www.TechnicalBooksPDF.com



1.3

Proof. Extend AD to A' such that AD = A'D. It is easy to see that ΔACD 
ΔA'BD (S.A.S.). Hence, ∠A' = ∠CAD and BP = AC = A'B, i.e., ΔBA'P is an
isosceles triangle.
Now we have ∠APE = ∠BPA'= ∠A' = ∠CAD, which implies AE = PE.

Circumcenter and Incenter of a Triangle

Given a triangle, there are many interesting points in it.

Recall the definiƟon of the perpendicular bisector of a line segment. Since
each triangle has three sides, one may draw three perpendicular bisectors.
Note that these perpendicular bisectors are concurrent, i.e., they pass
through the same point. Refer to the following diagrams.

This parƟcular point is called the circumcenter of the triangle. NoƟce that
each triangle has exactly one circumcenter and it could be outside the
triangle. Refer to the right diagram above.

Now we use congruent triangles to show the existence of the circumcenter
of a triangle.

Theorem 1.3.1 The perpendicular bisectors of a triangle are concurrent.

Proof. Refer to the leŌ diagram below. Let the perpendicular bisectors of
AB, BC intersect at O. We are to show that the perpendicular bisector of AC
passes through O as well.
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(1)

(2)

Since O lies on the perpendicular bisector of AB, we have AO = BO (Theorem
1.2.4). Similarly, BO = CO. It follows that AO = CO. Hence, O lies on the
perpendicular bisector of AC (Theorem 1.2.4).

Note:
This common point of intersecƟon is called the circumcenter as it is the
center of the circumcircle of ΔABC. Refer to the right diagram above. A
circle centered at O with radius OA passes through A, B and C, since OA
= OB = OC.

In the proof above, we assume the two perpendicular bisectors intersect
at O and show that this point lies on the third perpendicular bisector.
This is a common method to show three lines passing through the
same point.

Theorem 1.3.2 The angle bisectors of a triangle are concurrent.

Proof. Refer to the diagram on the below. Let the angle bisector of ∠A
and ∠B intersect at I. We show that the angle bisector of ∠C passes
through I as well, i.e., ∠ACI = ∠BCI.

Draw ID ⊥ BC at D, IE ⊥ AC at E and IF ⊥ AB at F. Since AI is the angle
bisector of ∠A, it is easy to see ΔAIF  ΔAIE (A.A.S.). Hence, IF = IE.
Similarly, ID = IF. It follows that ID = IE.
Now it is easy to see that ΔCID  ΔCIE (H.L.), which leads to the conclusion
that ∠ACI = ∠ABI.
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(1)
(2)

Note:
I is called the incenter of ΔABC.
Since ΔAIF  ΔAIE, one sees that AE = AF, i.e., A (and similarly I) lie on the
perpendicular bisector of EF. Hence, AI is the perpendicular bisector of
EF. A similar argument applies for BI and CI as well.

Theorem 1.3.3 Let I be the incenter of ΔABC. ∠BIC = 90° + ∠A.

Proof. Refer to the diagram below. Since I is the incenter of ΔABC, AI, BI,
CI are angle bisectors. Since 2(∠1 + ∠2 + ∠3) = 180°, we must have ∠1 +
∠2 + ∠3 = 90°.
Now ∠BIC = 180° – ∠2 – ∠3 = 180° – (90° – ∠1)

= 90° + ∠1 = 90° + ∠A.

Example 1.3.4 Given ΔABC where ∠A = 60°, D, E are on AC, AB
respecƟvely such that BD, CE bisects ∠B, ∠C respecƟvely. If BD and CE
intersect at I, show that DI = EI.

Insight. Refer to the diagram on the below. Since I is the incenter of
ΔABC, AI bisects ∠A. If we can show ΔAEI  ΔADI, then it follows
immediately that DI = EI.

However, it seems from the diagram that ΔAEI and ΔADI cannot be
congruent:
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(1)

∠1 is acute but ∠2 is obtuse, i.e., ΔAEI and ΔADI are not symmetric about
AI. Why not reflect ΔAEI about AI and construct congruent triangles? Let us
choose F on AC such that AF = AE. Now ΔAEI  ΔAFI and we have EI = FI. Can
we show DI = FI? NoƟce that ΔIDF should be an isosceles triangle. How can
we show it? Since ∠AFI = ∠1, it suffices to show that ∠1 = 180° – ∠2, or
equivalently, ∠1 + ∠2 = 180°. This may not be difficult because both ∠1
and ∠2 can be expressed using ∠B and ∠C (using exterior angles) and we
know ∠B + ∠C = 180° – ∠A = 120° !

Proof. Choose F on AC such that AE = AF. NoƟce that I is the incenter of
ΔABC, i.e., AI bisects ∠A. Now we have ΔAEI  ΔAFI (S.A.S.) and hence, EI =
FI.

Since ∠1 = ∠B + ∠C and ∠2 = ∠C + ∠B, we have

It follows that ∠DFI = ∠1 = ∠FDI. Now DI = FI = EI.

Quadrilaterals

A quadrilateral is a polygon with four sides. In this book, we focus on
convex quadrilaterals only. Refer to the following diagrams for examples.

There are two important types of quadrilaterals: parallelograms (including
rectangles, rhombus and squares) and trapeziums. We will study their
properties in this section.

DefiniƟon 1.4.1 A parallelogram is a quadrilateral with both pairs of
opposing sides parallel to each other.

We give a list of equivalent ways to define a parallelogram.

A parallelogram is a quadrilateral with two pairs of equal opposite sides.
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(2)

(3)

(4)

A parallelogram is a quadrilateral with a pair of opposite sides equal
and parallel to each other.
A parallelogram is a quadrilateral with both pairs of opposite angles
equal.
A parallelogram is a quadrilateral with two diagonals bisecƟng each
other.

One may show that all these definitions are equivalent by the techniques of
congruent triangles.

Note that these definiƟons also describe the properƟes of a parallelogram.
One may pay parƟcular aƩenƟon to (4), which is less frequently menƟoned
in textbooks, but widely applicable in problem-solving.

Example 1.4.2 Given a parallelogram ABCD, draw equilateral triangles
ΔABE and ΔBCF outwards from AB, BC respecƟvely. Show that ΔDEF is an
equilateral triangle.

Insight. Refer to the diagram on the below. Given a parallelogram and
equilateral triangles, one shall seek congruent triangles. Apparently, ΔADE,
ΔCFD, ΔBFE should be congruent. It is easy to show equal sides, while a bit
of calculation might be needed to show equal angles.

Proof. We have AE = AB = CD and AD = BC = CF. NoƟce that ∠DAE = 360° –
∠BAD – ∠BAE and ∠FCD = 360° – ∠BCF – ∠BCD. Since ∠BAD = ∠BCD and
∠BCF = 60° = ∠BAE, we have ∠DAE = ∠FCD. Hence, ΔADE  ΔCFD (S.A.S.)
and DE = DF.
Similarly, BE = AB = CD and BF = CF. NoƟce that ∠EBF = ∠ABE + ∠CBF +
∠ABC = 60° + 60° + 180° – ∠BCD = 300° – ∠BCD = 360° – ∠BCF – ∠BCD =
∠FCD. Now ΔBEF  ΔCFD (S.A.S.) and hence, DF = EF. This completes the
proof.

NoƟce that the techniques for solving problems on quadrilaterals are sƟll

www.TechnicalBooksPDF.com



mainly through congruent triangles.

Example 1.4.3 Let ABCD be a quadrilateral such that ∠B = ∠D. AC and BD
intersect at P. If AP = CP, show that ABCD is a parallelogram.

Insight. It is not easy to show the conclusion using congruent triangles
directly. Although there are pairs of equal angles and idenƟcal lengths, they
do not form congruent triangles. Refer to the diagram on the below.

Since DP is the median on AC, the median doubled could help to construct
congruent triangles.
Moreover, among all the criteria to determine a quadrilateral, we may use
(4): two diagonals bisecting each other. This is because we are given AP = CP
and we only need to show DP = BP. Bingo! This coincides with our strategy
to double the median DP.

Proof. We claim that BP = DP, which leads to the conclusion immediately.

Suppose otherwise, say BP < DP, without loss of generality. We extend PB
to E such that DP = EP. Now AECD is a parallelogram, which implies ∠D =
∠E.
However, ∠B = ∠D and we must have ∠B = ∠E. This is impossible! NoƟce
that ∠B = ∠ABD + ∠CBD, where ∠ABD = ∠AED + ∠EAB > ∠AED.
Similarly, ∠CBD > ∠CED. We have ∠B > ∠AED + ∠CED = ∠E.
In conclusion, we must have BP = DP and hence, ABCD must be a
parallelogram.

www.TechnicalBooksPDF.com



Example 1.4.4 Given an isosceles triangle ΔABC where AB = AC, M is the
midpoint of BC. P is a point on BA extended and PD ⊥ BC at D. If PD
intersects AC at E, show that PD + DE = 2AM.

Insight. AM is a median of ΔABC and we need 2AM in the conclusion.
Hence, it is natural to extend and double the median AM. Refer to the
diagram below. Extend AM to A' such that AM = A'M. We are to show PE +
PD = AA'. Can you see a line segment equal to DE?

Proof. Extend AM to A' such that AM = A'M. Since AB = AC, one sees that
ΔABM  ΔA'CM  ΔACM. Let PD extended intersect A'C at E'. We have ΔCDE 

 ΔCDE' (A.A.S.) and hence, DE = DE'. We also conclude that PD // AM and AP
// A'C. Now AA'E'P is a parallelogram and AA' = PE'. It follows that PD + DE =
PD + DE' = PE' = AA' = 2AM.

Note: One may also draw AN ⊥ PD at N and show that N is the midpoint of
PE. Refer to the diagram on the below. Since AMDN is a parallelogram (and
in fact, a rectangle), we have AM = DN. Now it suffices to show PD + DE =
2DN. Note that this is equivalent to PD – DN = DN – DE, or PN = EN.
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(1)
(2)

It is easy to see that N is the midpoint of PE because ΔAPE is an isosceles
triangle where AP = AE. (Can you show it?)

Definition 1.4.5 A rectangle is a quadrilateral with four right angles.

We give the following equivalent ways to define a rectangle.
A rectangle is a parallelogram with a right angle.
A rectangle is a parallelogram with equal diagonals.

One may show that all these definitions are equivalent by the techniques of
congruent triangles.
Note that (2) is an important property of rectangles. In parƟcular, in a
rectangle ABCD where AC, BD intersect at O, we have ∠OAD = ∠ODA.
Refer to the diagram on the below.

Given two parallel lines ℓ1 // ℓ2, the perpendicular distance from an
arbitrary point on one line to the other line is a constant. Refer to the
diagram on the below.

One could easily see that ABCD is a rectangle and we always have AB = CD.
This length is defined as the distance between ℓ1 and ℓ2.

Theorem 1.4.6 In a right angled triangle ΔABC where ∠A = 90° and M is

the midpoint of BC, we have AM = BC.

Observe the fact that the right angled triangle is half of a rectangle. Refer to
the diagram on the below. One may show the conclusion easily by
congruent triangles.
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This is a simple but useful result. However, even the experienced
contestants fail to recognize it occasionally, especially when the problem is
complicated.

Note that Example 1.1.8 is the inverse of Theorem 1.4.6. In summary, given

ΔABC where M is the midpoint of BC, ∠A = 90° if and only if AM = BC.

Example 1.4.7 In an acute angled triangle ΔABC, BE, CF are heights on AC,
AB respectively. Let D be the midpoint of BC. Show that DE = DF.

Proof. This is an immediate applicaƟon of Theorem 1.4.6. In the right

angled triangle ΔBEC, we have DE = BC. Similarly, DF = BC The conclusion

follows.

Example 1.4.8 In a right angled triangle ΔABC where ∠A = 90° and ∠C =

30°, AB = BC.

Proof. Refer to the diagram on the below. Let M be the midpoint of BC.
By Theorem 1.4.6, AM = BM. We see that ΔABM is an isosceles triangle
where ∠B = 60°, and hence, an equilateral triangle.
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(2)

(1)
(2)

It follows that AB = BM = BC.

Note:
Refer to the diagram on the below. One may reflect ΔABC about the line
AC and see that ΔABC is half of the equilateral triangle ΔBCB'.

It is now clear that AB = BB' = BC.

Notice that the inverse also holds: given ΔABC where ∠A = 90°, if AB = 

BC, then ∠C = 30°. This is because AM = BM = BC = AB by Theorem

1.4.6, where M is the midpoint of BC. Hence, ΔABM is an equilateral
triangle and ∠B = 60°.

DefiniƟon 1.4.9 A rhombus is a quadrilateral whose sides are of equal
length.

We give the following equivalent ways to define a rectangle.

A rhombus is a parallelogram with a pair of equal neighboring sides.
A rhombus is a parallelogram whose diagonals are perpendicular to each
other.

One may show that all these definitions are equivalent by the techniques of
congruent triangles.

Example 1.4.10 Given a parallelogram ABCD where BC = 2AB, E, F are on
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the line AB such that AE = AB = BF. Connect CE, DF. Show that CE ⊥ DF.

Insight. Refer to the diagram on the below. We are given a parallelogram
ABCD and AE = AB = BF. Hence, we can see more parallelograms, for
example ACDE (because AE = CD and AE // CD).

It follows that AD and CE bisect each other. Now we can see that the
condition BC = 2AB is useful. Can you see a rhombus in the diagram?

Proof. Let AD, CE intersect at G and BC, DF intersect at H. Since ABCD is a
parallelogram, we have AE // CD and AE = AB = CD, which imply ACDE is also
a parallelogram. Hence, AD, CE bisect each other. Since AD = 2AB, DG = AB =
CD. Similarly, CH = CD. It follows that CDGH is a rhombus and hence, CE ⊥
DF.

Note: One may find an alternaƟve soluƟon using the technique of angle
bisectors, parallel lines and isosceles triangle (Example 1.1.10):
Since AB = BF, we have AF = 2AB = AD, i.e., ΔAFD is an isosceles triangle.
Now ∠CDF = ∠AFD = ∠ADF, i.e., DF bisects ∠ADC. Similarly, CE bisects
∠BCD. One sees CE ⊥ DF because

NoƟce that the last step is closely related to Example 1.1.9 that the angle
bisectors of neighboring supplementary angles are perpendicular to each
other.

Definition 1.4.11 A square is a rectangle whose sides are of equal length.

A square is a parallelogram which is both a rectangle and a rhombus. Hence,
a square has all the properƟes of rectangles and squares, including equal
sides, equal angles and diagonals of equal length which perpendicularly
bisect each other. Of course, one may write down a lot of statements which
are equivalent to the definition of a square.
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Example 1.4.12 Refer to the diagram on the below. ABCD is a square. Two
lines, ℓ1 and ℓ2, intersect ABCD at E, F and G, H respecƟvely. If ℓ1 ⊥ ℓ2,
show that EF = GH.

Insight. If ℓ1, ℓ2 are in the upright posiƟon, the conclusion is clear. Refer
to the left diagram below.
RegreƩably, we do not know the posiƟons of ℓ1 and ℓ2 with respect to the
square ABCD. Indeed, we are to show that for any ℓ1 ⊥ ℓ2, regardless of
how they intersect ABCD, the conclusion holds.
Let us move ℓ1, ℓ2 around and observe. Refer to the middle diagram below.
If we push EF upwards until E reaches A, we sƟll have EF = AF' because AEFF'
is a parallelogram. If we conƟnue to push GH towards the right, we see that
GH = DH'. Refer to the right diagram below. Hence, it suffices to show that
DH' = AF'. This could be shown by congruent triangles.

Proof. Draw AF' // EF, intersecting CD at F' Draw DH' // GH, intersecƟng BC
at H' Since AEFF' is a parallelogram, EF = AF'.
Similarly, GH = DH'. It suffices to show that AF' = DH'
NoƟce that ∠DAF' = 90° – ∠ADH' = ∠CDH', ∠ADC = 90° = ∠C and AD = CD.
Hence, ΔADF'  ΔDCH' (A.A.S.) and AF' = DH'

Example 1.4.13 Refer to the diagram on the below. ABCD is a square and
BDEF is a rhombus such that C, E, F are collinear. Find ∠CBF.
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Insight. We have a square, a rhombus and the collinearity of C, E, F. One
immediately sees that ∠CBD = 45°. Can we find ∠DBF? NoƟce that once
∠DBF is known, the rhombus is uniquely determined. Which rhombus
satisfies the conditions that C, E, F are collinear?
If we draw an arbitrary rhombus BDE'F' based on BD, as shown in the
diagram on the below, we will sƟll have BD // E'F', but C will not lie on the
line E'F', i.e., we must use the fact CE // BC to show the conclusion.

One may also observe that if F is chosen, i.e., CF // BD and BD = BF, we do
not need to draw E as it is not relevant to the problem anymore.

Hence, we may simplify the problem. Refer to the diagram on the below.
Given BD // CF and BD = BF, what can we deduce about ∠DBF? We know
ΔBDF is an isosceles triangle, but calculaƟng ∠BDF or ∠BFD is not easy.
How can we use BD = BF then? We know AC = BD. How is AC related to BF?

Given BD // CF, what is the distance between these two parallel lines? Can

you see this distance is BD? What if we introduce a perpendicular line to

BD from F ?

Ans. Let AC and BD intersect at O. Draw FH ⊥ BD at H. Since CF // BD and
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AC ⊥ BD we have FH = CO = AC = BD. It follows that in the right angled

triangle ΔBFH, ∠FBH = 30° (Example 1.4.8).

Now ∠CBF = ∠CBD – ∠FBD = 45° – 30° = 15°.

Note: Since the distance between BD and CF is BD, it is natural to think of

∠FBH = 30° in a right angled triangle. In fact, one may even draw the
diagram accurately and see that ∠FBH = 30°. Even though such a drawing
wi l l NOT be accepted as part of the soluƟon, it gives us a clue. Now
construcƟng a right angled triangle with ∠FBH = 30°, i.e., where one leg is
half of the hypotenuse, becomes a natural strategy.

DefiniƟon 1.4.14 A trapezium is a quadrilateral with exactly one pair of
parallel sides.

By definition, a trapezium cannot be a parallelogram.

Example 1.4.15 In a trapezium ABCD where AD // BC, E is a point on AB.
Show that ∠ADE + ∠BCE = ∠CED.

Proof. Refer to the diagram on the below. Draw EF // AD, intersecƟng CD
at F. NoƟce that ∠ADE = ∠DEF and ∠BCE = ∠CEF. Hence, ∠ADE + ∠BCE =
∠DEF + ∠CEF = ∠CDE.

An isosceles trapezium is a trapezium whose unparalleled sides are of equal
length. In fact, one obtains an isosceles triangle by extending the
unparalleled sides. Refer to the diagram on the below where ABCD is an
isosceles trapezium with AB = CD. It can be shown easily that ∠B = ∠C and
AC = BD.
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Example 1.4.16 ABCD is an isosceles trapezium where AD // BC and AB =
CD. Its diagonals AC, BD intersect at E and ∠AED = 60°. Let M, N be the

midpoints of CE, AB respectively. Show that MN = AB.

Proof. Refer to the diagram on the below. Since ABCD is an isosceles
trapezium with AB = CD, we must have ∠ABC = ∠BCD. Hence, ΔABC 
∠DCB (S.A.S.), which implies ∠BCE = ∠CBE.

Since ∠BEC = ∠AED = 60°, ΔBCE must be an equilateral triangle. Since M is
the midpoint of CE, we must have BM ⊥ CE.
Since N is the midpoint of AB, MN is the median on the hypotenuse of

ΔAMB and hence, MN = AB (Theorem 1.4.6).

Exercises

1. In a right angled triangle ΔABC where ∠A = 90°, P is a point on BC. If AP
= BP, show that BP = CP, i.e., P is the midpoint of BC.

2. Given ΔABC where ∠B = 2∠C, D is a point on BC such that AD bisects
∠A. Show that AC = AB + BD.

3. Refer to the leŌ diagram below. Given ΔABC, draw squares ABDE and
ACFG outwards from AB, AC respectively. Show that BG = CE and BG ⊥ CE.
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4. Refer to the right diagram above. Show that in ΔABC, the angle bisector
of ∠A, the exterior angles bisectors of ∠B and ∠C are concurrent (i.e.,
they pass through the same point).

Note: This point is called the ex-center of ΔABC opposite A. One may see
that each triangle has three ex-centers.

5. Given ΔABC, J1 and J2 are the ex-centers (refer to Exercise 1.4) opposite
B and C respectively. Let I be the incenter of ΔABC. Show that J1J2 ⊥ AI.

6. Let ABCD be a square. E, F are points on BC, CD respecƟvely and ∠EAF
= 45°. Show that EF = BE + DF.

7. In the acute angled triangle ΔABC, BD ⊥ AC at D and CE ⊥ AB at E. BD
and CE intersect at Q. P is on BD extended such that BP = AC. If CQ = AB, find
∠AQP.

8. Refer to the diagram on the below. ΔABC is an equilateral triangle. D is
a point inside ΔABC such that AD = BD. Choose E such that BE = AB and BD
bisects ∠CBE. Find ∠BED.

9. Let I be the incenter of ΔABC. AI extended intersects BC at D. Draw IH
⊥ BC at H. Show that ∠BID = ∠CIH.
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10. Given a quadrilateral ABCD, the diagonal AC bisects both ∠A and ∠C.
I f AB extended and DC extended intersect at E, and AD extended and BC
extended intersect at F, show that for any point P on line AC, PE = PF.

11. In ΔABC, AB = AC and D is a point on AB. Let O be the circumcenter of
ΔBCD and I be the incenter of ΔACD. Show that A, I, O are collinear.

12. Given a quadrilateral ABCD where BD bisects ∠B, P is a point on BC
such that PD bisects ∠APC. Show that ∠BDP + ∠PAD = 90°.

13. ABCD is a quadrilateral where AD // BC. Show that if BC – AB = AD – CD,
then ABCD is a parallelogram.

14. Given a square ABCD, ℓ1 is a straight line intersecƟng AB, AD at E, F
respectively and ℓ2 is a straight line intersecƟng BC, CD at G, H respecƟvely.
EH, FG intersect at I. If ℓ1 // ℓ2 and the distance between ℓ1, ℓ2 is equal to
AB, find ∠GIH.
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2.1

Chapter 2

Similar Triangles

Similar triangles are the natural extension of the study on congruent
triangles. While congruent triangles describe a pair of triangles with
idenƟcal shape and size (area), similar triangles focus on the shape. The
diagram below gives an illustration.

Indeed, similar triangles are even more powerful tools than congruent
triangles. Many interesƟng properƟes and important theorems in geometry
could be proved by similar triangles.

One would see in this chapter that the Intercept Theorem plays a
fundamental role in studying similar triangles, while the proof of this
theorem is based on an even more fundamental concept: area.

Area of a Triangle

It is widely known that the area of ΔABC, denoted by [ΔABC] or SΔABC, is

given by  where h denotes the height on BC.
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•

Of course, one may replace BC and h by any side of the triangle and the
corresponding height on that side.

NoƟce that  implies that if two triangles have

equal bases and heights, they must have the same area. Even though this is
a simple conclusion, it has a number of (important) variations:

In a trapezium ABCD where AD // BC and AC,BD intersect at E, we have
[ΔABC] = [ΔDBC] because both triangles have a common base and equal
heights.

By substracƟng [ΔBCE] on both sides of the equaƟon, we have [ΔABE]=
[ΔCDE]. Refer to the diagram above.

In a triangle ΔABC where M is the midpoint of BC, we must have [ΔABM
[ΔACM]. Let D be any point on AM. We also have [ΔBDM]=[ΔCDM].
Refer to the diagram below.

It follows that [ΔABD]=[ΔACD]. Since ΔABD and ΔACD have a common
b as e AD, we conclude that the perpendicular distance from B,C
respectively to the line AM is the same.

NoƟce that the conclusion above sƟll holds even if D is a point on AM
extended. Refer to the diagram below.
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•

•

If M is the midpoint of BC, can you see [ΔABD]=[ΔACD]?

Refer to the diagram below. Given a triangle ΔABC, extend BC to D such
that BC = CD. E is a point on AC. Draw a parallelogram CDFE. Connect BE,
BF and AF. One sees that the area of the shaded region is equal to the
area of ΔABC.

This is because the shaded region consists of ΔAEF and ΔBEF, which
have the same base EF. Hence, the heights of the triangles, called h1
and h2, are the distances from A and B to the line EF respecƟvely. Now 

 Since EF = CD =

BC and h1 + h2 is equal to the distance from A to BC, we conclude that
[AEBF]=[ΔABC].

Given a right angled triangle ΔABC where C = 90°, draw CD //AB. Refer to
the diagram below. Draw AE  BD at E.

One sees that AE ·BD = AC · BC, because AE · BD = 2[ΔABD] and AC · BC =
2[ΔABC]. We have [ΔABC]=[ΔABD] since both triangles have a common
base AB and equal heights (because AB // CD). In fact, one may see this
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(1)

(2)

(1)

conclusion more clearly by recognizing the trapezium ABCD. (You may
rotate the page and hence, look at the trapezium from the “upright”
position.)

Note that using areas of equal triangles is an important technique to

show equal products (or raƟos,  in this example) of line

segments.

Moreover, [ΔABC]= BC×h implies that if two triangles, say ΔABC and ΔA'

B'C', have equal bases BC and B'C', then  where h and h' are

the respecƟve heights. A similar conclusion could be drawn if two triangles
have equal heights.

This is a very useful result because we may calculate the area of triangles
indirectly by comparing its base and height with another triangle whose
area is known.

Example 2.1.1 Given ΔABC, D is a point on BC such that BC = 3BD. E is a
point on AD such that AD = 4DE. Show that:

[ΔACE]= 2[ΔABE]

[ΔABC]= 4[ΔBCE]

Proof. Refer to the diagram below.

Notice that ΔABD and ΔACD has the same height AH.

Hence,  or [ΔACD]= 2[ΔABD].

Similarly, [ΔCDE]= 2[ΔBDE]. Hence, we have:
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(2)

[ΔACE]= [ΔACD]−[ΔCDE]= 2([ΔABD]−[ΔBDE]) = 2[ΔABE].

Notice that ΔABD and ΔBDE have the same height BP.

Hence,  or [ΔABD]= 4[ΔBDE].

Similarly, [ΔACD]= 4[ΔCDE]. Hence, we have:

[ΔABC]= [ΔABD] + [ΔACD]= 4([ΔBDE] + [ΔCDE])= 4[ΔBCE].

Note: One may see that similar arguments apply even if the raƟos given
(i.e., the posiƟons of D and E) are different. Such an argument is commonly
used in solving problems related to areas. In fact, experienced contestants
in MathemaƟcal Olympiads could see the conclusions almost
instantaneously.

Example 2.1.2 Given ΔABC, D, E, F are points on BC, AC, AB respecƟvely

such that BD = 2CD, AE = 3CE and AF = 4BF. If the area of ΔABC is 240cm2, find
the area of ΔDEF.

Insight. Refer to the leŌ diagram above. CalculaƟng ΔDEF directly will
certainly be difficult because we do not know any of its bases or heights.
We are given the area of ΔABC, but we do not know exactly how the areas
of ΔDEF and ΔABC are related. However, we could obtain the area of ΔDEF
by subtracƟng the areas of ΔAEF, ΔBDF and ΔCDE from ΔABC, where each of
these triangles share a (part of) common side with ΔABC. Let us choose one
of them, say ΔAEF. Refer to the right diagram above. Connect CF.

Observe that  We also have  It

follows that 

Similarly, 

Now [ΔDEF]= [ΔABC]−[ΔAEF]−[ΔBDF]−[ΔCDE]
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(1)

(2)

(3)

= 240 −144 − 32 − 20 = 44 cm2.

Note:

One sees that  always holds regardless of the area

and the shape of ΔABC. This is solely determined by the relaƟve
positions of D, E, F on BC, AC, AB respectively.

In general, given ΔABC and D, E are on AB, AC respecƟvely, we always

have 

Refer to the diagram below.

One may see this conclusion by connecting CD and hence, relaying

AlternaƟvely, one may apply Sine Rule, which we will discuss in
Chapter 3.

Using such a “relay” of area comparison is a useful technique because it
links the unknown area to what is given. However, creaƟng such a link
literally requires a sequence of triangles, one aŌer another which
shares either a common side or a height. Of course, this may not be an
easy task and one needs to draw one or more auxiliary lines wisely.
Can you use this “relay” method to solve the following Example 2.1.3
and Example 2.1.4, without referring to the solution?

Example 2.1.3 Let ABCD be a quadrilateral. E, F are on AB such that AE = EF

= BF =  AB and G, H are on CD such that CG = GH = DH = CD. Show that

[EFGH ] = [ABCD].

Proof. Refer to the left diagram below. Since AE = EF, we must have [ΔEFH
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] = [ΔAFH ]. Similarly, [ΔFGH ]= [ΔCFH ].

Hence, [EFGH ] = [ΔEFH ] + [ΔFGH] = [ΔAFH] + [ΔCFH ]

= [AFCH ].

Now it suffices to show that [ AFCH] = [ABCD]. Refer to the previous right

diagram. Since AF = 2BF and CH = 2DH, we have

Example 2.1.4 In ΔABC, D is a point on AB and  is the

midpoint of CD while AM extended intersects BC at E. Find 

Ans. Refer to the diagram below. Connect DE. Since CM = DM, one sees
that

[ΔACM] = [ΔADM] and [ΔCEM] = [ΔDEM].

It follows that [ΔADE]= [ΔACE].
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Note: We will see this example again in SecƟon 3.2 and SecƟon 3.4,
where we will use two other methods (Intercept Theorem and Menelaus’
Theorem) to solve it.

Example 2.1.5 Refer to the diagram below. In an acute angled triangle ΔABC
where AB = AC, M is the midpoint of BC. P is a point on AM and Q is a point
on BP extended such that QC ⊥ BC at C. Draw QH ⊥ AB at

H. Show that 

Insight. We are to show AB · HQ = AP · BC. Since AB · HQ = 2[ΔABQ] and AP
⊥ BC, perhaps we can show the equality by area. Does AP · BC give the area
of any triangle, or at least the area of a region in the diagram?

Proof. Refer to the diagram below. Connect CP. Since M is the midpoint
of BC and AB = AC, AM must be the perpendicular bisector of BC (Theorem
1.2.2). It follows that BP = CP (Theorem 1.2.4).

Since ∠BCQ = 90°, we have BP = PQ (Exercise 1.1), i.e., P is the midpoint of
BQ.

Notice that AB · HQ = 2[ΔABQ] = 4[ΔABP] because BQ = 2BP.
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We also have AP · BC = 2AP · BM = 2 × 2[ΔABP] = 4[ΔABP].

It follows that 

Note: Since BM = CM and MP // CQ, one may obtain BP = CQ easily by the
Intercept Theorem. We will see this in the next section.

Pythagoras’ Theorem

Pythagoras’ Theorem is well known. Many of its popular proofs are based
on the clever construcƟon of a diagram. An example is given on the right.
(We leave it to the reader to complete the proof based on this diagram.)

We shall introduce the classical proof of this theorem in Euclid’s Elements.
The proof is straighƞorward and is based on the area of triangles. It also
illustrates a method applicable to many other problems related to areas of
triangles.

Theorem 2.1.6 (Pythagoras’ Theorem) In ΔABC where ∠A = 90°, AB2 +AC2 =

BC2.

Proof. Refer to the diagram below. We draw squares outwards from AB,

AC, BC respecƟvely. Since AB2, AC2, BC2 represent the areas of squares, we
are to show that the sum of the areas of the two small squares equals the
area of the large square, i.e.,

[ABDE] + [ACFG] = [BCHI]. (1)

Notice that 

Since BCF ≅ ΔHCA (Exercise 1.3), we must have [ACH] = [ΔBCF]
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 (2)

Similarly,  (3)

Refer to the left diagram below.

From (1), (2) and (3), it suffices to show 

One sees that ΔACH and ΔABI have equal bases CH and BI with their
respecƟve heights added up to HI. Refer to the right diagram above. This
completes the proof.

Example 2.1.7 ABCD is a trapezium such that AD // BC. If the two diagonals

are perpendicular to each other, i.e., AC ⊥ BD, show that AC2 + BD2 = (AD +

BC)2.
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Insight. Refer to the leŌ diagram below. Given AC ⊥ BD, we are asked

about AC2 + BD2. Apparently, one should apply Pythagoras’ Theorem.
However, AC, BD are not intersecƟng at the endpoints. Can we bring them
into a right angled triangle, say by moving the lines?

Proof. Draw DE // AC, intersecting BC extended at E. Refer to the previous
right diagram. Clearly, ACED is a parallelogram and hence, AC = DE and AD =

CE. Now AC2 + BD2 = DE2 + BD2 = BE2 because DE ⊥ BD. It is easy to see that
BE = AD + BC because AD = CE. This completes the proof.

We know that in a right angled triangle ΔABC where ∠B = 90°, if ∠A = 30°,

then AC = 2BC (Example 1.4.8). Hence, by Pythagoras’ Theorem, AB2 = AC2 −

BC2 = 3BC2, i.e., AB = BC.

Refer to the diagram above where ΔACC' is an equilateral triangle with a

side of length a, i.e.,  We have  and hence, the area

of the equilateral triangle is 

Similarly, in a right angled triangle ΔABC where ∠B = 90°, if ∠A = 45°, we
must have AB = BC and hence, AC = AB by Pythagoras’ Theorem.

Example 2.1.8 ABCD is an isosceles trapezium where AD //BC and AC, BD
intersect at P. If BC = AC and AC ⊥ BD, show that AD + BC = 2BP.

Proof. Refer to the diagram below. Since ABCD is an isosceles trapezium
and AC ⊥ BD, both ΔPAD and ΔPBC are right angled isosceles triangles.
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Let AP = x and CP = y. We have AD = x and BC = y.

Since AC = BC, we must have x + y = y. (1)

We are to show AD + BC = 2BP, i.e., x + y = 2y, but this can be

obtained immediately from (1), by multiplying  on both sides.

The inverse of Pythagoras’ Theorem also holds, i.e., in ΔABC, if AB2 + AC2 =

BC2, then ∠A= 90°. This can be proved by contradiction.

The following result could be seen as an extension of the inverse of
Pythagoras’ Theorem.

Theorem 2.1.9 Let A be a point outside the line BC and D is on the line BC. If

AB2 − BD2 = AC2 − CD2, then AD ⊥ BC.

Proof. Suppose otherwise. Refer to the diagram below. Draw AP ⊥ BC at
P. We may assume, without loss of generality, that BD > BP.

By Pythagoras’ Theorem, AP2 = AB2 − BP2 = AC2 − CP2.

Since AB2 − BD2 = AC2 − CD2, we have BD2 − CD2 = AB2 − AC2 = BP2 − CP2. This

is impossible since BD >BP and CD < CP, i.e., BD2 − CD2 > BP2 − CP2.

Note that the proof is not complete yet because one should also consider
the cases where either D or P is outside the line segment BC. Refer to the

following diagrams. Indeed, we have BD2 − CD2 ≠ BP2 − CP2 in each case. We
leave the details to the reader.
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2.2

Indeed, Theorem 2.1.9 sƟll holds even if D does not lie on the line BC. One
may write down a similar proof by contradiction.

Intercept Theorem

Theorem 2.2.1 (Intercept Theorem) Let 1, 2, 3 be a group of parallel lines
which intersect two straight lines at A, B, C and D, E, F respecƟvely. We have 

Proof. Refer to the diagram below.

NoƟce that  since ΔABE and ΔBCE share the same height

from E to the line AC. Similarly, 

Notice that [ΔABE] = [ΔBDE] = BE × h, where h is the height on BE.

The two triangles have the same height as 1 // 2.

Similarly, [ΔBCE] = [ΔBEF].

It follows that 

Note:
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(1)

(2)

(3)

One may easily see that the Intercept Theorem applies when more
than three parallel lines intercept two straight lines: the corresponding
line segments will still be in ratio.
There are a few cases where the Intercept Theorem applies for only two
parallel lines. Refer to the following diagrams.

In these cases, we always have 

NoƟce that one could always draw the third parallel line at A before
applying the Intercept Theorem.

NoƟce that the inverse of the Intercept Theorem holds as follows: In

ΔABC where D, E are on AB, AC respecƟvely, if  we must

have DE // BC. This could be proved easily by contradiction:

Suppose otherwise. We draw DE' // BC, intersecƟng AC at E'. Refer to
the diagram below.

We have  by the Intercept Theorem.

Since  we must have AE = AE', i.e., E and E' coincide.

This completes the proof that DE // BC.

Corollary 2.2.2 In Δ ABC, D, E are on AB, AC respecƟvely such that DE // BC.
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(1)

(2)

We have 

Proof. Refer to the diagram below. Draw AH ⊥ BC at H. Let AH intersect
DE at G. Since BC // DE, AG ⊥ DE.

We have  by the Intercept Theorem.

Let  AD = k · AB and AG = k · AH.

Pythagoras’ Theorem gives DG2 = AD2 − AG2 = (k · AB)2 − (k · AH)2 

Similarly, 

Now DE = DG + EG = k · BH + k · CH = k(BH + CH) = k · BC.

This implies 

Note:
The conclusion holds even if D, E lie on BA,CA extended respecƟvely,
i.e., when the lines BC, DE are on different sides of A. Refer to the
diagrams in the remarks after Theorem 2.2.1.

Refer to the diagram below where BC // PQ.

We have  because 
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One familiar with similar triangles may see the conclusion almost
immediately. We shall study similar triangles in the next section.

The Intercept Theorem and Corollary 2.2.2 are very useful in calculaƟng the
ratio of line segments.

Example 2.2.3 In Δ ABC, D, E are on BC, AC respecƟvely such that BC = 3BD

and AC = 4AE. If AD and BE intersect at F, find 

Ans. Refer to the diagram below. Draw EG // BC, intersecting AD at G.

 

Note: This soluƟon shows a standard method solving this type of
quesƟons. Once the posiƟons of D and E are known, one could always use

this method to find . Can you use the same technique to show that AF =

DF ? (Hint: Draw DP // AC, intersecting BE at P.)

Example 2.2.4 Given Δ ABC, D, E, F are on AB, BC, CA respectively such that

AB = 3AF, BC = 3BD and AC = 3CE. Refer to the diagram below. Find 
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Insight. This is similar to Example 2.1.2. We can calculate [ΔPQR] by
subtracƟng the unshaded areas from [ΔABC]. In order to calculate the area
of the unshaded region, we may divide it into a few triangles, say ΔABP,
ΔBCQ and ΔCAR. How can we calculate [ΔABP]? We know 

We can use the method illustrated in Example 2.2.3 to find 

Proof. Refer to the diagram below. Draw DX // AC, intersecting BE at X.

We have 

Hence, 

Since  we must have

Similarly, one sees that 

It follows that 
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Recall Example 2.1.4.

In ΔABC, D is a point on AB and  M is the midpoint of CD

while AM extended intersects BC at E. Find 

Can you solve it using the technique demonstrated above, drawing parallel
lines and applying the Intercept Theorem?

Ans. Refer to the diagram below. Draw DF // BC, intersecting AE at F.

We have 

It follows that 

An important special case of Corollary 2.2.2 is the Midpoint Theorem.

Theorem 2.2.5 (Midpoint Theorem) In Δ ABC, D, E, F are midpoints of BC, AC,

AB respectively. We have EF // BC, EF = BC and AD, BE, CF are concurrent.

Proof. Since E, F are midpoints, EF // BC by the Intercept Theorem. Now

Corollary 2.2.2 implies  Refer to the diagram below.

Suppose BE and CF intersect at G. We have  i.e., CF must
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(1)

(2)

(1)
(2)

(1)

(2)

intersect BE at the trisecƟon point closer to E. NoƟce that this argument

applies to AD as well, i.e., AD must also intersect BE at G where 

Indeed, AD, BE, CF are concurrent at G.

Note: One may derive the following important properƟes easily from the
Midpoint Theorem.

The medians of a triangle are concurrent (at the centroid) and the
centroid is always at the lower one-third position of a median.
A midline, i.e., a line segment connecƟng the midpoints of two legs, is
always parallel to and has half of the length of the corresponding base
of the triangle. Hence, drawing a midline is an important technique
when solving problems related to midpoints as the line segments far
apart could be brought together.

Example 2.2.6 Let ABCD be a quadrilateral and E, F, G, H be the midpoints
of AB, BC, CD, DA respectively. Show that EFGH is a parallelogram.

Insight. This is a simple applicaƟon of the Midpoint Theorem. Refer to
the diagram below. One easily sees that EF // AC // GH and EH // BD // FG.

Example 2.2.7 Let D be a point inside Δ ABC such that AD bisects ∠A and
AD ⊥ BD. Let M be the midpoint of BC.

If AB = 11 and AC = 17, find MD.
Show that M cannot lie on AD extended.

Insight.
We are to find MD where M is the midpoint of BC. If D is the midpoint of
another line segment, perhaps we could apply the Midpoint Theorem.
Is there a line segment whose midpoint is D? Since AD is an angle
bisector, it is a common technique to reflect ΔABD about AD. This
technique is even more useful here because AD ⊥ BD. Refer to the
diagram below. Can you see ΔABE is an isosceles triangle?
Let E be the reflection of B about AD. If M lies on AD extended, can you
see BM = CM = EM ? What does it imply?
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(1)

(2)

Ans.

Let AD extended intersect AC at E. Since AD is the angle bisector and AD
⊥ BE, we have ΔABD ≅ ΔAED (A.A.S.), which implies BD = DE and AE =

AB. Since BM = CM, we must have  by the Midpoint

Theorem. It follows that 

Suppose otherwise that M lies on AD extended. It is easy to see that
ΔABM ≅ ΔAEM (S.A.S.), which implies BM = EM.
Now BM = CM = EM implies ∠BEC = 90° (Example 1.1.8). This is absurd
because ΔABE is an isosceles triangle.

Example 2.2.8 Given ΔABC, D is a point on AC such that AB = CD. Let M, N
be the midpoints of AD, BC respecƟvely. Show that MN is parallel to the
angle bisector of ∠BAC.

Insight. How can we apply AB = CD, where AB, CD are far apart? Since we
are given the midpoints of AD, BC, if we connect BD and let P be the

midpoint of BD, then PM = AB and PN = CD.

Hence, PM = PN. Refer to the diagram below. Now ΔPMN is an isosceles
triangle. Can we use the technique of the isosceles triangle and parallel line
to obtain the angle bisector (Example 1.1.10)?

Proof. Let P be the midpoint of BD. Notice that  = PN
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(1)

(2)

by the Midpoint Theorem. Hence, ∠3 = ∠4

Draw AE // MN, intersecting BC at E. Since AB // PM and AE // MN, one sees
that ∠1 = ∠3 and similarly, ∠2 = ∠4. It follows that ∠1 = ∠2, i.e., AE
bisects ∠BAC. This completes the proof.

Note:
One could see ∠1 = ∠3 and ∠2 = ∠4 easily by recognizing
corresponding angles, alternate angles and interior angles with respect
to parallel lines.
If one draws the angle bisector of ∠BAC instead of AE // MN, the proof is
similar. One could show ∠3 + ∠4 = ∠BAC (using parallel lines), which
also leads to the conclusion.

Example 2.2.9 Refer to the diagram below. Given ΔABC, D is the midpoint
of BC and AF bisects ∠A. Draw BE ⊥ AF at E and CF ⊥ AF at F. Show that DE
= DF.

Insight. Considering the midlines (and medians) could be a wise strategy
because we are given not only midpoints, but also right angled triangles.
For example, say P, Q are the midpoint of AB, AC respectively, we have QD =

AB by the Midpoint Theorem and PE = AB because PE is the median on

the hypotenuse of the right angled triangle ΔABE. Hence, QD = PE. Can you
see that PD = QF as well?

Proof. Refer to the diagram below. Let P, Q be the midpoints of AB, AC

respectively. We have  and 
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2.3

In the right angled triangle ΔABE, we have AP = PE and hence, ∠BPE =
2∠BAE = ∠BAC, which implies PE // AC. Since PD // AC, we must have P, D,
E collinear. Similarly, D, F, Q are collinear. It follows that DE = PD − PE = FQ −
DQ = DF.

Note: It seems from the diagram above that P, D, E are collinear, but one
should not assume this without a proof. In fact, if an inaccurate diagram is
casually drawn, one may even see ΔPDE ≅ ΔQFD.

Similar Triangles

Congruent triangles are very useful in solving geometry problems, as a pair
of congruent triangles are of not only the same size, but of idenƟcal shape
as well. However, we may frequently encounter triangles which have
idenƟcal shape, but differ in size. For example, a height on the hypotenuse
of a right angled triangle gives three triangles of the same shape. Refer to
the diagram below. Note that ΔABD, ΔCAD and ΔCBA show similarity in their
shapes. We say two triangles ΔABC and Δ A' B' C' are similar if they have the
same shape, or more precisely, if all the corresponding angles are the same
and all the corresponding sides are of equal raƟo, i.e., ∠A = ∠A', 

 We denote this by

ΔABC ~ ΔA'B'C'.

One may verify similar triangles by definiƟon. However, this is oŌen
unnecessary. It is taught in most secondary schools that one can verify
similar triangles by the following criteria, the proof of which is based on the
Intercept Theorem:
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If two pairs of corresponding angles are idenƟcal, then the two
triangles are similar, i.e., if ∠A = ∠A' and ∠B = ∠B' (in which case
one must have ∠C = ∠C'), then ΔABC ~ ΔA'B'C'.

If two pairs of corresponding sides are of equal raƟo and the angles
between them are idenƟcal, then the two triangles are similar, i.e., if 

If all the corresponding sides are of equal ratio, then the two triangles are

congruent, i.e., 

One may also determine a pair of similar right angled triangles by legs and
hypotenuses. This is similar to determining congruent triangles using H.L.
and it can be justified easily by Pythagoras’ Theorem.

NoƟce that if ΔABC ~ ΔA'B'C', all the corresponding angles are the same and
the corresponding line segments are of the same raƟo. Refer to the diagram
below for an example.

Given ΔABC ~ ΔA'B'C', let AD bisect ∠A and A'D' bisects ∠A'. If P, P' are the

midpoints of AD, A'D' respecƟvely, we have  and ∠ACP =

∠A'C'P'.

Now we can see that in a right angled triangle ΔABC where ∠A= 90° and AD
is a height, ΔABC ~ ΔABD ~ ΔACD. Refer to the diagram below. In parƟcular,
the following result is useful.

Example 2.3.1 Δ ABC is a right angled triangle where ∠A= 90° and AD is a
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(2)
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•
•

height. We have AB2 = BD · BC, AC2 = CD · BC and AD2 = BD · CD.

Proof. Since ∠C = ∠BAD, we have ΔABC ~ ΔDBA ~ ΔDAC, which gives 

It follows that AB2 = BD · BC, AC2 = CD · BC and AD2 = BD·CD.

Note:

Pythagoras’ Theorem follows immediately from this example as AB2 +

AC2 = BD · BC + CD · BC = (BD + CD) · BC = BC2.

One sees from this example that  This is a very useful

conclusion. You may compare it with the Angle Bisector Theorem
(Theorem 2.3.7).

Recognizing similar triangles is a very important technique because a pair of
similar triangles gives equal angles and raƟos of line segments. One may
seek similar triangles via the following clues:

Parallel lines
Angle bisectors
Opposite angles
Refer to the diagram below. If ∠ACD = ∠B, then ΔACD ~ ΔABC.
One may see this more clearly by reflecƟng ΔACD about the angle
bisector of ∠A, which gives ΔAC'D'. It is easy to show BC // C'D' and
hence, ΔAC'D'~ ΔABC.
Notice that Example 2.3.1 could be seen as a special case of this result,
where ∠ACB = 90°.

Example 2.3.2 Given ΔABC where ∠A = 120°, D is a point of BC such that
BD = 15, CD = 5 and ∠ADB= 60°. Find AC.

Ans. Refer to the diagram below. Since ∠ADB = 60°, we have ∠ADC =
120° = ∠BAC. It follows that ΔABC ~ ΔDAC.
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Now we have  or AC2 = CD · BC. Since CD = 5 and BC = BD + CD =

15 + 5 = 20, we conclude that AC = 10.

Example 2.3.3 In ΔABC, ∠A = 2∠B. Show that BC2 = AC · (AB + AC).

Insight. We are only given that ∠A = 2∠B. Hence, it is natural to draw
the angle bisector of ∠A and we obtain equal angles ∠B = ∠1 = ∠2. Refer
to the diagram above. Perhaps we shall seek similar triangles and set up the
ratio.

Since ∠1 = ∠B, ΔCAD ~ ΔCBA. We have . Hence, AC · AB

= BC · AD and AC2 = BC · CD. Since AD = BD, we have AC · AB + AC2 = BC · BD +
BC · CD, simplifying which gives the conclusion.

Example 2.3.4 In ΔABC, ∠A = 120° and AB = AC. Let D, E be trisecƟon
points of BC, i.e., BD = DE = CE. Show that ΔADE is an equilateral triangle.

Proof. Refer to the diagram below. Draw an equilateral triangle ΔPBC
from BC such that A is inside ΔPBC. It is easy to see that ∠B = ∠C = 30°,
which implies that A is the incenter of ΔPBC. Clearly, A is also the centroid
of ΔPBC.
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Now  which implies AD // PB. Similarly, AE // PC.

It follows that ΔADE ~ ΔPBC and hence the conclusion.

Note:
ΔABD, ΔACE and ΔBCA are similar.
An isosceles triangle with 120° at the vertex is closely related to
equilateral triangles. Besides the example above, one may also double
a leg. Refer to the leŌ diagram below. Extend BA to D such that AB =
AD. NoƟce that ΔACD is an equilateral triangle and BC ⊥ CD. Indeed,
we are familiar with ΔBCD, which is half of a larger equilateral triangle.

On the other hand, one may draw an equilateral triangle ΔBCD
outwards. Refer to the right diagram above. NoƟce that both ΔABD and
ΔACD are half of a larger equilateral triangle.

Example 2.3.5 In a right angled triangle ΔABC where ∠B = 90°, D is a point
on AC such that BD bisects ∠B. Draw DE ⊥ AB at E and DF ⊥ BC at F. Show

that BD2 = 2AE · CF.

Insight. Refer to the diagram below. It is given that BD bisects a right
angle and DE, DF are perpendicular to AB, AC respecƟvely. Can you see that
BEDF is a square!
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How is BD related to AE and CF? We know BD = BF and it is easy to relate

AE, CF and BF (or DE) together by similar triangles.

Proof. It is easy to see that BFDE is a rectangle because DE // BF, BE // DF
and ∠B = 90°. We are given that ∠ABD = ∠CBD = 45° and ∠BED = 90°.
Hence, BD = BE, which implies that BEDF is a square. It follows that BD = 

BF.

 simplifying which gives x2 = AE · CF.

It follows that BD2 = 2x2 = 2AE · CF.

Example 2.3.6 Let P be a point inside the square ABCD. M, N are the feet
of the perpendicular from P to BC, CD respecƟvely. If AP ⊥ MN, show that
either AP = MN, or AP ⊥ BD.

Insight. Refer to the diagram below. NoƟce that there are a lot of right
angles. Clearly, CMPN is a rectangle and MN = CP. If AP = MN, we should
have AP = CP, which implies P lies on BD. If AP ⊥ BD, then P lies on AC.

It seems from the diagram that ΔAEP ≅ ΔMPN, which immediately gives AP =
MN. However, this may not be true because it excludes the case for AP ⊥
BD. Nevertheless, we sƟll have ΔAEP ~ ΔMPN since ∠PAE = ∠HPN = PMN.
Perhaps when AP ≠ MN, we would have AP ⊥ BD. NoƟce that AE + PN = PM

+ PE and 

Proof. Let AP extended intersect MN at H and MP extended intersect AD
at E. Since PN // AD, ∠PAE = ∠HPN. In the right angled triangle ΔPMN, we
must have ∠HPN = PMN. Hence, ∠PAE = PMN, which implies ΔAEP ~
ΔMPN.
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Let  AE = k · PE and PM = k · PN. Since AE + PN = PM +

PE, we have k · PE + PN = k · PN + PE, simplifying which gives (k − 1)· PE = (k −
1)· PN. Hence, either k = 1 or PE = PN.

If k = 1, we have AE = PE and PM = PN. Now AE = PE implies that ∠PAE = 45°,
i.e., P lies on AC. PM = PN implies PMCN is a square and we must have MN
// BD. Hence, AP ⊥ BD.
If PE = PN, we have ΔAEP ≅ ΔMPN and hence, AP = MN.

Similar triangles are even more frequently seen when circle properƟes are
introduced, which we will discuss in Chapter 4.

The following is an important property of angle bisectors.

Theorem 2.3.7 (Angle Bisector Theorem) In ΔABC, the angle bisector of ∠A

intersects BC at D. We have 

Proof. Refer to the diagram on the below. Draw DE // AB, intersecƟng AC
a t E. We have ∠BAD = ∠EDA. Since AD bisects ∠A, ∠EDA = ∠BAD =
∠EAD. It follows that AE = DE.

Since DE // AB, we have  Notice that ΔABC ~ ΔEDC.

Hence,  and the proof is complete.

Note:
We are sƟll using the strategy of construcƟng an isosceles triangle with
the angle bisector and parallel lines.

One may easily see that the inverse of the Angle Bisector Theorem holds:

Given ΔABC where D is a point of BC, if  then AD bisects

∠A. Otherwise, let AD' be the angle bisector and we have 
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 which implies D and D' coincide.

Notice that the conclusion  still holds even if AD is an exterior

angle bisector, i.e., when AD bisects the supplementary angle of ∠A
Refer to the diagram below.

The proof is similar. Draw CE // AB, intersecting AD at E.

One sees that ΔACE is an isosceles triangle where AC = CE (because ∠2
= ∠1 = ∠CAE).

Now  by the Intercept Theorem.

Example 2.3.8 Let AD bisect ∠A in ΔABC, intersecƟng BC at D. Show that 

 where BC = a, AC = b and AB = c.

Proof. Refer to the diagram on the below. By the Angle Bisector Theorem,

Since a = BC = BD + CD = BD, we must have .

Note: One may draw similar conclusions if AD, BE, CF are the angle bisectors
of ∠A, ∠B, ∠C respecƟvely. This result is useful if angle bisectors are
given and the ratios of sides are to be found.
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•
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•

Introduction to Trigonometry

Since any two right angled triangles are similar if they have an equal pair of
acute angles, a right angled triangle with a given acute angle, say ∠A, must
have constant ratios between the legs and the hypotenuse.

Refer to the diagram on the below.

We define 

Trigonometry is taught in most secondary schools. The most important and
commonly used properƟes are as follows, which one may see easily from
the definition.

sin ∠A = cos(90° − ∠A)

(sin ∠A)2 + (cos ∠A)2 = 1 by Pythagoras’ Theorem.

Trigonometric methods are widely applicable in geometric calculaƟons,
which we do not emphasize in this book. Nevertheless, we sƟll encounter
simple trigonometry occasionally in problem-solving and hence, one should
be very familiar with the basic properties.

One important applicaƟon is about the area of triangles. Refer to the
diagram on the below.
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In ΔABC, given CD ⊥ AB at D, we have  and by

definition,

CD = AC sin ∠A. It follows that [ΔABC] = AB · AC sin ∠A. NoƟce that

heights are no longer involved in this formula.

If ∠A > 90°, we extend CA to D such that AC = AD. Refer to the diagram on
the below.

Since [ΔABC] = [ΔABD] = AB · AD sin ∠BAD and AC = AD, if we define sin

∠A = sin ∠BAD = sin(180° − ∠A), we still have

[ΔABC] = AB · AC sin ∠A. In particular, one sees that sin 90° = 1.

Now [ΔABC] = AB · AC sin ∠A is consistent for any ΔABC.

Example 2.4.1 (HUN 10) Let ABCD be a quadrilateral whose area is S. Show
that if (AB + CD)(AD + BC) = 4S, then ABCD is a rectangle.

Insight. We have (AB + CD)(AD + BC) = AB · AD + AB · BC + CD · AD + CD · BC.
How are these related to S?

Proof. NoƟce that S = [ΔABC] + [ΔACD] 

 Refer to the diagram on the below.

Similarly, we have 
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4S = AB · AD sin A + AB · BC sin B + CD · BC sin C + CD · AD sin D.

It is given that 4S = (AB + CD)(AD + BC). One sees that this is only possible
when sin A = sin B sin C = sin D = 1. We must have ∠A = ∠B = ∠C = ∠D = 90°
and hence, ABCD is a rectangle.

Cosine Rule is one of the most elementary and commonly used results in
trigonometry. One may see it as an extension of Pythagoras’ Theorem.

Theorem 2.4.2 (Cosine Rule) In ΔABC where BC = a, AC = b and AB = c, we

have a2 = b2 + c − 2bc cos A.

Proof. We use Pythagoras’ Theorem to prove Cosine Rule. Refer to the
below diagram, where ∠A is acute. Draw CD ⊥ AB at D.
Let AD = x. We have BD = c − x.

Pythagoras’ Theorem gives AC2 − AD2 = CD2 = BC2 − BD2, i.e., b2 − x2 = a2 − (c

− x)2. Simplifying the equation, we obtain

b2 = a2 − c2 + 2cx, or a2 = b2 + c2 − 2cx.

The conclusion follows as x = bcos A.

A similar argument applies if ∠A is obtuse. Refer to the diagram on the
below. We draw CD ⊥ AB intersecting BA extended at D.

Let AD = x. Pythagoras’ Theorem gives
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(2)

Simplifying the equaƟon, we obtain a2 = b2 + c2 + 2cx, where x = bcos∠CAD
= bcos(180° − ∠A). One sees that the conclusion holds if we define cosθ =
−cos(180° − θ) for θ ≥ 90° and in particular, cos90° = 0.

Now a2 = b2 + c2 − 2bccos A is consistent for any triangle ΔABC.

Note:

If ∠A = 90°, a2 = b2 + c2 is exactly Pythagoras’ Theorem.

One may perceive congruent triangles by Cosine Rule: Given a, b, c are

the three sides of a triangle, we have 

Hence, one may calculate ∠A, and similarly ∠B and ∠C. Now ΔABC is
uniquely determined.
On the other hand, if b, c and ∠A are given, one may calculate a using
Cosine Rule. Hence, ΔABC is uniquely determined.
NoƟce that these are consistent with the criteria determining
congruent triangles, S.S.S. and S.A.S. respectively.

One may apply Cosine Rule to calculate the length of a median in a given
triangle.

Theorem 2.4.3 In ΔABC where BC = a, AC = b, AB = c and M is the midpoint

of BC, we have 

Proof. Refer to the diagram on the below. Extend AM to D such that AM =
MD.

By Cosine Rule, AD2 = AB2 + BD2 − 2AB · BD cos∠ABD. NoƟce that AD and BC
bisect each other, which implies ABDC is a parallelogram. Hence, BD = AC = b
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and ∠ABD = 180° − ∠A.

We have AD2 = b2 + c2 − 2bc cos(180° − ∠A) = b2 + c2 + 2bc cos A.

It follows that 

Example 2.4.4 In ΔABC, AB = 9, BC = 8 and AC = 7. Let M be the midpoint of
BC. Show that AM = AC.

Proof. By Theorem 2.4.3, 

Ceva’s Theorem and Menelaus’ Theorem

One important type of problems in geometry is on collinearity and
concurrence. We know that any two points determine a unique straight line
which passes through them. Hence, if we have three points say A, B, C, in
general we can draw three lines AB, BC, CA, unless in the special case where
A, B, C are collinear, i.e., they lie on the same line. Refer to the leŌ diagram
below.

Similarly, we know that any two disƟnct and non-parallel lines intersect at
exactly one point. If we have three such straight lines say 1, 2, 3, in
general we should have three points of intersecƟon, unless in the special
case where 1, 2, 3 are concurrent, i.e., they pass through the same point.
Refer to the right diagram above.
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In many geometry quesƟons, one may need to decide whether a given set
of three points are collinear, or a given set of three lines are concurrent. For
example, one may recall that we show in any triangles, the perpendicular
bisectors of the three sides are concurrent (at the circumcenter). We have
also shown the existence of the incenter, the ex-centers and the centroid of
a triangle. We shall introduce Ceva’s Theorem and Menelaus’ Theorem,
which provide more general criteria to determine concurrency and
collinearity.

Theorem 2.5.1 (Ceva’s Theorem) In ΔABC, D, E, F are points on AB, AC, BC
respecƟvely such that AD, BE, CF are concurrent. We have 

Note: The conclusion is not difficult to remember. First, write down the

three sides of the triangle AB, BC, CA in this manner 

NoƟce that each leƩer appears in the numerator and denominator exactly
once. Next, replace ∗ by the point which divides the respecƟve side: 

 Notice that all the letters are “cancelled out”!

We use the area method to prove this theorem.

Proof. Refer to the diagram on the below. Let AD, BE, CF intersect at P.
Draw BH1 ⊥ AP at H1 and CH2 ⊥ AP at H2.
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(2)

Note:

The inverse of Ceva’s Theorem also holds: if D, E, F are points on BC, AC,

AB respecƟvely such that  then AD, BE, CF are

concurrent.

This can be proved easily by contradicƟon: Suppose otherwise that AD,
BE, CF are not concurrent. Refer to the diagram on the below. Let AD
and BE intersect at P. Suppose CP extended intersects AB at F'.
Now AD, BE, CF' are concurrent.

By Ceva’s Theorem, one must have 

Since  we must have  which implies F

and F' coincide.

Ceva’s Theorem also holds even if the points of division are on the
extension of the sides of ΔABC. Refer to the diagrams below where AD,
BE, CF are concurrent at P.
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We still have  in either case.

The proof is sƟll by the area method. We leave the details to the

reader. (Hint: Can you see that  in the

diagram on the right? Notice that 

Ceva’s Theorem, especially its inverse, is very useful in showing
concurrency. For example, the proof for the existence of the centroid of a
triangle becomes trivial: if D, E, F are the midpoints of BC, AC, AB

respecƟvely, then  Hence, AD, BE, CF are

concurrent.

One may also show the existence of the incenter using Ceva’s Theorem
(and the Angle Bisector Theorem). We leave it to the reader.

Example 2.5.2 In ΔABC, D is on BC. DE bisects ∠ADC, intersecƟng AC at E.
Draw DF ⊥ DE, intersecting AB at F. Show that AD, BE, CF are concurrent.

Insight. It suffices to show  Since DE bisects ∠ADC

and DF ⊥ DE, DF bisects ∠ADB (Example 1.1.9). Perhaps we should apply
the Angle Bisector Theorem.

Proof. Since DE bisects ∠ADC and DF ⊥ DE, DF bisects ∠ADB (Example

1.1.9). By the Angle Bisector Theorem, we have  and .

Now . By Ceva’s Theorem, AD, BE, CF

are concurrent.

Example 2.5.3 Given a triangle ΔABC, draw equilateral triangles ΔABF,
ΔBCD, ΔACE outwards based on AB, BC, AC respecƟvely. Show that AD, BE,
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CF are concurrent.

Insight. Refer to the diagram on the below. It seems an applicaƟon of
Ceva’s Theorem, i.e., say AD intersects BC at P, BE intersects AC at Q and CF

intersects AB at R, we are to show 

How could we express say  in terms of what we are familiar with? We

use areas of triangles when proving Ceva’s Theorem, but we cannot use the
same triangles once more because we do not know whether AD, BE, CF are
collinear.

Example 2.5.4 In ΔABC, M is the midpoint of BC. AD bisects ∠A, intersecƟng
BC at D. Draw BE ⊥ AD, intersecƟng AD extended at E. If AM extended
intersect BE at P, show that AB // DP.

Insight. Refer to the diagram on the below.
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We should have 

Hence, if EM extended intersects AB at F, we should have 

 by Ceva’s Theorem, which implies AF = BF.

Given that M is the midpoint of BC, we should have MF // AC, or
equivalently, EM // AC. How can we show it?
We have not used the condiƟon AE ⊥ BE and the angle bisector AE. It is a
common technique to reflect ΔABE about AE (Example 1.2.5) and obtain an
isosceles triangle!

Proof. Refer to the diagram on the below, where BE extended intersect
AC extended at X, and EM extended intersect AB at F. Since AE bisects
∠BAX and AE ⊥ BX, ΔABX must be an isosceles triangle where AB = AX. It
follows that BE = XE.

By the Midpoint Theorem, ME // AX, or equivalently, FF // AX. It follows
from the Intercept Theorem that F is the midpoint of AB.

By Ceva’s Theorem,  we must have 

 which implies PD // AB by the Intercept Theorem.

Note:
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One may easily show the following result by applying Ceva’s Theorem.
Refer to the diagram on the below. Given ΔABC where D, E are on AC,
AB respecƟvely and BD, CE intersect at P, we have DE // BC if and only
if AP extended passes through the midpoint of BC.

Example 2.5.4 is not an easy problem. However, one may see the clues
more clearly by dividing it into three sub-problems: reflecƟng ΔABE
about the angle bisector AE (Example 1.2.5), applying the Midpoint
Theorem and the Intercept Theorem to the midline EM, and applying
Ceva’s Theorem with the median EF. Hence, one could understand how
the auxiliary lines are constructed. (You may draw the diagrams
separately for each sub-problem.)

Ceva’s Theorem has a trigonometric form. Refer to the diagram below.

If AD, BE, CF are concurrent, then 

Proof. We sƟll use the area method. Recall the area formula of a 
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Multiply the three equations and we obtain:

which leads to the conclusion.

Applying the trigonometric form of Ceva’s Theorem, it is easy to show that
the three heights of a triangle are concurrent. Refer to the diagram on the
below for the case of an acute angled triangle.

Notice that ∠1 = 90° − ∠AHF = ∠4. Similarly, ∠2 = ∠5 and ∠3 = ∠6.

It follows immediately that 

Hence, AD, BE, CF are concurrent, i.e., they pass through a common point H,
which is called the orthocenter of ΔABC.

A similar argument applies for obtuse angled triangles. Refer to the obtuse
angled triangle ΔHBC in the diagram on the below. Its orthocenter is A
(while H is the orthocenter of ΔABC).

Example 2.5.5 Let H be the orthocenter of an acute angled triangle ΔABC.
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Show that ∠BHC = 180° − ∠A.

One easily sees the conclusion by considering the internal angles of the
quadrilateral AEHF. Refer to the diagram on the below.

Note that there are a lot of pairs of equal angles in the diagram above. We
will study more about the orthocenter of a triangle aŌer we introduce the
circle properties in Chapter 3.

Theorem 2.5.6 (Menelaus’ Theorem) Given ΔABC, a straight line intersects
AB, AC and the extension of BC at D, E, F respecƟvely. We have 

Note: The conclusion of Menelaus’ Theorem is similar to that of Ceva’s

Theorem: it is also of the form  where ∗ is to be replaced

by the point which divides (internally or externally) the respecƟve side of
ΔABC. Notice that all the letters are “cancelled out”!

We also use the area method to prove Menelaus’ Theorem.

Proof. Connect AF and BE. We denote S1 = [ΔABE] , S2 = [ΔAEF] and S3 =
[ΔBEF]. Refer to the diagram on the below.

Notice that  because ΔAEF and ΔBEF share a common base EF and

their heights on EF are of the ratio 
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Note:
The inverse of Menelaus’ Theorem also holds: if D, E, F are points on AB

AC and BC extended respecƟvely and  then D, E, F

are collinear.

This can be proved easily by contradicƟon: Suppose otherwise, say DE
extended intersects BC extended at F'.

By Menelaus’ Theorem, we have 

Hence,  by the condiƟon given. We conclude

that F and F' coincide.

Applying Menelaus’ Theorem, especially its inverse, is an important
method when showing collinearity.
Menelaus’ Theorem applies regardless of the relaƟve posiƟons of the
division points, i.e., the division points can be on the extension of the
sides of a triangle. Refer to the below diagram where the line DE does
not intersect ΔABC.

We still have 

One may prove it by the similar area method. We leave the details to
the reader.
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(3) Although the conclusions of Ceva’s Theorem and Menelaus’ Theorem are
highly similar, one may see their different geometric meanings easily
from the diagrams.

One may apply Menelaus’ Theorem and calculate the raƟo of line segments
very efficiently. Recall Example 2.1.4.

In ΔABC, D is a point on AB and  M is the midpoint of CD

while AM extended intersects BC at E. Find 

Ans. Refer to the diagram on the below. Apply Menelaus’ Theorem when

the line AE intersects 

Note: Choosing an appropriate triangle and a line intersecƟng it is very
important when applying Menelaus’ Theorem. For example, if we choose
the line CD intersecting ΔABE in this example, we will not be able to obtain 

Example 2.5.7 Given ΔABC, D is a point on BC such that AD bisects ∠A. E, F
are on AB, AC respecƟvely such that DE, DF bisect ∠ADB and ∠ADC
respectively. If EF extended intersects the line BC at P, show that AP ⊥ AD.

Insight. Refer to the diagram on the below. It seems we should consider
the line EF intersecting ΔABC and apply Menelaus’ Theorem.
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Can we apply the Angle Bisector Theorem for 

On the other hand, since we are to show AP ⊥ AD, AP should be the
exterior angle bisector of ∠BAC (Example 1.1.9). Hence, we should have 

 by the Angle Bisector Theorem.

Proof. By Menelaus’ Theorem,  (*)

Since DE, DF are angle bisectors, we must have  and 

by the Angle Bisector Theorem. Now  because AD

bisects ∠BAC. It follows from (*) that 

Hence, AP is the exterior angle bisector of ∠BAC. We conclude that AP ⊥
AD (Example 1.1.9).

Example 2.5.8 In ΔABC, M, N are points on AB, AC respecƟvely such that
the centroid G of ΔABC lies on MN. Show that AM · CN + AN · BM = AM · AN.

Insight. Let AG intersect BC at D. NoƟce that  Since G lies on

MN, if MN // BC,  Refer to the

diagram on the below.

Otherwise, say MN extended intersects BC extended at P. Refer to the
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diagram on the below. We see that the line MP intersects several triangles.
Moreover, we know BD = CD and AG = 2DG. Hence, applying Menelaus’
Theorem would probably help us to find the relaƟonship among those line
segments.

It is also noteworthy that the common factors AM and AN appear on both
sides of the equaƟon in the conclusion. Hence, we may consider dividing
both sides by AM · AN.

Proof. It is easy to show the conclusion when MN // BC. Otherwise, say
MN extended intersects BC extended at P. By dividing AM · AN on both

sides of the equation, it suffices to show that 

Apply Menelaus’ Theorem when the line MN intersects ΔACD :

Apply Menelaus’ Theorem when the line MN intersects ΔABD :

Hence, we are to show 

This is clear because CP + BP = CP + CP + BC = 2CP + 2DC = 2DP.

Example 2.5.9 (USA 11) In a non-isosceles acute angled triangle ΔABC where
AD, BE, CF are heights, H is the orthocenter. AD and EF intersect at S. Draw
AP ⊥ EF at P and HQ ⊥ EF at Q. If the lines DP and QH intersect at R, show
that HQ = HR.

Insight. Refer to the diagram on the below. Besides the feet of
perpendicular D, E, F and the orthocenter H, the diagram is constructed by
drawing perpendicular lines and we also have AP // QR. In particular, for any

www.TechnicalBooksPDF.com



given ΔABC, Q and R are uniquely determined.

How could we show  Menelaus’ Theorem could be very useful in

such a diagram which is purely constructed by the intersecƟon of straight
lines.

Since AP // QR, we have  It suffices to show

that  Which triangle (and the line intersecƟng it) should we

apply Menelaus’ Theorem to?

Proof. Refer to the diagram on the below. Apply Menelaus’ Theorem to
ΔAHC and EF.

 (1)

 (2)
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Now it is easy to see that (2) holds. This completes the proof.

Note: One may perceive (2) as Ceva’s Theorem applied to ΔAHC where
l i ne s AF, HE, CD are concurrent at B. Of course, beginners may find
difficulƟes in recognizing Ceva’s Theorem when the point of concurrency is
outside the triangle. In such cases, one may always use the area method.
We can see from the proof above that this is not difficult.

As an applicaƟon of Menelaus’ Theorem, we will show Desargues’
Theorem, which is also an important result in showing collinearity and
concurrency.

Theorem 2.5.10 (Desargues’ Theorem) Given ΔABC and ΔA'B'C' such that the
lines AB, AB' intersect at P, the lines BC, B'C' intersect at Q and the lines AC,
A'C' intersect at R, if the lines AA', BB', CC' are concurrent, then P, Q, R are
collinear.

Proof. Refer to the diagram on the below, where AA' , BB' , CC' are
concurrent at X. Apply Menelaus’ Theorem when B'P intersects ΔXAB and
we obtain:

 (1)

Similarly, when B'Q intersects ΔXBC, we have:
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(1)

(2)

•

 (2)

When A'R intersects ΔXAC, we have  (3)

MulƟplying (1), (2) and (3) gives  which implies P, Q, R

are collinear by Menelaus’ Theorem.

Note:
We apply Menelaus’ Theorem extensively in this proof, which does not
depend on the relative positions of ΔABC and ΔA'B'C'.
The inverse of Desargues’ Theorem also holds, i.e., if P, Q, R are
collinear, then lines AA' , BB' , CC' are concurrent (or parallel to each
other). One may follow a similar argument as above: given P, Q, R
collinear and the lines AA' , BB' intersect at X, show that C, C' , X are
collinear by Menelaus’ Theorem.

Applying Desargues’ Theorem changes the conclusion of concurrency to an
equivalent one of collinearity, or vice versa. This may be a wise strategy
when solving difficult problems, say if the conclusion to be shown seems
unrelated to the conditions given. We will see examples in Chapter 6.

Ceva’s Theorem and Menelaus’ Theorem are very useful in showing
concurrency and collinearity. However, we shall point out there are many
other ways to show concurrency and collinearity.

Collinearity: Showing equal or supplementary angles is the most
fundamental and straighƞorward method. Refer to the diagrams
below.

  (i) PQ is a straight line where B lies. We have A, B, C collinear if ∠1+∠2 =
180° or ∠2 = ∠3.
 (ii) B, C are on 1, 2 respecƟvely and 1 // 2. We have A, B, C collinear if
∠1 = ∠2.
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•

(iii) We have A, B, C collinear if ∠ACP = ∠BCP.

Another commonly used method is via the properƟes of similar
triangles. Refer to the diagram on the below for an example, where C

is a point on BD and AB // DE. Now A, C, E are collinear if 

Concurrency: One may suppose two lines meet at a point and show that
the third line also passes through that point. We used this method to
show the existence of the incenter, circumcenter, centroid and ex-
centers (Exercise 1.4) of a triangle. Another commonly used method is
via the properƟes of similar triangles, an example of which is given
below.

Theorem 2.5.11 Given ΔABC and ΔDEF such that AB // DE, BC // EF and AC
// DF, then AD, BE, CF are either parallel or concurrent.

Proof. NoƟce that there are two possible cases regarding the relaƟve
positions of ΔABC and ΔDEF. Refer to the diagrams below.

It is easy to see that ΔABC ~ ΔDEF because all the corresponding angles are
equal. Suppose AD and BE intersect at X. It suffices to show that CF passes
through X as well, i.e., C, F, X are collinear.

Connect CX, FX. Since AB // DE, we must have 

Clearly, ∠CAX = ∠FDX. We conclude that ΔACX ~ ΔDFX and hence, ∠DXF =
∠AXC. Now C, X, F are collinear.
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2.6

Notice that the proof does not depend on the diagram.

Exercises

1. Refer to the diagram on the below. Given ΔABC, extend AB to D such that
AB = BD, extend BC to E such that BC = 2CE and extend CA to F such that AF =
2AC. Draw parallelograms BCXD, ACEY and ABZF. If the total area of these

three parallelograms is 175cm2, find the area of ΔABC in cm2.

2. Given ΔABC, draw squares ABDE and ACFG outwards from AB, AC
respecƟvely. Let O1, O2 denote the centers of squares ABDE and ACFG
respecƟvely. If M, N are the midpoints of BC, EG respecƟvely, show that
MO1NO2 is a square.

3. In a quadrilateral ABCD, AB ⊥ AD and BC ⊥ CD. F is a point on CD such
that AF bisects ∠BAD. If BD and AF intersect at E and AF // BC, show that AE

< CD.

4. In a right angled triangle ΔABC, ∠A = 90°and D, E are on AB, AC
respecƟvely. If M, N, P,Q are the midpoints of DE, BC, BE, CD respecƟvely,
show that MN = PQ.

5. Let ABCD be a quadrilateral and E, F, G, H be the midpoints of AB, BC, CD,
DA respecƟvely. Let M be the midpoint of GH and P be a point on EM such
that FG = PG. Show that PF ⊥ EM.

6. Given a square ABCD, E, F are the midpoints of AB, BC respectively. Let CE,
DF intersect at P. Connect AP. Show that AP = AB.

7. Let G be the centroid of ΔABC. Show that if BG ⊥ CG, then AB2 + AC2 =

5BC2.
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8. Given a triangle ΔABC, a line 1 // BC intersects AB, AC at D, D'
respectively, a line 2 // AC intersects BC, AB at E, E' respectively and a line 

3 // AB intersects AC, BC at F, F' respectively. Show that [ΔDEF][ΔD'E'F'].

9. Let ΔABC be an equilateral triangle and D is a point on BC. The
perpendicular bisector of AD intersects AB, AC at E, F respecƟvely. Show
that BD · CD = BE · CF.

10. Given an acute angled triangle ΔABC where H is the orthocenter, show

that 

11. In a right angled triangle ΔABC where ∠A = 90°, D, E are on BC such that

BD = DE = CE. Show that 

12. In ΔABC, M is the midpoint of AB and D is a point on AC. Draw CE // AB,
intersecting BD extended at E. Show that lines AE, BC, MD are concurrent.

13. Given ΔABC, draw squares ABDE, BCFG and CAHI outwards based on AB,
BC, AC respecƟvely. Let P, Q, R be the midpoints of DE, FG, HI respecƟvely.
Show that AQ, BR, CP are concurrent.

14. Refer to the diagram on the below. ΔABC is a non-isosceles triangle. AD,
BE, CF are the exterior angle bisectors of ∠A, ∠B, ∠C respecƟvely,
intersecting the lines BC, AC, AB at D, E, F respecƟvely. Show that D, E, F are
collinear.

15. Given an isosceles triangle ΔABC where AB = AC, M is the midpoint of
BC. A line  passing through M intersects AB at D and intersects AC

extended at E. Show that 
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3.1

Chapter 3

Circles and Angles

A circle is uniquely determined by its center and radius, i.e., if two circles
have the same center and radius, they must coincide. We use O to denote
a circle centered at O.

It is widely known that given a circle with radius r, its perimeter equals 2πr

and the area of the disc is πr2. Indeed, there are many more interesƟng
properƟes about circles. In this chapter, we will focus on the properƟes of
angles related to circles.

Angles inside a Circle

Theorem 3.1.1 An angle at the center of a circle is twice of the angle at the
circumference.

Proof. Refer to the diagram below. We are to show ∠BOC = 2∠BAC.
Extend AO to D. Since O is the center of the circle, we have AO = BO. Now
∠B = ∠OAB in ΔAOB, and the exterior angle ∠BOD = ∠B +∠OAB =
2∠OAB.
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Similarly, ∠COD = ∠C +∠OAC = 2∠OAC.
Now ∠BOC = ∠BOD +∠COD = 2∠OAB + 2∠OAC = 2∠BAC.

NoƟce that the proof is not completed yet: there is another possible
situaƟon as illustrated in the diagram on the right. NoƟce that the proof
above does not apply in this situaƟon, but an amended version following
the same idea (using subtracƟon instead of addiƟon) leads to the
conclusion. We leave it to the reader.

Example 3.1.2 Let O be the circumcenter of ΔABC. We have:
(1) ∠BOC = 2∠A
(2) ∠OBC = 90°−∠A

Proof. (1) follows directly from Theorem 3.1.1.

Theorem 3.1.1 has a few immediate corollaries which are very important in
circle geometry.

Corollary 3.1.3 Angles in the same arc are the same.

Refer to the leŌ diagram below. ∠1=∠2 because they are both equal to
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half of the angle at the center of the circle.

We call a quadrilateral cyclic if it is inscribed inside a circle.

Corollary 3.1.4 Opposite angles of a cyclic quadrilateral are supplementary,
i.e., their sum is 180°.

Refer to the previous right diagram. We have ∠1+∠2

NoƟce that ∠3 in the diagram is greater than 180°, but one can easily show
that Theorem 3.1.1 still applies.

Corollary 3.1.5 An exterior angle of a cyclic quadrilateral is equal to the
corresponding opposite angle.

Refer to the diagram below where ∠1=∠2. This is immediately from
Corollary 3.1.4.

In SecƟon 2.5, we studied the relaƟonship between points and lines, i.e.,
collinearity and concurrence. Similarly, we will study the relaƟonship
between points and circles in this chapter. First, one sees that any three
non-collinear points uniquely determine a circle: for points A, B, C not
collinear, there exists a unique circle passing through A, B, C. This is simply
the circumcircle of ΔABC.
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In general, four points do not lie on the same circle. Hence, it is noteworthy
if the contrary happens, in which case we say the four points are concyclic.
Refer to the diagram below for an example.

Showing concyclicity seems harder than collinearity or concurrence. For
example, one may prove collinearity by showing the neighboring angles are
supplementary, or prove concurrence by showing the intersecƟon of two
lines lies on the third. Are there any similar and straightforward techniques
applicable to show concyclicity?

We have to accept that circles are not as straight as lines. Nevertheless,
circle geometry has a rich structure which provides us abundant methods in
showing concyclicity. For example, one sees that the inverse statements of
Corollaries 3.1.3 to 3.1.5 also hold, which can be shown easily by
contradicƟon. Now we have simple and effecƟve criteria to determine
concyclicity. Refer to the diagrams below. In any of these cases, A, B, C, D
are concyclic.

Example 3.1.6 In an acute triangle ΔABC, AD, BE, CF are heights. Show that
the line AD is the angle bisector of ∠EDF.

Proof. Refer to the diagram below. Since ∠BFH = ∠BDH = 90°, B, D, H, F
are concyclic by the inverse of Corollary 3.1.4. Hence, ∠1=∠3. Similarly, C,
D, H, E are concyclic and we have ∠2 = ∠4.
Since ∠BFC = ∠BEC = 90°, B, C, E, F are concyclic by the inverse of Corollary
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(1)

(2)

(3)

3.1.3. It follows that ∠1=∠3 = ∠4 = ∠2.

Note:
Since AD ⊥ BC, ∠1=∠2 also implies ∠BDF = ∠CDE. Since A, C, D, F are
concyclic, we also have ∠BDF = ∠CDE = ∠BAC (Corollary 3.1.5).
One sees that a lot of concyclicity appear in this diagram. In fact,
experienced contestants know this diagram very well and are able to
recall those basic facts almost instantaneously.
The conclusion implies that H, the orthocenter of ΔABC, is the incenter of
ΔDEF.

Example 3.1.7 Let ABCD be a cyclic quadrilateral. A line  parallel to BC
intersects AB, CD at E, F respectively. Show that A, D, F, E are concyclic.

Proof. Refer to the diagram below. Since EF // BC, ∠1=∠C. NoƟce that
∠A +∠C = 180° by Corollary 3.1.4. Hence, ∠A+∠1 = 180°, which implies A,
D, F, E are concyclic.

Example 3.1.8 O1 and O2 intersect at P and Q. If O1P extended
intersects O2 at B and O2P extended intersects O1 at A, show that
O1,O2, A, B, Q are concyclic.
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Insight. We are to show five points are concyclic. So many of them!
Perhaps we can show four points are concyclic first, say O1, O2, A, B. Refer to
the diagram below.

The simplest method is to show that ∠1=∠2. Are there any equal angles in
the diagram? Yes, say ∠1=∠3 (because O1A = O1P) and similarly ∠2 = ∠4.
We also have opposing angles ∠3 = ∠4. Job done!

Next, we may show that O1, O2, A, Q are concyclic. Let us draw the
quadrilateral. Refer to the diagram below. Can we show ∠1+∠O1QO2 =
180° ? This seems not difficult.

Observe that ∠O1QO2 = ∠O1PO2 (ΔO1PO2 ≅ ΔO1QO2), ∠1=∠APO1 and
∠APO1 + ∠O1PO2 = 180°. Job done!

In conclusion, both O1,O2, A, B and O1, O2, A, Q are concyclic, which means
that B and Q lie on the circumcircle of ΔO1 AO2. Indeed, O1,O2, A, B, Q are
concyclic.

Note: One may show that O1,O2, A, Q are concyclic and hence, O1,O2, B, Q
are concyclic by similar reasoning. This would also complete the proof.

Example 3.1.9 Refer to the diagram below. A, B, C are points on the circle.
PC extended intersects the circle at D. Q is a point on CD such that ∠DAQ =
∠PBC. Show that ∠DBQ = ∠PAC.
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Insight. We are given a circle and a pair of equal angles. Could we find
more pairs of equal angles? How are they related to our conclusion ∠DBQ =
∠PAC ?
One may see the difficulty as ∠PAC (and ∠PBC) are not extended by an
arc. Perhaps we should relate ∠PBC to another angle on the circumference
besides ∠DAQ and seek clues. How about ∠PBC = ∠BCD −∠BPD ? We may
connect AB. Now ∠BCD = ∠BAD is also related to ∠DAQ !

Proof. Refer to the diagram below. We have ∠PBC = ∠BCD −∠BPC.
Connect AB. NoƟce that ∠BCD = ∠BAD (angles in the same arc). It is given
that ∠DAQ = ∠PBC. Hence, ∠DAQ = ∠BAD −∠BPC, or ∠BPC = ∠BAD
−∠DAQ = ∠BAQ. This implies P, A, Q, B are concyclic. Now ∠DBQ = ∠PQB
−∠CDB = ∠PAB −∠CAB = ∠PAC.

Example 3.1.10 Given an equilateral ΔABC and its circumcircle, M is a
point on the minor arc  Show that MA = MB + MC.

Insight. We are to show MA = MB + MC. Hence, it is a common technique
to “cut” MB from MA and see whether the remaining porƟon equals to MC,
i.e., we choose D on MA such that MB = MD and aƩempt to show MC = AD.
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Refer to the diagram below. NoƟce that there are many equal sides and
angles due to the equilateral triangle and the circle. Can you find congruent
triangles?

Proof. Choose D on MA such that MB = MD. It suffices to show that AD =
MC. NoƟce that ∠AMB = ∠ACB = 60° (angles in the same arc). Hence,
ΔMBD is an isosceles triangle with the vertex angle 60°, i.e., an equilateral
triangle. Now BD = BM and ∠DBM = 60°, which implies ∠CBM = 60°−∠CBD
= ∠DBA. It follows that ΔCBM ≅ ΔABD (S.A.S.). Hence, AD = MC and the
conclusion follows.

Example 3.1.11 In a quadrilateral ABCD, AB = AD and BC ≠ CD. If CA bisects
∠BCD, then A, B, C, D are concyclic.

Insight. Refer to the diagram below. If A, B, C, D are concyclic, we have
∠1=∠4 = ∠3 = ∠2. It seems exactly right! Perhaps we can show the
conclusion by contradiction: what if A, B, C, D are not concyclic?

Proof. Suppose otherwise that A, B, C, D are not concyclic. Let the
circumcircle of ΔABD intersect the line AC at P. Refer to the diagram below.
Notice that ∠1 = ∠APD and ∠2=∠APB (angles in the same arc).
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(1)

(2)

Since AB = AD, ∠1=∠2 and hence, ∠APB = ∠APD. We are also given that
∠ACB = ∠ACD. Hence, AP is the perpendicular bisector of BD (Example
1.2.10). This is impossible because BC ≠ CD.

Note:
This proof does not depend on the diagram, i.e., it sƟll holds if C is
outside the circle.
One may also show BC = CD by ΔPBC ≅ ΔPDC (A.A.S.).

Example 3.1.12 L e t ABCD be a cyclic quadrilateral where the angle
bisectors of ∠A and ∠B intersect at E. Draw a line passing through E
parallel to CD, intersecƟng AD, BC at P, Q respecƟvely. Show that PQ = PA +
QB.

Insight. Given angle bisectors and parallel lines, can we have isosceles
triangles? Not exactly in this case because PQ // CD : if PQ // AB, we will
obtain isosceles triangles. Hence, we may draw P'Q' // AB, intersecƟng AD,
BC at P',Q' respectively. Refer to the diagram below.
Since AE bisects ∠A, we have ∠P' AE = ∠BAE = ∠P' EA, which implies P' A
= P' E. Similarly, Q' B = Q' E. We have P'Q' = P' A + Q' B. How are PQ and P'Q'
related? If we randomly draw a line PQ passing through E, we shall not have
PQ = PA + QB. NoƟce that we have not used the condiƟons PQ // CD and A,
B, C, D concyclic!

Proof. Draw P'Q' // AB, intersecting AD, BC at P',Q' respecƟvely. Since ∠P'
AE = ∠BAE = ∠P' EA, we have P' A = P' E and similarly, Q' B = Q'E. Hence,
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(1)

(2)

P'Q'= P' A + Q' B. (1)
Since P'Q' // AB, PQ // CD and A, B, C, D are concyclic, we have ∠PP'Q =
180°−∠A = ∠C = ∠PQQ'. Similarly, ∠P' PQ = ∠P'Q'Q.

Let the lines AD and BC intersect at X. Refer to the diagram below. Observe
that E is the ex-center of ΔXAB opposite X.

Hence, XE bisects ∠AXB. One easily sees that ΔXP' E ≅ ΔXQE (A.A.S.) and
ΔXPE ≅ ΔXQ' E (A.A.S.). It follows that P' E = QE, PE = Q' E and PP'= QQ'. Now
PQ = PE + QE = P' E + Q' E = P'Q' (2) and P' A + Q' B = PA + Q' B + PP'= PA + Q' B +
QQ'= PA + QB. (3) (1), (2) and (3) imply that PQ = PA + QB.

Note that the proof sƟll holds if the lines AD and BC intersect at the other
side of PQ, in which case E is the incenter of ΔXAB instead of the ex-center,
and we still have XE bisects ∠X.

Note:
Once it is shown that the corresponding angles in ΔPP' E and ΔQ'QE are
the same, we should probably have ΔPP' E ≅ ΔQ'QE (which leads to the
conclusion immediately). Hence, it is natural to consider the
intersecƟon of the lines AD and BC, which gives congruent triangles
with common sides.
Another strategy to solve the problem is via “cut and paste”: since we are
to show PQ = PA + QB, we choose F on PQ such that BQ = FQ and we
aƩempt to show AP = FP. Refer to the diagram below. Since PQ // CD,
we have A, B, Q, P concyclic (Example 3.1.7).
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Since BQ = FQ, we have ∠BFE = ∠FBQ = ∠CQP = ∠BAD = ∠BAE,

i.e., A, B, E, F are concyclic. We are to show that ∠PAF = ∠PFA = 

∠DPQ, while ∠DPQ = ∠ABQ = ∠ABE. Since A, B, E, F are concyclic,

we must have ∠PFA = ∠ABE (Corollary 3.1.5). This completes the
proof.

One should also take note of another immediate corollary from Theorem
3.1.1 that the diameter of the circle always extends a right angle on the
circumference. This is a common method in identifying right angles.

Corollary 3.1.13 If AB is the diameter of O and P is a point on the circle,
then ∠APB = 90°.

Proof. Refer to the diagram below. Notice that ∠AOB = 180°.

By Theorem 3.1.1, ∠APB = ∠AOB = 90°

Note: The inverse of this corollary also holds, i.e., if a chord AB extends
an angle of 90° on the circumference, then AB is the diameter (which passes
through the center of the circle).

Example 3.1.14 Refer to the diagram below. Given a circle where AB is a
diameter, C, D, E are on the circle such that C, E are on the same side of AB
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while D is on the other side. Show that ∠C +∠E = 90°.

Proof. Refer to the diagram below. Connect AE. Since AB is a diameter,
we have ∠E = 90°−∠AED. NoƟce that ∠AED = ∠C (angles in the same arc)
and the conclusion follows.

Example 3.1.15 Given an acute angled ΔABC where AD ⊥ BC at D, M, N
are the midpoints of AB, AC respecƟvely. Let  be a line passing through A.
Draw BE⊥  at E and CF ⊥  at F. If the lines EM, FN intersect at P, show that
D, E, F, P are concyclic.

Insight. Refer to the diagram below. E We could probably show the
concyclicity by equal angles. Can you see A, D, B, E (and similarly A, D, C, F)
are concyclic?

What do we know about P? P is obtained by intersecƟng EM and FN. NoƟce
that EM, FN are medians on the hypotenuses of right angled triangles. This
gives us more equal angles!

Proof. Since ∠AEB = ∠ADB = 90°, A, D, B, E are concyclic and in parƟcular,
M is the center of the circle. Clearly, ∠AEM = ∠EAM. Similarly, ∠AFN =
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∠FAN. Now ∠P = 180° − (∠AEM +∠AFN) = 180° − (∠EAM +∠FAN)=∠BAC.
On the other hand, we have ∠1 = ∠2 and ∠3 = ∠4 (angles in the same
arc). Refer to the diagram below.

It follows that ∠EDF = ∠1 +∠3 = ∠2 +∠4 = ∠BAC, since BCFE is a
trapezium (Example 1.4.15). Now ∠P = ∠EDF, which implies D, E, F, P are
concyclic.

Example 3.1.16 L e t ABCD be a square. E, F are points on BC, CD
respectively and ∠EAF = 45°. Draw EP ⊥ AC at P and FQ ⊥ AC at Q (P, Q do
not coincide). Show that the circumcenter of ΔBPQ lies on BC.
EAF ? One may recall

Insight. How shall we use the condiƟon ∠EAF = 45° ? One may recall
Exercise 1.6. However, rotating ΔABE seems not useful this time.

NoƟce that ∠BAE = 45°−∠CAE = ∠CAF. Refer to the leŌ diagram above. It
follows that ΔABE ~ ΔAQF and ∠AEB = ∠AFQ. In fact, one may find other
pairs of equal angles due to symmetry. Refer to the right diagram above.
We have ∠ABQ = ∠ADQ = ∠AFQ (since A, D, F, Q are concyclic where
∠ADF = ∠AQF = 90°). Similarly, ∠PAE = ∠PBE because A, B, P, E are
concyclic.

Now we have ∠ABQ = ∠AFQ = ∠AEB = 90°−∠BAE, which implies ∠ABQ
+∠BAE = 90°, i.e., BQ ⊥ AE.
We are to show the circumcenter of ΔBPQ lies on BC.
Let us draw the circumcircle. Refer to the diagram below. Let the
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circumcircle of ΔBPQ intersect BC at R. Now it suffices to show that BR is a
diameter, i.e., ∠BQR = 90°.
Note that this is equivalent to showing QR // AE. We have already shown
∠CAE = ∠CBP. Since ∠CBP = ∠PQR (angles in the same arc), we have
∠CAE = ∠PQR and AE // QR. This completes the proof.

Occasionally, one may need to apply circle properƟes to solve a problem,
even though no circle is given explicitly.

Example 3.1.17 Let P be a point inside ΔABC such that ∠BPC = 90° and
∠BAP = ∠BCP. Let M, N be the midpoints of AC, BC respecƟvely. Show that
if BP = 2PM, then A, P, N are collinear.

Insight. We are given a few condiƟons about the point P. However,
neither ∠BAP = ∠BCP nor BP = 2PM seems helpful in determining the
posiƟon of P. On the other hand, M, N are midpoints. If we can find a
triangle where PM is a midline, the Midpoint Theorem will give a line
segment equal to 2PM!
Refer to the diagram above. If we extend CP to D such that CP = DP, then AD
= 2PM = BP. Since A, P, N should be collinear, ADBP should be an isosceles
trapezium, i.e., A, D, B, P should be concyclic and we should have ∠BAP =
∠BDP. Now the condiƟon ∠BAP = ∠BCP seems useful and we may
complete the proof by showing that ΔBCD is isosceles.

Proof. Extend CP to D such that CP = DP. Let CD intersect AB at E. Since M,

www.TechnicalBooksPDF.com



(1)

N are the midpoints of AC, BC respecƟvely, by the Midpoint Theorem, we
have AD = 2PM = BP and PN // BD. (*)
Since ∠BPC= 90°, we have ΔBCP ≅ ΔBDP (S.A.S.). It follows that ∠BDP =
∠BCP = ∠BAP and hence, A, D, B, P are concyclic. Since AD = BP, one sees
that ΔADE ≅ ΔPBE (A.A.S.) and hence, ADBP is an isosceles trapezium where
BD // AP. By (*), A, P, N are collinear.

Note: An experienced contestant may write down an elegant proof
starting with “Let the circumcircle of ΔABP intersect CP extended at D. …” Of
course, beginners may feel puzzled because the moƟvaƟon of construcƟng
the circumcircle of ΔABP is not clear. Nevertheless, by showing BC = BD and
ADBP is an isosceles trapezium, one sees that this is equivalent to the given
proof.

As shown in the examples above, Corollary 3.1.3 to Corollary 3.1.5, including
their inverse, are useful in showing equal angles and concyclicity. One may
also use these simple results to show the following theorem.

Theorem 3.1.18 (Simson’s Line) Let P be a point on the circumcircle of
ΔABC. Let D, E, F be the feet of the perpendiculars from P to the lines BC, AC,
AB respecƟvely. We have D, E, F collinear, called the Simson’s line of ΔABC
with respect to P.

Proof. Refer to the diagram below. NoƟce that P, D, C, E are concyclic
because ∠PDC = ∠PEC = 90°. Hence, we have ∠1=∠2 (Corollary 3.1.3).
Notice that ∠2 = ∠3 (Corollary 3.1.5). Now ∠1=∠3 = 180°−∠PDF (Corollary
3.1.4.).
This implies ∠1+∠PDF = 180°, or D, E, F are collinear.

Note:
The inverse of this theorem also holds, i.e., if P is a point such that the
feet of its perpendicular to the sides of ΔABC are collinear, then P lies
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(2)

on the circumcircle of ΔABC. This can be shown by reversing the
reasoning: if D, E, F are collinear, we have ∠1 +∠PDF= 180°. Hence,
∠3 = 180°−∠PDF = ∠1 = ∠2, which implies A, B, C, P are concyclic.
Naturally, beginners may find it difficult to recognize pairs of equal
angles, especially when the diagram is complicated. Such angle-
chasing skills can only be enhanced via pracƟce. For example, can you
see ∠1 = ∠2 = ∠3 from the diagram without referring to the proof?
(Hint: One may occasionally erase extra lines and simplify the
diagram.)

Example 3.1.19 A quadrilateral ABCD is inscribed inside a circle and AD ⊥
CD. Draw BE ⊥ AC at E and BF ⊥ AD at F. Show that the line EF passes
through the midpoint of the line segment BD.

Insight. From the first glance, it is not clear how EF is related to the
midpoint of BD. Refer to the diagram below. What do we know about the
midpoint of BD? One may easily see that BD is the hypotenuse of the right
angled triangle ΔBDF. In fact, the only clues we have are the given right
angles!
Can we show ∠EFD = ∠BDF ? This may not be easy because ∠EFD is
neither an angle on the circumference nor closely related to other angles.

Perhaps the other right angles can help us. Since ∠BFD = ∠CDF = 90°, we
see that BD is almost the diagonal of a rectangle, except that BCDF is not a
rectangle yet while one of the corners is cut. What if we fix it? Refer to the
diagram below. We draw BP ⊥ CD at P. If EF indeed passes through the
midpoint of BD, EF should be part of the other diagonal of the rectangle
BPDF. Indeed, that diagonal is PF and what we need to show is that P, E, F
are collinear. Do you recognize a Simson’s line?
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3.2

Proof. Draw BP ⊥ CD at P. Since AD ⊥ PD and BF ⊥ AD, we have AD // BP
and BF // PD, i.e., BPDF is a parallelogram (and a rectangle). Since P, E, F are
the feet of the perpendiculars from B to the sides of ΔACD respecƟvely, we
must have P, E, F collinear (Simson’s Line). Now the conclusion follows as
the diagonals of a parallelogram bisect each other, i.e., EF passes through
the midpoint of BD.

We menƟon the following elementary but very useful theorem as the end
of this secƟon. It is widely applicable when solving problems related to a
few circles intersecting each other.

Theorem 3.1.20 If O1 and O2 intersect at A, B, then O1O2 is the
perpendicular bisector of AB.

Proof. Refer to the diagram below. Notice that ΔO1AO2 ≅ ΔO1BO2 (S.S.S.).

Tangent of a Circle

DefiniƟon 3.2.1 A line AB is tangent to (or touches) a circle O at A if
∠OAB = 90° case, A is called the point of tangency.
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It is easy to see that a tangent line cannot intersect the circle more than
once. Otherwise, we will have a triangle with two right angles!

NoƟce that O1 and O2 are tangent to each other (i.e., touch exactly
once) at P if and only if P introduces a common tangent to both circles.
Refer to the diagrams below.

NoƟce that O1O2 is perpendicular to the common tangent in either case.
One may consider this as an extreme case of Theorem 3.1.20.

Example 3.2.2 Refer to the leŌ diagram below. The area of the ring

between two concentric circles is 16π cm2. AB is a chord of the larger circle
and is tangent to the smaller circle. Find AB.

Ans. Refer to the right diagram above. Let the center of the circles be O
and the point of tangency be P. Since OA = OB and OP ⊥ AB, one sees that
ΔOAP ≅ ΔOBP (H.L.). Hence, AB = 2AP.
The area of the ring is the difference between the areas of two discs, i.e.,
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π·OA2−π ·OP2 = 16π. Hence, 16 = OA2 − OP2 = AP2 by Pythagoras’ Theorem. It
follows that AP = 4 cm and AB = 8 cm.

Note: If AB is a chord in O and M is the midpoint of AB, we always have
OM ⊥ AB because ΔOAB is an isosceles triangle.

Theorem 3.2.3 Let P be a point outside a circle and PA, PB are tangent to
the circle at A, B respecƟvely. We have PA = PB (called equal tangent
segments).

Proof. Refer to the diagram below. Connect OA, OB, OP. Since OA = OB,
one observes that ΔPAO ≅ ΔPBO (H.L.). The conclusion follows.

Note: An immediate corollary from the proof above is that OP ⊥ AB. In
fact, OP is the perpendicular bisector of AB (Theorem 1.2.4).

We say a circle is inscribed inside a polygon if it touches (i.e., is tangent to)
every side of the polygon. For example, every triangle has an inscribed
circle, called the incircle of the triangle, centered at the incenter of the
triangle (where angle bisectors meet). Refer to the proof of Theorem 1.3.2.

Example 3.2.4 ABCD is a quadrilateral with an inscribed circle. Show that
AB + CD = AD + BC.

Proof. Refer to the diagram below. Let E, F, G, H be the points of
tangency. Note that AE = AH (equal tangent segments). Similarly, BE = BF, CF
= CG, DG = DH. Now AB + CD = AE + BE + CG + DG = AH + BF + CF + DH = BC + AD.
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Note: This is called Pitot’s Theorem. However, as the result is simple and
well-known, the name of the theorem is seldom mentioned.

Example 3.2.5 ABCD is a trapezium with AD // BC and O is inscribed
inside ABCD. Show that AO ⊥ BO.

Proof. Refer to the diagram below. Let O touch AB, AD at E, F
respecƟvely. It is easy to see that ΔAOE ≅ ΔAOF (H.L.) and hence, AO bisects
∠BAD. Similarly, BO bisects ∠ABC.

Since AD // BC, ∠BAD+∠ABC = 180°. It follows that

Example 3.2.6 A circle is inscribed inside ΔABC and it touches the three
sides BC, AC, AB at D, E, F respecƟvely. Show that the lines AD, BE, CF are
concurrent.

Insight. By Ceva’s Theorem, we only need to show 
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This is true because AF = AE, CE = CD and BD = BF (equal tangent segments).

Example 3.2.7 (IWYMIC 10) A straight line divides a square into two
polygons, each of which has an inscribed circle. One of the circles has a
radius of 6 cm while the other has an even longer radius. If the line
intersects the square at A and B, find the difference, in cm, between the
side length of the square and twice the length of the line segment .

Ans. There are a few cases when a line intersects a square.
Case I: Both A, B are vertices of the square.
One obtains two equal triangles and the radii of the inscribed circles must
be the same. This contradicts the conditions given.

Case II: Only A is a vertex of the square.
One obtains a triangle and a quadrilateral. NoƟce that the quadrilateral
cannot have an inscribed circle as the two pairs of opposite sides do not
have equal sums (Example 3.2.4).

Case III: A, B lie on opposite sides of the square.
Similarly, the quadrilaterals obtained cannot have inscribed circles.

Case IV: A, B lie on neighboring sides of the square.
One obtains a triangle and a pentagon. NoƟce that the circle inscribed
inside the pentagon is exactly the incircle of the square.
Refer to the right diagram below. We focus on the boƩom right quarter of
the square.
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The square has a side length 2CM = CM + CN.
Now CM + CN − 2 AB = CM + CN − (AP + BP)− AB
= CM + CN −(AN + BM)− AB = (CM − BM) + (CN − AN)− AB
= BC + AC − AB = BC + AC −(AQ + BQ)
= BC + AC −(AE + BD)= CD + CE = 12.
Note that we applied equal tangent segments repeatedly.

Example 3.2.8 (CGMO 13) In a trapezium ABCD, AD // BC. Γ1 is a circle inside
the trapezium and is tangent to AB, AD, CD, touching AD at E. Γ2 is a circle
inside the trapezium and is tangent to AB, BC, CD, touching BC at F. Show
that the lines AC, BD, EF are concurrent.

Insight. Refer to the diagram below. We know that Ceva’s Theorem is
useful in showing concurrency, but those three lines given are not inside a
triangle. Perhaps we should use another method.

NoƟce that ABCD is an ordinary trapezium with no special properƟes.
Hence, we shall show that E, F, P are collinear. Can we show that 

 NoƟce that AE, DE, BF, CF are tangent segments of the circles

and they could be expressed by the radii of the circles and the related
angles.

Proof. Refer to the diagram below. Let Γ1 be centered at O1 with the
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(1)

(2)

radius O1E = R1 Let ∠BAD= 2α. We have AE = R1 tan ∠O1 AD = R1 tan α. Let
∠CDA = 2β. DE = R1 tan β.

Similarly, if Γ2 has a radius R2, we have

Hence, BF = R2 tan(90°−α). Similarly, CF = R2 tan(90°−β).

NoƟce that tan αtan(90°−α)= 1 by definiƟon. Hence, we have AE · BF = R1R2
tan α tan(90°−α)= R1R2. Similarly, DE ·CF = R1R2. 

The following theorem describes the properƟes of the points of tangency
and the radius of the incircle of a triangle.

Theorem 3.2.9 Let I be the incenter of ΔABC where AB = c, AC = b and BC =
a. Let the incircle of ΔABC touch BC, AC, AB at D, E, F respectively. We have:

Proof. Refer to the diagram below.
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(2)

By equal tangent segments, AE = AF = x say.
Similarly, let BD = BF = y and CD = CE = z.
Notice that a + b + c = 2(x + y + z) and AE + CE = x + z = b.

Let DI = EI = FI = r. Notice that DI, EI, FI are heights of ΔBCI, ΔACI and ΔABI
respectively.

The following is another important circle property. It says the angle
between the tangent and chord equals the angle in the alternate segment.

Theorem 3.2.10 Let AP touch O at A. B is a point on the circle such that B,

P are on the same side of the line OA. Then 

Proof. Refer to the diagram below. Since AP is tangent to O, we have
OA ⊥ AP. Now ∠BAP = 90°−∠OAB. Since OA = OB, ∠AOB = 180°− 2∠OAB.

It follows that 

Note: By Theorem 3.1.1, we must have ∠BAP = ∠ACB for any point C on
the major arc  Refer to the diagram below. This is another commonly
used result to show equal angles besides Corollaries 3.1.3 to 3.1.5.

It is easy to see that the inverse of this statement is also true, i.e., if ∠BAP
= ∠ACB, then AP is tangent to the circle.
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Example 3.2.11 Let AB be a diameter of O. P is a point outside O such
that PB,PC touch  O at B and C respectively. Show that AC // OP.

Proof. Refer to the diagram below. It suffices to show ∠ A = ∠1. Connect
BC. Since PB is tangent to O, we have ∠A=∠2 (Theorem 3.2.10). Since AB
⊥ PB and OP ⊥ BC (Theorem 3.2.3), we have ∠1 = 90°−∠OPB = ∠2. It
follows that ∠A = ∠1.

Note: It is a common technique to connect AB if PA, PB are tangent to O.
Refer to the diagram below. By connecƟng OA, OB, one obtains right angled
triangles with the heights on the hypotenuses. Moreover, we also see
angles at the center of the circle, tangent lines and equal tangent segments,
which, together with other conditions, may help us in finding equal angles.

Example 3.2.12 Refer to the diagram below. AB is a diameter of O and
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C, D are two points on the circle. P is a point outside the circle such that PC,
PD touch O at C, D respectively.
Show that ∠CPD = 180°− 2∠CAD.

Proof. Since the sum of the interior angles of the quadrilateral CODP is 360°
and ∠OCP = ∠ODP = 90°, we have ∠CPD = 180°−∠COD. The conclusion
follows as ∠COD = 2∠CAD (Theorem 3.1.1).

Note: One sees that the diameter AB is not useful. In parƟcular, the point B
complicates the diagram unnecessarily and should be deleted. One may
also connect CD and see that ∠PCD = ∠PDC = ∠CAD (Theorem 3.2.10),
which also leads to the conclusion.

Example 3.2.13 Given O with radius R, A, B are two points on O and AB is
NOT the diameter. C is a point on O disƟnct from A and B. O1 passes
through A and is tangent to the line BC at C. O2 passes through B and is
tangent to the line AC at C. If O1 and O2 intersect at C and D, show that
CD ≤ R.

Insight. Refer to the leŌ diagram below. It may not be easy to see the
relaƟonship between CD and R immediately. NoƟce that OO1 ⊥ AC and
OO2 ⊥ BC (Theorem 3.1.20). Given that BC, AC are tangent to O1, O2
respectively, it is easy to see that OO1CO2 is a parallelogram!
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3.3

Let us focus on this parallelogram. Refer to the right diagram above. We are
to show CD ≤ R = CO. Can you see that CD is vertical and CO is oblique with
respect to O1O2 ? Can you see that ∠ODC = 90° ?

Proof. One sees that OO1 ⊥ AC and O2C ⊥ AC. Hence, we have OO1 //
O2C. Similarly, we have OO2 // O1C, which implies that OO1CO2 is a
parallelogram.
It is easy to see that ΔO1DO2 ≅ ΔO1CO2 ≅ ΔO1OO2, which implies OO1O2D is
an isosceles trapezium. Hence, we have OD // O1O2, which implies OD ⊥
CD. It follows that CD ≤ CO = R.

Sine Rule

Theorem 3.3.1 (Sine Rule) In ΔABC, we have 

 where R is the circumradius of ΔABC.

Proof. First, we show that 

Let O be the circumcenter of ΔABC. Refer to the diagram on the below. Let
AD be a diameter of the circumcircle of ΔABC. Connect BD.

Clearly, AD = 2R and we have ∠ABD = 90°.

By definiƟon,  (angles in the same arc),

we have 

Note: Sine Rule is taught in most secondary schools. However, the last
equality, which links it to the circumradius (i.e., the radius of the
circumcircle) of the triangle, is usually not included.
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(2)

Corollary 3.3.2 Let AB, CD be two chords in a circle. If AB, CD extend the same
angle at the circumference, then AB = CD.

Proof. Let the radius of the circle be R. Refer to the diagram below.

By Sine Rule, we have  AB= 2R sin ∠1. Similarly, CD = 2R

sin ∠2. The conclusion follows as ∠1=∠2.

Note:
One sees that the corollary sƟll holds if two chords extend the same
angle at the center: Apply Theorem 3.1.1, or simply show that ΔAOB ≅
ΔCOD.
The corollary still holds if we are given equal minor arcs  This
is because the arc length is proporƟonal to the angle extended at the
center (or on the circumference). Refer to the diagram below, which
illustrates a variaƟon of Corollary 3.3.2. ABCD is a quadrilateral
inscribed in O where BD is a diameter. We have AC = 2R sin ∠D.
Notice that 2R = BD. Hence, AC = BD sin ∠D = BD sin ∠B. This is a useful
fact. One shall see this conclusion even if O is not shown explicitly,
say if we are only given AB ⊥ AD and BC ⊥ CD.

Corollary 3.3.3 Given ΔABC and its circumcircle, show that the angle bisector
of ∠A passes through the midpoint of the minor arc 
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Proof. This follows immediately from the remarks above. Refer to the
diagram below where AM bisects ∠A. One sees that  because

they extend equal angles on the circumference, i.e., ∠BAM ∠CAM.

Example 3.3.4 Refer to the diagram below. Two circles intersect at A and
B. A common tangent line touches the two circles at M, N respecƟvely.
Show that ΔMAN and ΔMBN have the same circumradius.

Insight. The two triangles have a common side MN. Sine Rule states that 

 where R is the circumradius of ΔAMN. Can you see that it

suffices to show sin ∠MAN = sin ∠MBN ?

Clearly, ∠MAN ≠∠MBN as one is acute and the other obtuse. How about
∠MAN +∠MBN = 180° ? Perhaps the tangent line would give us equal
angles.

Proof. Refer to the diagram below. We have ∠1=∠2 and ∠3 = ∠4
(Theorem 3.2.10).
Since ∠1+∠3 +∠MAN= 180°, we must have ∠2 +∠4 +∠MAN = 180°, i.e.,
∠MBN +∠MAN = 180°.

Hence, sin ∠MAN = sin ∠MBN. Let R1, R2 denote the circumradii of the two

triangles. By Sine Rule,  It

follows that R1 = R2.
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Example 3.3.5 Given an acute angled triangle ΔABC where ∠A = 60°, O
and H are the circumcenter and orthocenter of ΔABC respectively. Show that
AO = AH.

Insight. Refer to the diagram below. Of course, the most straighƞorward
method is to show that ∠AOH = ∠AHO, but this is not easy because we do
not know much about the line OH.
Let BE ⊥ AC at E and CF ⊥ AB at F. We know that A,E, H, F are concyclic. In
parƟcular, AH is the diameter of this circle (because ∠AEH = 90°, Corollary
3.1.13). Now it suffices to show that the radius of the circumcircle of ΔABC is
twice of the radius of the circumcircle of ΔAEH. We may show this by Sine
Rule. NoƟce that the right angled triangle with an internal angle of 60° gives
sides of ratio 1:2.

Proof. Refer to the right diagram below where BE, CF are the heights in
ΔABC. Since ∠AEH = ∠AFH = ∠90°, A, E, H, F are concyclic. We denote R
and r as the radii of the circumcircles of ΔABC and ΔAEH respectively.
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NoƟce that B, C, E, F are concyclic, which implies that ∠ACB = ∠AFE
(Corollary 3.1.5). We also have AB = 2AE in the right angled triangle ΔABE
since ∠A= 60° (Example 1.4.8).

Hence,  which implies the radius of the circumcircle of

ΔABC equals the diameter of the circumcircle of ΔAEH. Since AH is the
diameter of the circumcircle of ΔAEH, we have AO = AH.

Note: Refer to the diagram on the below. Let BE, CF be the heights of
ΔABC. One sees that ΔABC~ΔAEF. If BE, CF intersect at H and AG is a

diameter of the circumcircle of ΔABC, we must have  because

these are corresponding line segments with respect to the similar triangles.

In Chapter 1, we learnt the criteria determining congruent triangles, among
which S.A.S. requires two pairs of equal sides and one pair of equal angles
between the sides. Otherwise, we cannot apply S.A.S. Nevertheless, given
ΔABC and ΔA'B'C,' if AB = A'B', AC = A'C' and ∠B = ∠B,' we have either ∠C =
∠C' (which implies ΔABC  ΔA'B'C') or ∠C = 180°–∠C.' This is because Sine

Rule gives   and hence, sin ∠C = sin

∠C,' which implies either ∠C ∠C' or ∠C = 180°–∠C.

Example 3.3.6 (CGMO 03)  In a non-isosceles triangle ΔABC, AD, BE, CF are
angle bisectors of ∠A, ∠B, ∠C respectively, intersecting BC, AC, AB at D, E,
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F respecƟvely. Show that if DE = DF, then 

Insight. Refer to the diagram below. It is given that AD bisects ∠A and DE
= DF. Consider ∠ADE and ∠ADF. We have either ∠AED = ∠AFD or ∠AED =
180°– ∠AFD.
If ∠AED = ∠AFD, we have ΔADE  ΔADF and it seems the diagram is
symmetric about AD, probably contradicƟng the fact that ΔABC is non-
isosceles. (Show it!) Perhaps we should work with the condiƟon that ∠AED
= 180° –∠AFD.

NoƟce that the conclusion is about the raƟo  Is it

reminiscent of the Angle Bisector Theorem? For example,  and 

 (Example 2.3.8). In fact, CE and BF are the only choices related

to  Perhaps we can show that CE + BF equals to a length

of 

However, CE and BF are far apart. Can we put them together? Since DE = DF
and ∠AED = 180° – ∠AFD, we may rotate ΔBDF so that BF and CE are on the
same line.

Proof. By Sine Rule,  because DE =

DF. Since ∠DAE = ∠DAF, we have sin ∠AFD = sin ∠AED, i.e., either ∠AFD
= ∠AED or ∠AFD + ∠AED = 180°.

If ∠AFD = ∠AED, we immediately have ΔADF  ΔADE (A.A.S.) and hence,

AE = AF. NoƟce that  It follows that b = c, or

AC = AB, contradicƟng the fact that ΔABC is non-isosceles. Hence, ∠AFD ≠
∠AED. We have ∠AFD + ∠AED = 180°.

Now ∠CED = ∠AFD and hence, we may choose P on CE extended such that
∠CPD = ∠ABC. Refer to the diagram below. It is easy to see that ΔDEP 
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ΔDFB (A.A.S.).

Hence, 

Since ∠CPD = ∠ABC, we have ΔPCD ~ ΔBCA.

This completes the proof.

Example 3.3.7 In a non-isosceles acute angled triangle ΔABC, BE, CF are
heights on AC, AB respecƟvely. Let D be the midpoint of BC. The angle
bisectors of ∠BAC and ∠EDF intersect at P. Show that the circumcircles of
ΔBFP and ΔCEP has an intersection on BC.

Insight. Refer to the (simplified) diagram on the right. How can we show
the concurrency of two circles and a line? Perhaps we can show that X, the
intersecƟon of the two circles, lie on BC, i.e., B, C, X are collinear. Thus, it
suffices to show
∠BXP + ∠CXP = 180°.
We do not know many properties of X, but given the circles, we know ∠BXP
= ∠AFP and ∠CXP = ∠AEP, where ∠AEP and ∠AFP are inside the
quadrilateral AEDF and the angle bisectors may give useful properƟes of
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those angles. Now we are to show ∠AFP + ∠AEP = 180°. One may aƩempt
to show A, E, P, F are concyclic, but it could be difficult (*) because we do
not know much about the angles except for AP bisecƟng ∠EAF. How about
considering ΔAEP and ΔAFP? The angle bisector AP could be useful if we
apply Sine Rule, which gives

Since ∠EAP = ∠FAP and we should have sin ∠AFP = sin ∠AEP, it seems
we are to show PE = PF. NoƟce that DE = DF (Example 1.4.7) and P is on the
angle bisector of ∠EDF.

(*) One familiar with commonly used facts in circle geometry could see that
if we are to show A, E, P, F are concyclic, it suffices to show PE = PF (Example
3.1.11).

Proof. In the right angled triangle ΔBCE, 

Refer to the diagram below. Since DP bisects ∠EDF, we have ΔDPE  ΔDPF
(S.A.S.) and hence, PE=PF. Apply Sine Rule to ΔAFP and ΔAEP :

. Since AP is the

angle bisector of ∠EAF, we must have sin ∠AFP = sin ∠AEP.

Case I: ∠AFP = ∠AEP
We have ΔAFP  ΔAEP (A.A.S.) and hence, AE = AF. This implies ΔABE 
ΔACF (A.A.S.) and hence, AB = AC. This contradicts the fact that ΔABC is non-
isosceles.

Case II: ∠AFP = 180°– ∠AEP
Let the circumcircle of ∠BFP intersect BC at X. We must have ∠BXP = ∠AFP
= 180° – ∠AEP = ∠CEP. Hence, C, E, P, X are concyclic, i.e., X lies on the
circumcircle of ∠CEP. This completes the proof.
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Example 3.3.8 Refer to the diagram below. O1 touches O2 at Q. BC is
tangent to O1 at P. Show that if ∠BAO1 = ∠CAO1, then ∠PAO1 =
∠QAO1.

Insight. Refer to the leŌ diagram below. Let AO1 extended intersect O2
at M. Since ∠BAO1 = ∠CAO1, M is the midpoint of  Hence, O2M  BC.

We are to show ∠PAO1 = ∠QAO1. NoƟce that O1P = O1Q. We should have
A, P, O1,Q concyclic (Example 3.1.11). How can we show this? NoƟce that
O1P  BC, i.e., O1P//O2M. Perhaps the concyclicity and the parallel lines
could give us equal angles.

Proof. Refer to the previous right diagram. Let AO1 extended intersect 
O2 at M Since ∠BAO1 = ∠CAO1, M is the midpoint of  and hence, O2M 

 BC.(*)

Let MN be a diameter of O2. We are given that O1 touches O2 at Q.
Hence, O2 lies on QO1 extended. Since O1P  BC, we must have O1P//MN.
Now the isosceles triangles ΔO1PQ and ΔO2NQ are similar and we must
have ∠1 = ∠2 = ∠3 where P, Q, N are collinear. NoƟce that ∠1 = ∠4
(angles in the same arc). We have ∠3 = ∠4 and hence, A, P, O1,Q are
concyclic. The conclusion follows as O1P = O1Q (Corollary 3.3.2).
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3.4

Note: (*) Since O2B = O2C and BM = CM, O2M is the perpendicular bisector
o f BC (Theorem 1.2.4). It is a simple but useful technique to introduce a
perpendicular bisector of a chord, which passes through the center of the
circle. We will illustrate this technique more in Chapter 5.

Circumcenter, Incenter and Orthocenter

We have learned the basic properƟes of the circumcenter, incenter and
orthocenter of a triangle. In this secƟon, we will study a few results related
to these special points of a triangle using circle geometry techniques. These
results are important and frequently referred to as lemmas in various
competitions.

Example 3.4.1 Let O be the circumcenter of an acute angled triangle ΔABC.
If AD  BC at D, show that ∠CAD = ∠BAO.

Proof. Refer to the diagram below. Recall that ∠BAO = 90° – ∠C
(Example 3.1.2). Clearly ∠CAD = 90° – ∠C. The conclusion follows.

Note: We also have ∠CAO = ∠BAD.

Example 3.4.2 Let I be the incenter of ΔABC. If BI extended intersects the
circumcircle of ΔABC at P, show that AP = CP = PI.

Insight. One sees that AP = CP follows directly from Corollary 3.3.3. To
show AP = PI, we may consider showing ∠AIP = ∠PAI, as there are many
equal angles in the diagram due to the incenter (i.e., angle bisectors) and
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(2)

the circumcircle.

Proof. Refer to the diagram above. Since BP bisects ∠B, we have AP = CP
by Corollary 3.3.3. In ΔABI, we have the exterior angle ∠AIP ∠1 + ∠3. On
the other hand, ∠PAI = ∠2 + ∠5 where ∠1 = ∠2 and ∠3 = ∠4 ∠5 (angles
in the same arc). Now ∠AIP = ∠1 + ∠3 = ∠2 + ∠5 = ∠PAI. Hence, AP = PI.
This completes the proof.

Example 3.4.3 Let H be the orthocenter of an acute angled triangle ∠ABC.
Le t D be the foot of the perpendicular from A to BC. If AD extended
intersects the circumcircle of ΔABC at E, show that DH = DE.

Insight. Refer to the diagram below. Given that BD  AE, since we are to
show DH = DE, we should have ∠BEH isosceles, i.e., BE = BH. Both the
circumcircle and the orthocenter give equal angles. Hence, one may show
that ∠CBH = ∠CBE.

Proof. NoƟce that ∠CBH = 90° – ∠BHD = ∠CAE. Since ∠CAE = ∠CBE
(angles in the same arc), ∠CBH = ∠CBE.
The conclusion follows as ΔDBH  ΔDBE (A.A.S.).

Example 3.4.4 Let H be the orthocenter of an acute angled triangle ∠ABC.
Let M be the midpoint of BC. If HM extended intersects the circumcircle of
ΔABC at A,' show that:

HBA 'C is a parallelogram
AA' is a diameter of the circumcircle of ΔABC.

Insight. (1) follows from Example 2.5.5 and Example 1.4.3.
(2): It suffices to show that either ∠ABA' or ∠ACA' is 90° .
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Proof. Refer to the diagram below.
Since H is the orthocenter of ΔABC, we must have ∠BHC = 180° – ∠BAC
(Example 2.5.5).
Hence, ∠BHC = ∠BA'C (Corollary 3.1.4). Consider the quadrilateral
A'BHC. Since BM = CM, we conclude that A'BHC is a parallelogram
(Example 1.4.3).
Since CH  A'B and by (1), CH // A'B, we must have A'B AB, i.e., ∠ABA'=
90°. The conclusion follows.

Example 3.4.5 In an acute angled triangle ΔABC, BD, CE are heights. If the
line DE intersects the circumcircle of ΔABC at P, Q respecƟvely, show that
AP = AQ.

Insight. One may show ∠APQ = ∠AQP since there are many equal angles
due to the circles. Notice that B, C, D, E are concyclic.

Proof. Refer to the diagram below. Since ∠BDC = ∠BEC = 90°, we must
have B, C, D, E concyclic. Hence, ∠1 = ∠C.
Now ∠APQ = ∠1 – ∠2 = ∠C – ∠3 because ∠2 = ∠3 (angles in the same
arc). On the other hand, ∠AQP = ∠AQB – ∠3. Since ∠C = ∠AQB, we
conclude that ∠APQ = ∠AQP and hence, AP = AQ.
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NoƟce that the argument sƟll applies whenever B, C, D, E are concyclic: it is
not necessary that BD, CE are heights of ΔABC.

Example 3.4.1 to Example 3.4.5 are very useful results. One familiar with
these results may find it much easier to see the insight when solving
geometry problems related to the circumcenter, incenter and orthocenter
of a triangle.

Example 3.4.6 Let O and H be the circumcenter and orthocenter of an
acute angled triangle ΔABC respecƟvely. Let M be the midpoint of BC. Show
that AH = 2OM.

Insight. Refer to the diagram below. We do not know much about the
properƟes of AH or how it is related to OM. For example, it is not easy to

find a line segment with length 

However, one sees that OM is related to : M is the midpoint of BC and O is

the midpoint of a diameter of the circle. If we draw the diameter BD, we

immediately have  Now it suffices to show that AH = CD.

Recall that Example 3.4.4 states that ADCH is a parallelogram, which
completes the proof. (Beginners may spend a while to see how Example
3.4.4 is applied in the diagram above.) We leave the details to the reader.
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Note: Since M is the midpoint of BC, AM is a median of ΔABC and G, the
centroid of ΔABC, lies on AM.

We have  (Midpoint Theorem).

It follows that O, G, H are collinear (because ΔAGH ~ ΔMGO), which is called
the Euler Line of ΔABC.

Example 3.4.7 Given ΔABC and it circumcircle, P, Q, R are midpoints of
minor arcs  respecƟvely. If PR intersects AB at D and PQ

intersects AC at E, show that DE//BC

Insight. It is easy to see that AP, BQ, CR are angle bisectors of ΔABC Recall
Example 3.4.2 which is about angle bisectors intersecƟng the circumcircle.
Can you see BP = PI? (AI extended intersects the circumcircle at P) Similarly,
BR = RI. Hence, PR must be the perpendicular bisector of BI
Refer to the diagram below.

This implies ∠l = ∠2. It is given that ∠2 = ∠3. Hence, ∠1 = ∠3, i.e., DI //
BC. A similar argument gives EI // BC, which implies D, I, E collinear and
DE//BC.
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(2)

AlternaƟvely, one may solve the problem without applying Example 3.4.2.
NoƟce that angle bisectors in a circle give a lot of equal angles. Refer to the
leŌ diagram below. One sees that ∠1 = ∠2 = ∠3 (angles in the same arc).
This implies A, I, D, R are concyclic. Refer to the right diagram below. Now
∠4 = ∠5 = ∠6 (angles in the same arc), which implies DI // BC. A similar
argument gives EI // BC. The conclusion follows.

Note:
The first method is also an illustraƟon of the relaƟonship among the
angle bisector, parallel lines and the isosceles triangle.
It is important to draw the diagram properly. One may see the incenter
appears between D and E, giving an inspiraƟon that D, I, E might be
collinear.

Example 3.4.8 (TUR 09) In an acute angled triangle ΔABC, D, E, F are the
midpoints of BC, CA, AB respecƟvely. Let H and O be the orthocenter and
the circumcenter of ΔABC respecƟvely. Extend HD, HE, HF to intersect the
circumcircle of ΔABC at A',B',C' respecƟvely. Let H' be the orthocenter of
ΔA'B'C'. Show that O, H and H' are collinear.

Insight. A well-constructed diagram is important. Refer to the diagram
below. One may see that ΔABC and ΔA'B'C' are highly symmetric by a
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rotaƟon of 180°. If we can show this is true, it is not far away from the
conclusion.

On the other hand, the orthocenter and the midpoints remind us of
Example 3.4.4, which states that ΔAA' is a diameter of the circumcircle.
Similarly, BB' and CC' are also diameters. Now it is not difficult to show that
ΔABC and ΔA'B'C' are symmetric about O, the center of the circumcircle.

Proof. By Example 3.4.4, we conclude that AA',BB',CC' are the diameters
of O, the circumcircle of ΔABC. Refer to the diagram below. Since AA' and
BB' bisect each other, we conclude that ABA' B' is a parallelogram (and in
fact, a rectangle). Hence, AB = A'B' and AB//A'B'.
Similarly, we have BC = B'C', BC//B'C' and AC = A'C'. It follows that ΔABC 
ΔA'B'C (S.S.S.).
Refer to the diagram below. We claim that AHA'H' is a parallelogram. Since
ΔABC  ΔA'B'C', we must have AH = A'H' because H and H' are corresponding
points in ΔABC and ΔA'B'C' respecƟvely. Since AH and A'H' are heights and
BC//B'C,' we have AH//A'H'. Hence, AHA'H' is a parallelogram and HH' must
pass through O, the midpoint of AA'.
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3.5

Example 3.4.9 (IMO 10) In an acute angled triangle ΔABC, AD, BE, CF are
heights. EF extended intersects the circumcircle of ΔABC at P. BP extended
and DF extended intersect at Q. Show that AP = AQ.

Proof. Let the line EF intersect the circumcircle of ΔABC at P, P'. Refer to the
diagram below. By Example 3.4.5, AP = AP'. It suffices to show that AP' = AQ.
NoƟce that ∠ABP = ∠AP'P = ∠APP' = ∠ABP', i.e., BA is the angle bisector
of ∠P'BQ. We also have ∠BFP = ∠AFE = ∠BFD (Example 3.1.6).
It follows that ΔFPB  ΔFQ'B (A.A.S.), where Q' is the intersecƟon of BP' and
DF. We conclude that AP' = AQ (Exercise 1.10, or simply by congruent
triangles). This completes the proof.

Note:
NoƟce that ∠ABP = ∠ABP' and ∠BFP = ∠BFD imply P and Q' are
symmetric about the line AB, and so are P' and Q. Hence, AP' = AQ. Such
an argument based on symmetry is acceptable in compeƟƟons.
However, beginners are recommended to write down a complete
argument via congruent triangles.
NoƟce that A, F, P, Q are concyclic since ∠APQ = ∠ACB = ∠AFP' =
∠AFQ. Hence, one may show the conclusion by applying Sine Rule to
ΔAFQ and ΔAFP. (Can you show it?)

Nine-point Circle

First, we shall attempt the following examples.

Example 3.5.1 Let AB be the diameter of the semicircle centered at O. P is
a point outside the semicircle and PC, PD are tangent to the semicircle at C,
D respectively. If the chords AC, BD intersect at E, show that PE ⊥ AB.
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Insight. Of course, the most straighƞorward method is to show that ∠A +
∠AEF = 90°. Refer to the diagram below, where PE extended intersects AB
at F.
Since OA = OC and OC ⊥ PC, we have ∠A = ∠OCA = 90° – ∠PCE. On the
other hand, ∠AEF = ∠PEC. Hence, we should have PE = PC.
Similarly, we should have PD = PE, i.e., PC = PD = PE. This implies that P
should be the circumcenter of ΔCDE. Can we show it?

I f P is the circumcenter of ΔCDE, Theorem 3.1.1 and Corollary 3.1.4 imply
that ∠P = 2·(180° – ∠CED). Can we show this, or equivalently, 

 NoƟce that in the isosceles triangle ΔPCD, 

Proof. We claim that P is the circumcenter of ΔCDE. NoƟce that ∠CED =
∠BCE + ∠CBE, where ∠BCE = 90° (AB is the diameter) and ∠CBE = ∠PCD
(Theorem 3.2.10). Hence, ∠CED = 90° + ∠PCD. (1)

In the isosceles triangle 

(1) and (2) give 

Since ∠P is twice the supplementary angle of ∠CDE and PC = PD, we claim
that P is the circumcenter of ΔCDE. Otherwise, say O is the circumcenter of
ΔCDE, we must have ∠O = 2·(180° – ∠CED) = ∠P. NoƟce that O and P both
lie on the perpendicular bisector of CD, and they are on the same side of CD
because ∠CED is obtuse. This is impossible.
In conclusion, P is the circumcenter of ΔCDE and hence, PC = PD = PE. It
follows that ∠A + ∠AEF = ∠ACO + ∠PEC = ∠ACO + ∠PCE = 90°, i.e., PE ⊥
AB.

Example 3.5.2 (CWMO 10) Let AB be the diameter of the semicircle
centered at O. P is a point outside the semicircle and PC, PD are tangent to
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the semicircle at C, D respectively. If the chords AC, BD intersect at E, and PE
extended intersects AB at F, show that P, C, F, D are concyclic.

Proof. Refer to the diagram below. Clearly, P, C, O, D are concyclic
because OC ⊥ PC and OD ⊥ PD. We also have P, D, F, O  concyclic since PF
⊥ AB (Example 3.5.1). Now P, D, F, O, C are concyclic.

We shall review the diagrams in Example 3.5.1 and Example 3.5.2. Suppose
AD extended and BC extended intersect at X. Since BD ⊥ AX and AC ⊥ BX, E
is indeed the orthocenter of ΔABX, i.e., XE ⊥ AB. Since PE ⊥ AB, X, P, E, F
are collinear. Refer to the diagram on the left.
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Example 3.5.2 states that P, D, F, O, C  are concyclic. In fact, we may remove
the semicircle centered at O and focus on ΔABX. Refer to the diagram
below. C, D, F are the feet of the alƟtudes in ΔABX and the circumcircle of
ΔCDF passes through O, the midpoint of AB. Similarly, this circle should pass
through the midpoints of AX, BX as well.
On the other hand, since PC = PD = PE, one can show that P is the midpoint
of XE. (Hint: Consider the right angled triangle ΔXDE. Apply Exercise 1.1.) By
similar arguments, we see that the circumcircle of ΔABC must pass through
the midpoints of AE, BE as well. This circle is called the nine-point circle of
ΔABC.

Theorem 3.5.3 (Nine-point Circle) In any triangle, the following nine points
are concyclic: the midpoints of the three sides, the feet of the three alƟtudes
and the midpoints of the line segments connecƟng each vertex to the
orthocenter of the triangle.

As shown above, one may derive this result from Example 3.5.2. The
following is an alternative proof.

Proof. Refer to the diagram on the below. Let D, E, F be the feet of the
altitudes on BC, AC, AB respecƟvely, L, M, N be the midpoints of BC, AC, AB
respectively and P, Q, R be the midpoints of AH, BH, CH respecƟvely, where
H is the orthocenter of ΔABC.

Notice that PM is a midline in ΔAHC, i.e., 

Similarly, QL is a midline in ΔBCH : 

Hence, PMLQ is a parallelogram.
We also notice that PQ is a midline in ΔABH and PQ//AB. Since CH ⊥ AB and
CH//PM, we have PM ⊥ PQ. This implies that PMLQ is a rectangle and
hence, P, M, L, Q are concyclic.
Similarly, PRLN is a rectangle and we have ∠PNL = 90° = ∠PQL. Hence, N
lies on the circumcircle of ΔPQL. By similar arguments, we conclude that P,
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3.6

1. (a)

(b)

M, R, L, Q, N are concyclic. Refer to the left diagram below.

On the other hand, ∠PDL = 90° = ∠PQL, which implies D lies on the
circumcircle of ΔPQL. Similarly, E, F also lie on the circumcircle of ΔPQL.
Refer to the right diagram above.
In conclusion, P, M, R, L, Q, N, D, E, F are concyclic.

Note: Since ∠PDL = 90°, PL is a diameter of the nine-point circle. Hence,
the midpoint of PL is the center of the nine-point circle. In parƟcular, the
lines PL, QM, RN are concurrent (since they all pass through the center of
the nine-point circle).

NoƟce that the nine-point circle of a triangle could be determined by any
three of the nine points, among which the most commonly seen ones are
midpoints and feet of alƟtudes. Recall Example 3.1.15. Can you see that P
lies on the nine-point circle of ΔABC ? (Hint: Show that ∠P = ∠BAC =
∠MDN. Now P lies on the circumcircle of ΔDMN, which is indeed the nine-
point circle of ΔABC.)

Exercises

Given a parallelogram ABCD, show that ABCD is cyclic if and only if it
is a rectangle.
Given a trapezium ABCD, show that ABCD is cyclic if and only if it is
an isosceles trapezium.

2. L e t ABCD be a trapezium with AD//BC. Let E, F be on AB, CD
respectively such that ∠BAF = ∠CDE. Show that ∠BFA = ∠CED.

3. In ΔABC, I is the incenter and J is the ex-center opposite B. Show that A,
I, C, J are concyclic.

4. Let AB be the diameter of a semicircle. Let the chords AC, BD intersect
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(b)

at P. Draw PE⊥AB at E. Show that P is the incenter of ΔCDE.

5. Let P be a point outside O and PA, PB are tangent to O at A, B
respectively. Show that the incenter of ΔPAB is the midpoint of 

6. Let ΔABC be an acute angled triangle, where O, H are the circumcenter
and the orthocenter respectively.

If B, C, O, H are concyclic, find ∠A.
Show that the circumcircles of ΔABC and ΔBCH have the same radius.

7. Given ΔABC and its circumcircle O, D is the midpoint of BC and DO
extended intersects AB at M. P is a point outside O such that PA,PB are
tangent to O at A, B respectively. Show that PM // BC.

8. (CGMO 07) Let D be a point inside ΔABC such that ∠DAC = ∠DCA = 30°
and ∠DBA = 60°. Let E be the midpoint of BC and F be a point on AC such
that AF = 2FC, show that DE ⊥ EF.

9. Given ΔABC where ∠A > 90°, its circumcenter and orthocenter are O
and H respecƟvely. Draw O1 where CH is a diameter. O1 and O
intersect at C and D. If HD extended intersects AB at M, show that AM = BM.

10. Refer to the diagram on the below. Let AB be the diameter of a
semicircle and C be a point on AB. Draw two semicircles with diameters AC,
BC respecƟvely. Let D, E be points on these two semicircles respecƟvely
such that DE is a common tangent. Draw CF ⊥ AB, intersecƟng the large
semicircle at F. Show that CDFE is a rectangle.

11. Given ΔABC where ∠B = 2∠C, D is a point on BC such that AD bisects
∠A. Let I be the incenter of ΔABC, show that the circumcenter of ΔCDI lies
on AC.

12. (CZE-SVK 10) In a right angled triangle ΔABC where ∠A = 90°, P,Q, R

are on the side BC such that  The

circumcircles of ΔABP and ΔACR intersect at A and M. Show that A, M, Q are
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collinear.

13. In an acute angled triangle ΔABC, AD, BE are the heights. Let A' be the
reflecƟon of A about the perpendicular bisector of BC and B' be the
reflection of B about the perpendicular bisector of AC. Show that A'B'// DE.

14. Let I be the incenter of ΔABC. Show that the circumcenter of ΔBIC lies
on the circumcircle of ΔABC.

15. Given ΔABC, its incenter I and ex-centers J1, J2, J3, show that the
midpoints of the line segments IJ1, IJ2, IJ3, JJ1, JJ2, JJ3 all lie on the
circumcircle of ΔABC.

16. Let AXYZB be a convex pentagon inscribed in a semicircle centered at
O with the diameter AB. Let P, Q, R and S denote the feet of the
perpendiculars from point Y to the lines AX, BX, AZ and BZ respecƟvely. Let

PQ and RS intersect at C. Show that ∠PCS = ∠XOZ.

17. (CHN 06) Let ABCD be a trapezium such that AD // BC. Γ1 is a circle
tangent to the lines AB,CD, AD and Γ2 is a circle tangent to the lines
AB,BC,CD. Let 1 be the tangent line from A to Γ2 (different from AB) and 2
be the tangent line from C to Γ1 (different from CD). Show that 1 // 2.
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4.1

Chapter 4

Circles and Lines

In Chapter 3, we learnt various properƟes about angles in circles. Indeed,
one may also find important properƟes about line segments when straight
lines intersect (or touch) a circle, or when triangles and quadrilaterals are
inscribed in circles. We will study these properties in this chapter.

Circles and Similar Triangles

We have seen in Chapter 3 that straight lines intersecƟng a circle give equal
angles. Hence, similar triangles could be constructed via circles. We will see
a number of examples of circles and similar triangles in this secƟon. NoƟce
that one needs to be familiar with both circle and similar triangle properƟes
in order to solve such problems.

Example 4.1.1 Refer to the diagram below. Γ1 and Γ2 are two circles
touching each other at A. AB is a chord in Γ1, intersecƟng Γ2 at D. BC is a
chord in Γ1 which is tangent to Γ2 at E. AE extended intersects Γ1 at F.

Show that AB · AC = AE · AF.

Insight. Given two circles and two tangent lines (including a common
tangent of the two circles), one should be able to see many pairs of equal

angles. Since the conclusion is equivalent to  we may show it by

similar triangles, for example, ΔABE ~ ΔAFC.
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It is easy to see that ∠ABE = ∠AFC. Hence, we should have ΔABE ~ ΔAFC.
Can we show it by finding another pair of equal angles?

Proof. Refer to the diagram below.

Let AC intersect Γ2 at P. Connect PE, CF and draw a common tangent of Γ1
and Γ2 at A. Since BC is tangent to Γ2 at E, we have 

 by applying Theorem 3.2.10 repeatedly.

Since ∠B = ∠F (angles in the same arc), we have ΔABE ~ ΔAFC.

It follows that  and hence the conclusion.

Note: One may also see ∠AEB= ∠1 by equal tangent segments. NoƟce
that the tangent line at A and the line BC are symmetric about the
perpendicular bisector of AE.

Example 4.1.2  Let O be the circumcenter of an acute angled triangle ΔABC
and AO extended intersects BC at D · BE, CF are heights of ΔABC. Let O1 be
the circumcenter of ΔAEF AO1 intersects EF at P. Show that AP · BC = AD · EF.

Insight. Refer to the diagram below. Since ∠BEC = ∠BFC = 90°, B, C, E, F
are concyclic and hence, ∠ABC = ∠AEF (Corollary 3.1.5). We have ΔABC ~
ΔAEF · This is a standard result which an experienced contestant would
recall instantaneously.
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We are to show AP · BC = AD · EF. Since AD ⊥ EF and, AP ⊥ BC, one may
think of using the area method. However, AP · BC seems not the area of any
exisƟng triangle. NoƟce that AP, BC, AD, EF are in the similar triangles ΔABC

and ΔAEF. Can we show  by the properties of similar triangles?

Proof. It is easy to see that B, C, E, F are concyclic, which implies ∠ABC =
∠AEF and hence, ΔABC ~ ΔAEF. NoƟce that AP and AD are corresponding

line segments in ΔAEF and ΔABC. It follows that  and hence the

conclusion.

Note:

Using the fact that the corresponding line segments are also in raƟo as
the corresponding sides in similar triangles is an effecƟve technique.
Beginners who are not familiar with this technique may also show 

 as follows: First, we have ΔAOB ~ ΔAO1E because both are

isosceles triangles and ∠OAB = 2∠ACB = 2∠AFE = ∠O1AE. Now
∠OBD = ∠O1EP and ∠BOD = ∠EO1P imply that ΔOBD ~ ΔO1EP. It

follows that   Hence, 

One may see from the diagram that the lines AP, BE, CF are concurrent,
i.e., AP passes through H, the orthocenter of ΔABC. This is because
∠CAP = ∠BAO = ∠CAH (Example 3.4.1).

Example 4.1.3 Given a circle and a point P outside the circle, draw
tangents PA, PB touching the circle at A, B respecƟvely. C is a point on the
minor arc  and PC extended intersects the circle at D.

Show that 



Proof. Refer to the following diagram. Since ∠PAC = ∠PDA, we have
ΔPAC ~ ΔPDA.

Hence,  Similarly,  Since PA = PB, we must have 

 and the conclusion follows.

Example 4.1.4 Refer to the diagram below. AB is a common tangent of the
two circles where A, B are the points of tangency. Given CD // AB, show that 

Insight. Given the tangent line and parallel lines, it is natural to search for

equal angles and similar triangles since we are to show  It would

be great if we can show ΔACP ~ ΔBDP. However, this is not true (∠ACP =
∠BAP and ∠BDP = ∠ABP, but ∠BAP and ∠ABP are not necessarily the
same). Can you see any pair of similar triangles which put AC, BD, AP and BP
together?

It seems not easy. Apparently, the tangent line and the parallel lines do not
give equal angles which leads to the similar triangle we need. NoƟce that
we have not used the condiƟon that AB is a common tangent. This implies
AB is perpendicular to the diameters of both circles. Refer to the diagram



(1)

below. Let AM, BN be the diameters of the two circles. NoƟce that the
diameter AM gives a right angled triangle ΔACM where CE is the height on
the hypotenuse.

Hence, AC2 = AE · AM (Example 2.3.1).

Similarly, BD2 = BF · BN by considering ΔBDN.
Recognize that AEFB is a rectangle, which implies AE = BF and hence, 

 Perhaps we can show  as well. This should

not be difficult since AP, BP are also related to AM, AN by right angled
triangles.

Proof. Le t AM, BN, be the diameters of the two circles respecƟvely,
Clearly, AM ⊥ AB and BN ⊥ AB. Let AM, BN intersect CD at E, F
respectively. Since CD // AB, we have AEFB a rectangle and AE = BF.

Since AM is a diameter, we have ∠ACM = 90°. Since, CE ⊥ AM, we have

AC2 = AE · AM (Example 2.3.1). Similarly, BD2 = BF · BN. Now AE = BF gives 

   (1)

On the other hand, AP = AM cos∠MAP = AM sin∠BAP. Similarly, 

 It follows that  NoƟce that 

 by Sine Rule. Hence,    (2)

The conclusion follows from (1) and (2).

Note:
We intended to search for similar triangles but failed, and we completed
the proof based on right angled triangles. This is because the tangent
line and parallel lines did not give us equal angles directly, but a
rectangle. Nevertheless, we managed to find the clues by carefully



(2)

(3)

examining the conditions and setting up intermediate steps which lead
to the conclusion. Without such repeated (and mostly failed) aƩempts,
the insight will not appear spontaneously!

One may also show  by drawing a line  passing through 

and parallel to AB. Applying Example 2.3.1 to the right angled triangles
ΔAPM and ΔBPN leads to the conclusion.

If the two circles intersect at P and Q, one may show  Indeed,

a similar argument applies when showing 

Example 4.1.5 (CHN 10)  Let AB be the diameter of a semicircle. C, D are
points on the semicircle such that the chords AD, BC intersect at E. Let F, G
be points on AC extended and BD extended respecƟvely such that AF · BG =
AE · BE. Let H1 , H2 be the orthocenters of ΔAEF and ΔBEG respecƟvely. If the
lines AH1, BH2 intersect at K, show that K lies on the semicircle.
Insight.  Refer to the diagram below. Since AF · BG = AE · BE, one
immediately sees that ΔAEF ~ ΔBGE, as ∠EAF = ∠GBE (angles in the same
arc).

NoƟce that the orthocenters and the diameter give right angles. In
parƟcular, AK ⊥ EF and BK ⊥ EG. We are to show K lies on the semicircle.
Hence, we should have ∠AKB = 90° and MENK should be a rectangle. Can
you see it suffices to show EF ⊥ EG, i.e., ∠BEG + ∠CEF = 90° ? This is easy
because ∠BEG = ∠AFE (since ΔAEF ~ ΔBGE) and ∠AFE + ∠CEF = 90° (since
BC ⊥ AF).
We leave it to the reader to write down the complete proof.

Note:  F and G are constructed via AF · BG = AE · BE. This is not a commonly
seen condiƟon. Indeed, once we focus on this condiƟon and see the similar
triangles, it is not far away from the conclusion. Seeking clues from such an
uncommon and useful condiƟon is an effecƟve strategy. We will discuss
this further in Chapter 6.



Example 4.1.6  Let A be a point outside O. AB, AC are tangent to O at B,
C respecƟvely. Let 1, 2 be two lines tangent to O and 1// 2. If the line
AB intersects 1, 2 at D, E respecƟvely, and the line AC intersects 1, 2 at

F, G respectively. Show that AD · AG = AO2.

Insight.  We are to show  NoƟce that O is tangent to the

sides of ΔAEG, i.e., it is the incircle of ΔAEG and O is the incenter. Hence, AO
bisects ∠BAC. Refer to the diagram below.

NoƟce that we should have ΔAOD ~ ΔAGO. Can we show either ∠ADO =
∠AOG or ∠AOD = ∠AGO? Notice that ∠ADO and ∠AOD can be expressed
in terms of ∠BAC and ∠ADF. How about ∠AGO and ∠AOG? Recall that
∠FOG = 90° (Example 3.2.5).

Proof.  It is easy to see that AO bisects ∠A. In fact, O is the incenter of
ΔAEG.

Now  (Theorem 1.3.3)

 because DF // EG.



(1)

(2)

Since 

we must have ΔAOD ~ ΔAGO. The conclusion follows.

Note:
If you cannot recall Theorem 1.3.3, simply calculate ∠AOG by the fact
that ∠FOG = 90°.

One may also show  where  

 and 

Example 4.1.7  Let O be the center of the semicircle where AB is the
diameter. Draw a line  ⊥ AB at B. Let D be a point on the semicircle and
draw DE ⊥ AB at E. Draw OC//AD, intersecƟng  at C. If AC and DE intersect
at P, show that PD = PE.

Insight.  Refer to the diagram below. It is easy to see that DE // BC and

hence, 

However, one may not be able to relate this to PD in the diagram. What if
we “fill up” the triangle by extending BC, intersecting AD extended at F?

Notice that  Now it suffices to show BC = CF.

Can you show it? (Hint: OC // AD and OA = OB.) We leave the details to the
reader.

Note:  We did not construct any similar triangles, but simply applied the



Intercept Theorem where AD // CO and DE//BC. NoƟce that OA = OB is an
elementary property, but it could be overlooked occasionally.

Example 4.1.8  Refer to the diagram below. Given ΔABC and its
circumcircle Γ, MN is a line tangent to Γ at B such that MA, NC touch Γ at A, C
respectively. Let P be a point on AC such that BP ⊥ AC. Show that BP bisects
∠MPN.

Insight.  We are only given a few tangent lines of the circle. NoƟce that P
i s not the center of the circle: there are no other given right angles in the
diagram and it may be difficult to find concyclicity related to P. Hence,
showing ∠BPM = ∠BPN by finding equal angles may not be an effecƟve
strategy.

If BP does bisect ∠MPN, we should have  by the Angle Bisector

Theorem. How could the tangent lines help us? Since we have AM = BM and

BN = CN, it suffices to show . It seems that ΔAMP ~ ΔCNP

because ∠PAM = ∠PCN. (Can you see that the lines AM, CN are symmetric
about the perpendicular bisector of AC?)

How can we show ΔAMP ~ ΔCNP ? It seems we should find another pair of
equal angles using the condiƟon BP ⊥ AC, but this is equally difficult as
showing the conclusion directly.
NoƟce that it is much easier to show the inverse: if we are given ΔAMP ~
ΔCNP, one could see that BP bisects ∠MPN and BP ⊥ AC. Perhaps we
should consider a proof by contradiction.

Proof.  Choose P' on AC such that . It is easy to see that ∠P'

AM = ∠P'CN. Hence, ΔAMP'~ ΔCNP'.



We have  and ∠AP'M = ∠CP' N.   (1)

It is easy to see that BM = AM and BN = CN (equal tangent segments).

Hence,  which implies BP bisects ∠MPN by the Angle

Bisector Theorem. Now ∠BP'M = ∠BP'C.   (2)

(1) and (2) imply that BP'⊥ AC, i.e., P and P' coincide. This completes the
proof.

Note:  One may sƟll seek clues from BP ⊥ AC and other right angles by
introducing the center of Γ. Refer to the diagram below. It would be wise to
erase unnecessary lines.

Can you see that ΔBOM ~ ΔPCB ? (Hint: .)

Now ΔBOM ~ΔPCB implies  (1)

A similar argument gives ΔBON ~ΔPAB and  (2)

(1) and (2) imply that  by equal tangent segments.

Now it is easy to see that ΔAMP ~ ΔCNP and the conclusion follows. In fact,
one familiar with angle properƟes in circle geometry may immediately see
that ∠1 = ∠2 (Theorem 3.2.10) and ∠2 = ∠3 (because A, M, B, O are
concyclic). Now it is easy to idenƟfy similar triangles and this alternaƟve
solution follows naturally.
In Chapter 2, we learnt Ceva’s Theorem and Menelaus’ Theorem, which are
useful results solving problems on collinearity and concyclicity. When
circles are introduced, one may find even more interesƟng results by
applying Ceva’s Theorem and Menelaus’ Theorem, due to more equal



angles and line segments. The following is a simple example.

Example 4.1.9  Given ΔABC where AB > AC, its incircle I touches BC, AC,
AB at D, E, F respecƟvely. P is a point on BC extended. Draw a line PG
tangent to I at G (disƟnct from D), intersecƟng AB, AC at M, N
respecƟvely. Let BG, DM intersect at Q and CG, DN intersect at R. Show that
if P, E, F are collinear, then P, Q, R are collinear.

Insight.  Refer to the diagram below. We are to show collinearity and it
seems we need to use either Ceva’s Theorem or Menelaus’ Theorem.

Now, which triangle should we start with?

NoƟce that we are given many tangent lines: those equal tangent segments
could be helpful. If we choose the line PF intersecƟng ΔABC, Menelaus’

Theorem gives 

Since AE = AF, BF = BD and CE = CD, we have    (1)

By applying Menelaus’ Theorem to ΔBCG, it suffices to show that 

. However, this is not easy even if we use (1), because

we do not know much about  Can we avoid these terms?

NoƟce that one may apply Ceva’s Theorem instead: not only will we have
more equal tangent segments, but also get rid of those line segments which
are not preferred (i.e., those not along the tangent lines).

Proof.  NoƟce that  because MF = MG, BD = BF and PD

= PG (equal tangent segments). By Ceva’s Theorem applied to ΔBPM, P, Q, F
are collinear.



4.2

(1)

(2)

Similarly, we have  By Ceva’s Theorem applied to

ΔCPN, P, E, R are collinear. (NoƟce that the points of division D, G are on the
extension of PC, PN respectively.)

Since P, E, F are collinear, Q, R also lie on this line, i.e., P, Q, R are collinear.

Intersecting Chords Theorem and Tangent Secant Theorem

In most elementary geometry textbooks, IntersecƟng Chords Theorem and
Tangent Secant Theorem are menƟoned, but the applicaƟon is not
emphasized. Indeed, these are very useful results, with which we can show
concyclicity not via equal angles.

Theorem 4.2.1 (IntersecƟng Chords Theorem)  Let AB and CD be two
chords of a circle. If AB and CD intersect at E, we have AE · BE = CE · DE.

Refer to the leŌ diagram below. One sees the conclusion immediately from
the fact that ΔACE ~ ΔDBE.

Theorem 4.2.2 (Tangent Secant Theorem)  Let P be a point outside the circle
and a line passing through P intersects the circle at A and B. If PQ touches the

circle at Q, we must have PQ2 = PA·PB.

Refer to the right diagram above. One may see the conclusion from the fact
that ΔPAQ ~ ΔPQB (because ∠PQA = ∠PBQ).

Note:
An immediate corollary of the Tangent Secant Theorem is that if two
lines passing through P intersect the circle at A, B and C, D respecƟvely,

we must have PA · PB = PC · PD, because both are equal to PQ2.
One easily sees that the inverse of the Intersecting Chords Theorem and



the Tangent Secant Theorem hold. (Can you show it, say by
contradicƟon?) Hence, we may use these theorems, especially the
inverse, to show concyclicity.

Example 4.2.3  In ΔABC, AB = 9, BC = 8 and AC = 7. Let M be the midpoint of
BC. If AM extended intersects the circumcircle of ΔABC at D, find MD.

Ans. Refer to the diagram below.

By Theorem 2.4.3,   = 49, i.e., AM = 7.

Now the IntersecƟng Chords Theorem gives AM · MD = BM · CM, where BM

= CM = 4. Hence, 

Example 4.2.4  Let ΔABC be an isosceles triangle where AB = AC and P is a
point on BC. Show that (AB + AP)(AB − AP) = BP · CP.
Insight.  From the first glance, it is not clear how the line segments are
related to each other. In parƟcular, it seems not easy to obtain AB + AP or
AB − AP. However, BP · CP reminds us of the IntersecƟng Chords Theorem, if
we draw the circumcircle of ΔABC. Refer to the diagram below.

Let AP extended intersects the circumcircle at D. We immediately have BP ·

CP = AP · PD. Notice that (AB + AP)(AB − AP) = AB2 − AP2. Hence, it suffices to



show that AB2 = AP2 + AP · PD = AP · (AP + PD) = AP · AD. Now we should
have ΔABP ~ ΔADB, which is not difficult to show.

Proof.  Let AP extended intersect the circumcircle of ΔABC at D. Since ∠B
= ∠C = ∠D (angles in the same arc), we have ΔABP ~ ΔADB. It follows that 

 or AB2 = AP · AD.

Now AB2 = AP · AD = AP ·(AP + PD) = AP2 + AP · PD.

Hence, AP · PD = AB2 − AP2 = (AB + AP)(AB − AP). The conclusion follows as
AP · PD = BP · CP by the Intersecting Chords Theorem.

Example 4.2.5  Let X be a point inside ΔABC and the lines AX, BX, CX
intersect the circumcircle of ΔABC at P, Q, R respecƟvely. Let A' be a point
on PX. Draw A'B' // AB and A'C' // AC, where B', C' are on the lines QX, RX
respectively. Show that B', C', R, Q are concyclic.

Insight.  Refer to the diagram below. Since X is an arbitrary point, the
construcƟon of the diagram seems symmetric, i.e., if we are to show B', C',
R, Q are concyclic, we might have A', B', Q, P and A', C', R, P concyclic as well.
If that is true, applying the Tangent Secant Theorem repeatedly gives XB'·XQ
= XA'·XP = XC'·XR !

Proof.  Since A' B' // AB, we have ∠A'B' X = ∠ABQ = ∠APQ (angles in the
same arc). Hence, A' B', Q, P are concyclic. By the Tangent Secant Theorem,
XA' · XP = XB' · XQ. Similarly, A', C', R, P are concyclic and XA' · XP = XC' · XR.
Now XB' · XQ = XC' · XR, which implies B', C', R, Q are concyclic.

Note:  One might also show B'C' // BC by applying the Intercept Theorem
repeatedly, which also leads to the condiƟon. We leave the details to the
reader.



Example 4.2.6 ABCD is a quadrilateral inscribed in O. AB extended and
DC extended intersect at P. AD extended and BC extended intersect at Q.
Draw PE tangent to O at E and QF tangent to O at F. Show that PE, QF
and PQ give the sides of a right angled triangle.

Insight.  Clearly, we should show that PE, QF, PQ saƟsfy Pythagoras’

Theorem. Refer to the diagram below. What do we know about PE2, QF2 or

PQ2?

By the Tangent Secant Theorem, PE2 = PA · PB = PC · PD and similarly, QF2 =
QB · QC.

One sees that PQ2 is related to those line segments above by Cosine Rule.
However, it is difficult to use those line segments to express cos ∠ A or
cos∠PCQ.

Are there other methods to relate PE2 and QF2 to PQ2? If the circumcircle of

ΔCDQ intersects PQ at X, we must have PE2 = PC · PD = PX · PQ.

Hence, if PQ2 = PE2 + QF2, we should have QB · QC = QF2 = PQ2 − PE2 = PQ2 −
PX · PQ = (PQ − PX)· PQ = QX · PQ. Hence, B, C, X, P should be concyclic. Can
we prove it?



NoƟce that we have ∠CXP = ∠CDQ = ∠ABC by applying Corollary 3.1.5
repeatedly and hence, B, C, X, P are concyclic. (Can you see this is similar to
the proof of the Simson’s Line?) We leave it to the reader to write down the
complete proof.

Note: One may see from the diagram that PQ is longer than PE and QF.
(Drawing a reasonably accurate diagram would be helpful.) Even though this

is not given, one should aim to show that PQ2 = PE2 + QF2.

Example 4.2.7 (IMO 95)  The incircle of ΔABC touches BC, AC, AB at D, E, F
respecƟvely. Let X be a point inside ΔABC such that the incircle of ΔXBC
touches BC, XB, XC at D, Y, Z respectively. Show that E, F, Y, Z are concyclic.

Insight.  Refer to the diagram below. Apparently, there are very few
condiƟons given: we only know that E, F, Y, Z are all points of tangency.
Although there are incircles (i.e., angle bisectors), but E, F, Y, Z are not
related to the incenter or any angle bisectors.

On the other hand, the diagram seems in an “upright” posiƟon because the
two incircles share a common point of tangent. Do we have YZ // EF ? If yes,
then perhaps we can show that EFYZ is an isosceles trapezium.
RegreƩably, this is not true. Refer to the diagram below where FE extended
and YZ extended intersect. Can you see a clue in this diagram? Perhaps we
could show that PE · PF = PY · PZ.



Since the two circles have one common point of tangency D, if P lies on BC

extended, we would have PD2 = PE · PF = PY · PZ.

How can we show that P lies on BC extended? In other words, if we let P be
the intersecƟon of BC extended and YZ extended, can we show that E, F, P
are collinear? This looks like Menelaus’ Theorem. Refer to the diagram

below. Do we have  (1)

NoƟce that AE = AF. In fact, there are many equal tangent segments in this
diagram.

Perhaps we can also apply Menelaus’ Theorem to ΔXBC, which might give us
sufficient equalities leading to (1).

Proof.  Suppose BC extended and YZ extended intersect at P. Apply

Menelaus’ Theorem to ΔXBC and the line 

Since XY = XZ (equal tangent segments), we have  (*)

We claim that E, F, P are collinear, i.e., 

Notice that AF = AE. By (*), we have

 because BF = BD = BY and CE =

CD = CZ (equal tangent segments). Hence, E, F, P are collinear.

Now by the Tangent Secant Theorem, PE · PF = PD2 = PX · PY, which implies
E, F, Y, Z are concyclic.

Notice that if BC and YZ do not intersect, i.e., BC // YZ, we must have XB = XC
(because XY = XZ) and hence, D is the midpoint of BC. Since BF = BD = CD = CE



and AF = AE, we have AB = AF + BF = AE + CE = AE. Now ΔABC and ΔXBC are
both isosceles triangles. Hence, the line AX is the perpendicular bisector of
EF and YZ. It is easy to see that EFYZ is an isosceles trapezium, which implies
E, F, Y, Z are concyclic.

Example 4.2.8 (JPN 11)  Given an acute angled triangle ΔABC and its
orthocenter H, M is the midpoint of BC. Draw HP ⊥ AM at P. Show that AM ·

PM = BM2.

Insight.  It seems AM, AP are not closely related to BM. However, given
the orthocenter and the midpoints, one immediately sees BM = DM = CM,
where BD ⊥ AC at D.

Since we are to show AM · PM = DM2, we should have MD tangent to the
circumcircle of ΔADP by the Tangent Secant Theorem. Refer to the diagram
below. It is easy to see H is on this circle as well. We have plenty of equal
angles!

Proof.  Let BD be the height on AC. In the right angled triangle ΔBCD, 

 Now it suffices to show AM · PM = DM2.

Since ∠APH = ∠ADH = 90°, A, D, H, P are concyclic.
Notice that ∠2 = 90° − ∠C = ∠3 and ∠1 = ∠3 (because BM = DM).
Hence, ∠1 = ∠2, which implies MD is tangent to the circumcircle of ΔADP
(Theorem 3.2.10).

By the Tangent Secant Theorem, AM · PM = DM2.

Example 4.2.9 (CMO 10)  Refer to the leŌ diagram below. Two circles
intersect at A and B. A line passing through B intersects the two circles at C,
D respecƟvely. Another line passing through B intersects the two circles at
E, F, respectively. CF intersects the two circles at P, Q respecƟvely. Let M, N
be the midpoints of arcs  respecƟvely. Show that if CD = EF, then C,

M, N, F are concyclic.



Insight.  Clearly, we must use the condiƟon CD = EF in the proof. How
about EF · BF = FQ · CF and BC · CD = CP · CF?

Since CD = EF, we have  NoƟce that all these line segments

ΔBCF. Perhaps we should focus on this triangle and see what we may
discover.

Refer to the previous right diagram. How is ΔBCF related to the conclusion?
NoƟce that CN and FM are the angle bisectors of ΔBCF (Corollary 3.3.3).
Hence, they intersect at the incenter I of ΔBCF. Since we are to show C, M,
N, F concyclic, we should have CI · IN = FI · IM. Although we cannot apply the
IntersecƟng Chords Theorem directly because these are chords in two
different circles, there is a common chord AB! Since we are to show CI · IN =
FI · IM, we should have AB passing through I. (Suppose otherwise, say BI
extended intersects the two circles at A and A' respecƟvely. By the
Intersecting Chords Theorem, AI · IB = CI · IN = FI · IM = A'I · IB, which implies
that A and A' coincide.)

Now it suffices to show that AB is the angle bisector of ∠CBF. Refer to the
left diagram below. This is much simpler!



Note that we have not used the condiƟon CD = EF yet. Apparently, our
previous exploraƟon on CD = EF was ineffecƟve. Nevertheless, these two
circles give many equal angles. Perhaps we can find congruent triangles.

Proof.  Refer to the right diagram above. We have ∠ADC = ∠AFE (angles
in the same arc) and ∠ACD = ∠AEF (Corollary 3.1.5).
Given CD = EF, we conclude that ΔACD ΔAEF (A.A.S.) and hence, AD = AF.
Now we have ∠ABF = ∠ADF (angles in the same arc) = ∠AFD (because AD
= AF) = ∠ABC (Corollary 3.1.5), i.e., BA is the angle bisector of ∠CBF.
Since M, N are the midpoints of arcs  respecƟvely, CN, FM are both

angle bisectors of ΔCBF (Corollary 3.3.3). Let I be the incenter of ΔCBF. We
have CI · IN = AI · IB = FI · IM by the IntersecƟng Chords Theorem. Hence, C,
M, N, F are concyclic.

Note:  One sees many clues from the condiƟons given and hence, may

explore in a wrong direcƟon. For example, one may apply  and

construct similar triangles, or seek angles in the same arc using the angle
bisectors. Even though such (failed) aƩempts are not reflected in the final
soluƟon, these are inevitable during problem-solving and should not be
considered a waste of effort. Indeed, beginners would learn much more
from those attempts rather than merely reading the solution.

Example 4.2.10 (CGMO 10)  Refer to the diagram below. In an acute angled
triangle ΔABC, M is the midpoint of BC. Let AP bisect the exterior angle of
∠A, intersecting BC extended at P. Draw ME ⊥ AP at E and draw MF ⊥ BC,

intersecting the line AP at F. Show that BC2 = 4PF · AE.



Insight.  It seems from the conclusion that the IntersecƟng Chords
Theorem or the Tangent Secant Theorem should be applied, but where is
the circle? Perhaps we can see concyclicity from the right angles given.
Besides, we also have the angle bisector of the exterior angle. What does it
remind you of? Recall that the angle bisectors of supplementary angles are
perpendicular (Example 1.1.9)!

Refer to the diagram above. We draw the circumcircle of ΔABC and AD
which bisects ∠A, intersecting the circumcircle of ΔABC at D. NoƟce that AD
⊥ AP. It seems that F lies on the circle as well. Can you prove it? (Hint: One
may show that D, M, F are collinear and DF is indeed a diameter of the
circle.)

Once we show that A, C, B, F are concyclic, by the Tangent Secant Theorem,

PB · PC = PA · PF. How could we relate this to the conclusion BC2 = 4PF · AE?
We have PF in both equaƟons and BC = PB − PC. It is not clear at this stage
how we should relate AE to the other line segments. Moreover, it seems
the coefficient 4 does not appear naturally. Can we get rid of it?

NoƟce that M is the midpoint of BC, i.e.,  Hence, it suffices to

show BM2 = PF · AE.

We also note that PB · PC = (PM + BM)(PM − BM) = PM2 − BM2, where PM2 =
PE · PF (Example 2.3.1). Apparently, we are very close to the conclusion.



4.3

Proof.  Let D be the midpoint of the minor arc  It is

easy to see that AD bisects ∠BAC (Corollary 3.3.3). This implies that D lies
on the perpendicular bisector of BC (because BD = CD). Since MF ⊥ BC, MF
is also the perpendicular bisector of BC. It follows that D, M, F are collinear,
the line of which passes through the center of the circumcircle of ΔABC.
Since AD ⊥ AP, we claim that F must lie on the circumcircle of ΔABC as well.
Otherwise, say the line MD intersects the circumcircle of ΔABC a t F' , DF'
must be a diameter of the circle and ∠DAF' = 90°, i.e., AD ⊥ AF'. This
implies F' lies on the line AP, i.e., F and F' coincide.

Since A, C, B, F are concyclic, we have PB · PC = PA · PF, where PB · PC = (PM

+ BM)(PM − CM) = PM2 − BM2 because BM = CM .

In the right angled triangle ΔPMF, ME ⊥ PF. Hence, PM2 = PE · PF.

It follows that PA · PF = PB · PC = PM2 BM2 = PE · PF − BM2, i.e., BM2 = PE · PF

− PA · PF = (PE − PA) · PF = AE · PF. The conclusion follows as 

Note:  Once the circumcircle of ΔABC is drawn, it is easy to see that the
l ine DM is a diameter of the circle, where AD bisects ∠BAC. Now the
exterior angle bisector is used to construct right angles. Notice that applying
the Angle Bisector Theorem may not be an effecƟve strategy because AB,
AC are not closely related to PF, AE.

Radical Axis

Given a circle, a straight line could intersect the circle at two points, or
touch the circle at one point, i.e., a tangent line. Refer to the diagram
below.

Can you show that no straight line intersects a circle at more than two
points? (Hint: Suppose otherwise, say a line intersect O at A, B, C, we
have OA = OB = OC, i.e., both ΔOAB and ΔOBC are isosceles triangles. Show
that this is impossible by considering the base angles.)



Given a circle, another circle may intersect it at two points, or touch it at one
point, in which case we say the circles are tangent to each other. Refer to
the following diagrams.

Can you show that no two circles intersect at more than two points? (Hint:
Suppose otherwise, say O1 and O2 intersect at A, B, C. It is easy to see
that A, B, C cannot be collinear. Now consider the circumcircle of ΔABC.)

Given O1 and O2, if they intersect at A and B, then O1O2 must be the
perpendicular bisector of AB (Theorem 3.1.20). In parƟcular, if O1 and 
O2 touch each other at A, then O1O2 passes through A, i.e., O1, O2, A are
collinear. Hence, one may consider two circles touching each other an
extreme case of intersecƟng circles. Similarly, a tangent line of the circle is
also an extreme case of a line intersecƟng the circle at two points, as
reflected in the Tangent Secant Theorem. We may define radical axes when
two or more circles intersect or touch each other.

Definition 4.3.1 If O1 and O2 intersect at A and B, we call the line AB the
radical axis of O1 and O2. In parƟcular, if O1 touches O2 at A, the
radical axis of O1 and O2 is the common tangent of the two circles
which passes through A.

Note:  One may also define a radical axis of two non-intersecƟng circles.
However, we will only focus on radical axes of circles intersecƟng or
tangent to each other, which are the most commonly seen applicaƟons in



competitions.

Theorem 4.3.2  If three circles are mutually intersecting each other, then the
three radical axes are either parallel or concurrent.

Proof.  Let the three circles be Γ1, Γ2, Γ3 such that Γ1, Γ2 intersect at A, B,
Γ2,Γ3 intersect at C, D and Γ1, Γ3 intersect at E, F. If the radical axes AB, CD, EF
are parallel, there is nothing to prove. Refer to the leŌ diagram below.
Otherwise, say without loss of generality that AB and CD intersect at P.
Extend PE, intersecƟng Γ2 at X. We claim that X and F coincide. Refer to the
right diagram below.

Since A, B, D, C are concyclic (on Γ1), we have PA · PB = PC · PD by the
Tangent Secant Theorem. Similarly, A, B, X, E concyclic on Γ2 implies PA · PB
= PE · PX. It follows that PC · PD = PE · PX. Now C, D, X, E are concyclic and X
must lie on the circumcircle of ΔCDE, which is Γ3. Since X lies on both Γ2 and
Γ3, X and F coincide. This implies P, E, F are collinear, i.e., the radical axes
are concurrent.

Note:  This proof holds regardless of the relaƟve posiƟons of the three
circles. Refer to the diagram below. NoƟce that PA · PB = PC · PD = PE · PF by
the IntersecƟng Chords Theorem. Hence, we sƟll have the radical axes AB,
CD, EF concurrent.



Example 4.3.3  Refer to the diagram below. O1, O2 and O3 are
mutually tangent to each other at A, B, C respecƟvely. Show that the
circumcenter of ΔABC is the incenter of ΔO1O2O3.

Insight.  We see that O1 A = O1C, O2A = O2B and O3B = O3C.

What do we know about the incenter and the incircle of ΔO1O2O3 ? Refer to
the leŌ diagram below. It seems A, B, C should be the feet of the
perpendiculars from the incenter of ΔO1O2O3. What if we draw
perpendicular lines from A to O1O2, B to O2O3 and C to O3O1? Can you see
that the perpendicular from A to O1O2 is indeed a common tangent of O1
a n d O2, and similarly for B and C? These common tangents are
concurrent! (Can you show this by the Tangent Secant Theorem? Refer to
Exercise 4.11.)



Proof.  Refer to the right diagram above. Draw the perpendicular lines
from A to O1O2 and from B to O2O3, intersecƟng at I. It is easy to show that
CI ⊥ O1O3 (Exercise 4.11). NoƟce that AI = BI = CI (equal tangent segments).
Hence, I is the circumcenter of ΔABC. Observe that O1I bisects ∠O1 since
ΔO1AI  ΔO1CI (H.L.). Similarly, O2I bisects ∠O2. Hence, I is the incenter of
ΔO1O2O3 This completes the proof.

Example 4.3.4  Refer to the diagram below. O1 and O2 intersect at P,
Q. O1A intersects O2 at B. O2C intersects O1 at D. Given that A, C, B, D
are concyclic, show that the circumcenter of ΔABC lies on the line PQ.

Insight.  Let us draw the circumcircle of ΔABC. Refer to the diagram below
where A, B, C, D lie on the O.



Can you see that the lines AB, CD, PQ are exactly the radical axes when O, 
O1 and O2 intersect each other?

By Theorem 4.3.2, lines AB, CD, PQ must be concurrent, say at H.

NoƟce that AB ⊥ OO2 and CD ⊥ OO1 (Theorem 3.1.20). Can you see that H
is the orthocenter ΔOO1O2 ? Now can you see why O lies on the line PQ?
(Hint: OH ⊥ O1O2 and PH ⊥ O1O2 .) We leave it to the reader to complete
the proof.

Note:  Theorem 3.1.20 is an elementary but commonly used result. One
may always apply it and seek clues when aƩempƟng quesƟons with circles
intersecting each other.

Definition 4.3.5 Let O be a circle centered at O with radius r. The power of

a point P with respect to O is defined as OP2 − r2.

The concept of the power of a point with respect to a circle is closely related
to the IntersecƟng Chords Theorem and the Tangent Secant Theorem. Refer
to the following diagrams.



•

•

If P is outside the circle where PX touches O at X, one sees that PX2 =

OP2 − OX2. By the Tangent Secant Theorem, we have PA · PB = PC · PD =

PX2, which equals the power of P with respect to O.
If P is inside the circle, draw EF ⊥ OP at P, intersecting O at E and F. One

sees that OP2 = OE2 − PE2. By the IntersecƟng Chords Theorem, PA · PB

= PC · PD = PE · PF = PE2 = OE2 − OP2, which is the negaƟve of the power
of P with respect to O.

In conclusion, the power of a point P with respect to O is posiƟve if P lies
outside O and is negaƟve if P lies inside O. Clearly, the power of P is
zero if it lies on O.

Theorem 4.3.6 Let O1 and O2 intersect at A, B. The power of a point P
with respect to O1 and O2 is the same if and only if P lies on the line AB,
which is also the radical axis of O1 and O2.

Proof.  Refer to the diagram below.

Let P be any point. Suppose the line PA intersects O1 and O2 at C and D
respecƟvely. NoƟce that the power of P with respect to O1 is PA · PC, and
the power with respect to O2 is PA · PD.

One sees that the power of P with respect to O1 and O2 is the same if
and only if PC = PD, i.e., C, D coincide with B, the line PA passes through B
and P lies on the radical axis AB.

NoƟce that this proof sƟll holds if P lies inside O1 and O2. Now the
power of P with respect to O1 and O2 are − PA · PC and − PA · PD
respecƟvely. Hence, the power of P with respect to O1 and O2 is the
same if and only if PC = PD, i.e., if and only if P lies on the radical axis AB.

Note:  One may easily show Theorem 4.3.2 by applying Theorem 4.3.6: If a



point P lies on the radical axis of O1 and O2 and the radical axis of O2
and O3, its power with respect to O1, O2 and O3 is the same. Hence,
P must also lie on the radical axis of O1 and O3.

Example 4.3.7 (RUS 13)  Given an acute angled triangle ΔABC, draw
squares BCDE and ACFG outwards from BC, AC respecƟvely. Let DC
extended intersect AG at P and FC extended intersect BE at Q. X is a point
inside ΔABC which lies on the circumcircles of both ΔPDG and ΔQEF. If M is
the midpoint of AB, show that ∠ACM = ∠BCX .

Insight.  Refer to the diagram below. It seems that the properƟes of
∠ACM and ∠BCX are not clear. Let the two circles intersect at X and Z.
There are many right angles in the diagram and hence, a lot of concyclicity.
In parƟcular, one sees that the lines DE and FG intersect at Z. (Can you show
it?)

Observe the diagram. It seems that C lies on XZ, the common chord (and the
radical axis) of the two circles. This is not difficult to show, by calculating
the power of C with respect to the two circles, because we have many equal
lengths in the diagram due to the squares.

It follows that ∠BCX = ∠CZD (because C lies on XZ). One sees that C, D, Z, F
are concyclic and hence, ∠CZD = ∠CFD. It suffices to show that ∠ACM =
∠CFD, where M is the midpoint of AB. Refer to the diagram below. It is
much simpler! Does the diagram look familiar? (Refer to Example 1.2.11.)



Proof.  Let the lines FG and DE intersect at Z. Since ∠PDZ = ∠PGZ = 90°, P,
D, Z, G are concyclic. Similarly, Q, E, Z, F are concyclic because ∠QEZ = ∠QFZ
= 90°. Let Γ1, Γ2 denote the circumcircles of ΔPDG and ΔQEF respecƟvely. We
see that Z lies on both Γ1 and Γ2, i.e., XZ is the common chord of Γ1 and Γ2.
NoƟce that the power of C with respect to Γ1 is − PC · CD and the power of C
with respect to Γ2 is − QC · CF. Observe that PC · CD = PC · BC and QC · CF = QC
· AC.

It is easy to see that ΔBCQ ~ ΔACP because ∠ACP = 90° − ∠ACB = ∠BCQ.

Hence,  i.e., PC · BC = QC · AC. This implies the power of C with

respect to Γ1 and Γ2 is the same. By Theorem 4.3.6, C lies on XZ, the radical
axis of Γ1 and Γ2.
Now ∠BCX = ∠CZD (because BC // DE) = ∠CFD (angles in the same arc).
Refer to the diagram below. Extend CM to C' such that CM = C'M. One sees
that ΔACC'  ΔCFD (Example 1.2.11, or simply by S.A.S.). Now we have
∠ACM = ∠CFD = ∠BCX.

Example 4.3.8 (IMO 85)  In a non-isosceles acute angled triangle ΔABC, D, E
are points on AC, AP respecƟvely such that B, C, D, E are concyclic on O.
Let the circumcircles of ΔABC and ΔADE intersect at A and P. Show that AP ⊥



OP.

Insight.  Refer to the diagram below. It is easy to see that BC and DE are
not parallel. Since there are three circles, we immediately see that the
radical axes are concurrent, say at X.

NoƟce that AO, OX (or more precisely, AO2, OX2) are closely related to the
power of points A and X with respect to O. One may also express the
power of A with respect to O as AD · AC and the power of X with respect
to O as XB · XC. Since X lies on all radical axes (or by the Tangent Secant
Theorem), we have XB · XC = XA · XP. How are these line segments helpful?

Perhaps we can show AP ⊥ OP by calculaƟng AO2 − AP2 and OX2 − PX2.

(Recall Theorem 2.1.9: AP ⊥ OP if and only if AO2 − AP2 = OX2 − PX2.)

Proof.  If DE // BC, BCDE must be an isosceles trapezium (Exercise 3.1).
Now AB = AC, which contradicts the fact that ΔABC is non-isosceles. Hence,
DE and BC are not parallel, say intersecting at X.

We conclude that the radical axes BC, DE, AP are concurrent at X (Theorem
4.3.2). Let the radius of O be R. Now the power of X with respect to O is

OX2 − R2 = BX · CX = AX · PX and the power of A with respect to O is AO2 −

R2 = AD · AC. It follows that AO2 − OX2 = AD · AC − AX · PX.   (1)



(1)

(2)

Refer to the diagram above. We have ∠APD = ∠BED = ∠ACX (Corollary
3.1.5) and hence, C, D, P, X are concyclic.
By the Tangent Secant Theorem, AC · AD = AP · AX .   (2)

(1) and (2) imply that AO2 − OX2 = AP · AX − AX · PX

= AX · (AP − PX) = (AP + PX)(AP − PX) = AP2 − PX2

In conclusion, AO2 − AP2 = OX2 − PX2, which implies AP ⊥ OP (Theorem
2.1.9).

Note:

One may see (2) from (1) and reverse engineering: Since we are to show

AO2 − OX2 = AP2 − PX2, we should have

AC · AD − AX · PX = AP2 − PX2, or equivalently,

AC · AD = AX · PX + (AP2 − PX2) = AP2 + PX · (AX − PX)

= AP2 + PX · AP = AP · (AP + PX) = AP · PX.

Hence, C, D, P, X should be concyclic. Once we see the necessity of this
intermediate step, the proof is not difficult.

One may also show the conclusion by angles. First, we show that E, D, X
are collinear and C, D, P, X are concyclic as in the proof above. Now
∠APE = ∠ADE = ∠CDX = ∠CPX (Corollary 3.1.3). Refer to the diagram
below. We are to show ∠OPA = ∠OPX = 90°. Hence, it suffices to show
that OP bisects ∠CPE.



Consider ΔOEP and ΔOCP. Refer to the diagram below. We have OE =
OC and we should have ∠OPE = ∠OPC. However, it seems that ΔOEP
and ΔOCP are not congruent. Hence, we should have ∠OEP + ∠OCP =
180°! (Refer to the remarks before Example 3.3.6.) This implies C, O, E,
P should be concyclic. Can we show it?

Notice that ∠APE = ∠ADE = ∠B (Corollary 3.1.5). Since we have ∠APE
= ∠CPX, it follows that 180° − ∠CPE = ∠APE + ∠CPX = 2∠B = ∠COE
(Theorem 3.1.1), i.e., ∠CPE + ∠COE = 180°. Hence, C, O, E, P are
concyclic.

Now ∠OEP + ∠OCP = 180° and hence, sin ∠OEP = sin ∠OCP.

By Sine Rule, 

Since OC = OE, we must have sin ∠OPE = sin ∠OPC.
Clearly, ∠OPE + ∠OPC = ∠CPE < 180°.
It follows that ∠OPE = ∠OPC, which completes the proof.



4.4 Ptolemy’s Theorem

Besides the IntersecƟng Chords Theorem and the Tangent Secant Theorem,
Ptolemy’s Theorem provides another way to determine concyclicity without
finding equal angles. Moreover, it gives useful idenƟty regarding the sides
and diagonals of a cyclic quadrilateral.

Theorem 4.4.1 (Ptolemy’s Theorem)  In a quadrilateral ABCD, AB · CD + BC ·
AD ≥ AC · BD and the equality holds if and only if ABCD is cyclic.

Proof.  Refer to the diagram below. Choose P such that ∠ABD = ∠CBP
and ∠ADB = ∠BCP, i.e., we construct similar triangles ΔABD ~ ΔPBC.

Hence,  and

   (2)

(1) implies that there is another pair of similar triangles: ΔABP ~ ΔDBC. This
is because the angles between the corresponding sides are the same:
∠ABP = ∠ABD + ∠PBD = ∠CBP + ∠PBD = ∠CBD.

Refer to diagram below. We have 

   (3)



(2) and (3) give that AB · CD + BC · AD
= AP · BD + BD · PC
= (AP + PC) · BD ≥ AC · BD because AP + PC ≥ AC.
NoƟce that the equality holds if and only if P lies on AC, i.e., ∠ADB = ∠BCA
and ABCD is cyclic.

Ptolemy’s Theorem is useful when solving problems regarding sides and
diagonals about cyclic quadrilaterals. Refer to Example 3.1.10. One may see
the conclusion immediately by applying Ptolemy’s Theorem.

Example 4.4.2  Refer to the diagram below. ABCD is a cyclic quadrilateral.
Show that: sin(∠1 + ∠2) · sin(∠2 + ∠3) · sin(∠3 + ∠4) · sin(∠4 + ∠1) ≥
4sin ∠1 · sin ∠2 · sin ∠3 · sin ∠4.

Insight.  One could see that sin(∠1 + ∠2) = sin ∠B = sin ∠D because ∠B
+ ∠D = 180° (Corollary 3.1.4). Hence, sin(∠1 + ∠2) = sin(∠3 + ∠4) .

Similarly, sin(∠2 + ∠3) = sin(180° − ∠C) = sin ∠A = sin(∠1 + ∠4) .

Now it suffices to show that (sin ∠A · sin ∠B)2 ≥ 4sin ∠1 · sin ∠2 · sin ∠3 ·
sin ∠4. (*)
However, it seems not easy to show (*) directly because we do not know
how the product of sin∠1, sin∠2, sin∠3, sin∠4 is related to sin ∠A and
sin ∠B. Perhaps we should consider another strategy.
NoƟce that each of these angles (on the circumference) corresponds to a
line segment in ABCD by Sine Rule. For example, AB = 2Rsin ∠4, BD = 2R sin
∠C = 2R sin(∠2 + ∠3), etc., where R is the radius of the circle.

Now (*) is equivalent to (BD · AC)2 ≥ 4AD · CD · BC · AB. We have all the four
sides and the two diagonals of ABCD. Perhaps we can apply Ptolemy’s
Theorem.

Proof.  By Sine Rule,  where R is

the radius of the circle. Similarly, we have sin(∠2 + ∠3) = sin ∠C 



and  Now it suffices to show (BD · AC)2 ≥ 4AD · CD · BC · AB.

Ptolemy’s Theorem gives BD · AC = AB · CD + BC · AD. Hence, it suffices to
show that    (1)

NoƟce that (1) follows from the inequality x2 + y2 ≥ 2xy, where 
 This completes the proof.

Note:  x2 + y2 ≥ 2xy because x2 + y2 − 2xy = (x − y)2 ≥ 0. Even though this is a
commonly known fact and could be found in any elementary algebra
textbook, one may not be able to recognize it immediately when it takes
the form of (1).

Example 4.4.3  Given a parallelogram ABCD where ∠A > 90°, a circle
passing through B intersects AB, BC, BD at P, Q, R respecƟvely. Show that BP
· AB + BQ · BC = BR · BD.

Insight.  One noƟces that the conclusion looks like Ptolemy’s Theorem.
Refer to the diagram below.

In fact, we are given a circle, even though applying Ptolemy’s Theorem on
that circle directly does not give the conclusion. Instead, we have BP · QR +
BQ · PR = BR · PQ. NoƟce that AB, BC, BD are replaced by QR, PR, PQ
respectively.

Are these line segments in raƟo? If they are, i.e.,  then

we immediately have the conclusion. Do we have any pair of similar
triangles which leads to such equal raƟo? Considering the line segments
involved, it must be ΔPQR and another triangle.

Can you see ΔPQR ~ ΔBDC ? It should not be difficult to show, by circle
properƟes and parallel lines, that the corresponding angles of these
triangles are all equal. For example, ∠PRQ = 180° − ∠ABC = ∠BCD. We
leave it to the reader to complete the proof.



Example 4.4.4  Given an acute angled triangle ΔABC where O is the
circumcenter, M, N are on AB, AC respectively such that O lies on MN. Let D,
E, F be the midpoints of MN, BN, CM respecƟvely. Show that O, D, E, F are
concyclic.

Insight.  Refer to the diagram below. Since we are to show that O, D, E, F
are concyclic, it is natural to consider angles. Can we show that ∠EDF =
∠EOF ? Since D, E, F are midpoints, we must have DE // AB and DF // AC.
Hence, ∠EDF = ∠A. Can we show ∠EOF = ∠A? (1) Similarly, AC // DF gives
∠ANM = ∠ODF. Can we show ∠ODF = ∠ANM = ∠OEF ? (2) Since O, E, F, D
should be concyclic, (1) and (2) should be true, i.e., we should have ΔOEF ~
ΔANM. Can we show this, say by the raƟo of corresponding sides? Although
DE, DF are related to BM, CN, we cannot apply Ptolemy’s Theorem because
we have not shown O, E, F, D are concyclic.

Apparently, there are many clues, but none of them is useful unless O, E, F,
D are concyclic. Perhaps we can draw the circumcircle of ΔDEF, which
intersects MN at O' and show that O' coincide with O. By applying Ptolemy’s
Theorem to O' DEF and replacing the lengths by those in ΔABC (by similar
triangles or the Midpoint Theorem), we might be close to the conclusion.

Proof.  Let the circumcircle of ΔDEF intersect MN at O'. It is easy to see
that DE//AB and DF//AC. Hence, ∠A = ∠EDF = ∠EO' F and ∠O'EF = ∠O'DF
= ∠ANM, which imply ΔO'EF ~ ΔANM .
Since O', D, E, F are concyclic, Ptolemy’s Theorem gives

   (1)

Since 



(1)

(2)

Now 

where    (3)

Notice that AN · CN and AM · BM are the negative of the power of N, M with
respect to the circumcircle of ΔABC respecƟvely. Hence, we have AN · CN =

R2 − NO2 and AM · CM = R2 − MO2, where R denotes the radius of the
circumcircle of ΔABC.

Now  where

MO + NO = MN. It follows that  (*)

This implies O and O' coincide.

Note:
One sees that (*) holds regardless of the posiƟons of O and O' on MN,
i.e., if MO < NO, both O'D and OD are negaƟve, which means O and O'
lie between M and D. If MO > NO, O and O' lie between N and D.
Considering the power of M, N upon (3) is expected: We have not used
the condition that O is the circumcenter of ΔABC and we are to remove
A, B, C in the expression of O'D!

Example 4.4.5  Given ΔABC, E, F are on AC, AB respecƟvely such that BE, CF
bisect ∠B,∠C respecƟvely. P, Q are on the minor arc  of the
circumcircle of ΔABC such that AC // PQ and BQ // EF. Show that PA + PB =
PC.

Insight.  Refer to the diagram below. We are to show the relaƟonship
among PA, PB and PC, which lie in the quadrilateral PABC. On the other
hand, we might obtain equal angles from the circle and parallel lines.



4.5

For example, we have ∠BAC = ∠BPQ and ∠AEF = ∠PQB = ∠PCB. It
follows that ΔAEF ~ ΔPCB.
In the quadrilateral PABC, PA, PB, PC are related to AB, BC, AC by Ptolemy’s
Theorem. PB, PC are also related to AE, AF by similar triangles. Since AE, AF
are angle bisectors, they can be expressed in terms of AB, BC, AC (Example
2.3.8). It seems that we are close to the conclusion.

Proof.  We have ∠AEF = ∠PQB (since EF // BQ and AC // PQ) = ∠PCB
(angles in the same arc). Since ∠BAC = ∠BPC (angles in the same arc), we

have ΔAFE ~ ΔPBC. Hence,    (1)

Le t BC = a, AC = b and AB = c. We see 

(Example 2.3.8).

It follows that =    (2)

We are to show PA + PB = PC. By (1) and (2), it suffices to show that 

Ptolemy’s Theorem implies PA · a + PC · c = PB · b.

H e n c e ,  which gives 

 It follows that 

 which completes the proof.

Exercises

1. Given ΔABC and its circumcircle O, P is a point outside O such that 
P touches O at C. AC extended intersects P at D and BC extended

intersects P at E. Show that if A, B, D, E are concyclic, then AC · CP = OC ·
CE.

2. Let AB be the diameter of a semicircle centered at O. BP ⊥ AB at B and
AP intersects the semicircle at C. Let D be the midpoint of BP. If ACDO is a
parallelogram, find sin ∠PAD.



3. Given a cyclic quadrilateral ABCD, E is a point on AB such that DE ⊥ AC.
Draw BF//DE, intersecƟng AD extended at F. Show that if ∠B = 90°, then 

4. (CHN 96)  In a quadrilateral ABCD, its diagonals AC and BD intersect at
M. Draw a line EF // AD passing through M, intersecƟng AB, CD at E, F
respecƟvely. Let EF extended intersect BC extended at O. Draw a circle
centered at O with radius OM and P is a point on this circle. Show that
∠OPF = ∠OEP.

5. Given a circle and a point P outside the circle, draw PA, PB touching the
circle at A, B respectively. C is a point on the minor arc  and PC extended
intersects the circle at D. Let E be a point on AC extended and F a point on
AD such that EF// PA. If EF intersect AB at Q, show that QE = QF.

6. Let P be a point outside O and PA, PB touch O at A, B respecƟvely. C
is a point on the minor arc  and PC extended intersects O at D. If M is
the midpoint of AB, show that O, M, C, D are concyclic.

7. Given a semicircle with the diameter AB, C is a point on the semicircle
and D is the midpoint of the minor arc  Let AD, BC intersect at E. If CE =

3 and  find AB.

8. Refer to the diagram below. Let O be the circumcircle of ΔABC. D is a
point on the line BC such that the line AD touches O at A. E is a point on E
the line AC such that the line BE touches O at B. F is a point on the line AB
such that the line CF touches O at C. Show that D, E, F are collinear.



9. (CGMO 05) Given an acute angled triangle ΔABC and its circumcircle, P is
a point on the minor arc  AB extended intersects CP extended at E. AC

extended intersects BP extended at F. If the perpendicular bisector of AC
intersects AB at J and the perpendicular bisector of AB intersects AC at K,

show that 

10. An acute angled triangle ΔABC is inscribed inside O. BO extended
intersects AC at D. CO extended intersects AB at E. If the line DE intersects 

O at P, Q respectively and it is given that AP = AQ, show that DE // BC.

11. Refer to the diagram below. We have O1, O2 and O3 mutually
tangent to each other at A, B, C respecƟvely, while 1, 2, 3 are the
common tangents passing through A, B, C respecƟvely. Show that 1, 2, 3
are concurrent.

12. Let O1, O2 be two points inside O. Draw O1 and O2, which touch 
O at A, B respecƟvely. If O1 and O2 intersect at C, D and A, B, C are

collinear, show that OD ⊥ CD.

13. In ΔABC,∠B = 2∠C, show that AC2 = AB · (AB + BC).

14. O1 is tangent to two parallel lines 1, 2. Let O2 be a point outside 
O1. O2 is tangent to O1 and 1 at A, B respecƟvely. Let O3 be a point
outside O1 and O2. O3 is tangent to O1, 2 and O2 at C, D, E
respecƟvely. Show that the intersecƟon of AD and BC is the circumcenter of
ΔACE.



15. L e t O be the circumcenter of ΔABC. P, Q are points on AC, AB
respecƟvely. Let M, N, L be the midpoints of BP, CQ, PQ respecƟvely. Show
that if PQ is tangent to the circumcircle of ΔMNL, then we have OP = OQ.



5.1

•

•

Chapter 5

Basic Facts and Techniques in Geometry

Basic Facts

We have learnt a number of theorems and corollaries through the previous
chapters. Besides those well-known results, we have also seen many
examples, some of which are indeed commonly used facts in geometry.
One familiar with these basic facts could find it significantly more effecƟve
when seeking clues and insights during problem-solving. Hence, we shall
have a summary of these basic facts in this section.

   Most Commonly Used Facts

The following are standard results which could be used directly in problem
solving, i.e., one may simply state these results without proof.

In an acute angled triangle ΔABC, BD, CE are heights. We have ∠ABD =
∠ACE.

Moreover, B, C, D, E are concyclic and A, D, H, E are concyclic, where H is
the orthocenter of ΔABC.

In ΔABC, ∠A = 90° and AD ⊥ BC at D. We have ∠BAD = ∠C and ∠CAD =
∠B.
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•
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Moreover, we have AB2 = BD · BC and AD2 = BD · CD.

Given ΔABC where M is the midpoint of BC, we have  if and

only if ∠A = 90°.

Angle bisectors of neighboring supplementary angles are perpendicular to
each other.

Hence, if D, E are the ex-centers opposite B, C respecƟvely in ΔABC,
then DE passes through A and is perpendicular to the angle bisector of
∠A.

Let ABCD be a trapezium where AD // BC. The angle bisectors of ∠A and
∠B are perpendicular to each other.

In a right angled isosceles triangle ΔABC where ∠A = 90° and AB = AC, we

have 



•

•

•

In a right angled triangle ΔABC where ∠A = 90° and ∠B = 30°, we have 

In ΔABC, D is a point on BC and P is a point on AD. We have 

Given ΔABC and D is on AC such that ∠ABD = ∠C, we have ΔABD ~ ΔACB
Refer to the left diagram below.

In particular, given ΔABC, if D is a point on AC extended and BD touches
the circumcircle of ΔABC at B, then ΔABD ~ ΔBCD. Refer to the right
diagram above.

L e t AD be the angle bisector of ∠A in ΔABC. We have 



•

•

•

Let AD, BE, CF be the heights of an acute angled triangle ΔABC. We have
∠ABE = ∠ADF = ∠ADE = ∠ACF.

In particular, the orthocenter of ΔABC is the incenter of ΔDEF.

Let H, I, O be the orthocenter, incenter and circumcenter of an acute
angled triangle ΔABC respecƟvely. We have ∠ BHC = 180° − ∠A, 

Given an acute angled triangle ΔABC and its circumcenter O, we must have
∠A + ∠OBC = 90°.



•

•

•

Refer to the diagram on the below. Given a circle with  we

must have AD // BC.

Proof.  NoƟce that  implies ∠ADB = ∠CBD. Hence, AD //

BC.

Refer to the left diagram below. AB, CD are two chords in O and AB, CD
intersect at P. We have ∠AOD + ∠BOC = 2∠APD.

Proof.  Refer to the right diagram above. We have ∠BOC = 2∠1 and
∠AOD = 2∠2 (Theorem 3.1.1).
Now ∠APD = ∠1 + ∠2 and the conclusion follows.

Given ΔABC and its circumcircle, D, E, F are the midpoints of arcs 
 respectively. Refer to the diagram on the below.



•

We have AD, BE, CF the angle bisectors of ΔABC and hence, concurrent
at I, the incenter of ΔABC.

NoƟce that D, E, F are the circumcenters of ΔBCI, ΔACI, ΔABI
respectively (Example 3.4.2).

Given a right angled triangle ΔABC with ∠C = 90°, we have 

 where r is the radius of the incircle of ΔABC.

Proof.  Let I be the incenter of ΔABC.
Suppose the incircle of ΔABC touches BC, AC, AB at D, E, F respecƟvely.
Refer to the diagram above.
It is easy to see that AE = AF, BD = BF and CDIE is a square.

It follows that 

Note: Let BC = a, AC = b, AB = c. We have 

By Theorem 3.2.9, we have  where S = [ΔABC].



•

•

•

Indeed, 2r · (a + b + c) = (a + b − c)(a + b + c) = (a + b)2 − c2 = (a + b)2 − (a2

+ b2) = 2ab = 4S.

   Useful Facts

One familiar with the following facts may see clues and intermediate steps
in problem-solving quickly, which might tremendously simplify the
conclusion to be shown. While experienced contestants simply state these
well-known facts during compeƟƟons, beginners are recommended not to
omit any necessary proof to these results (which were illustrated in the
previous chapters).

Occasionally, one may derive an intermediate step, but find it irrelevant to
the problem given. If it seems not a useful clue, one should put it aside and
refrain from wasting time exploring that piece further.

Let H be the orthocenter of an acute angled triangle ΔABC. We have 

Let ABCD be a cyclic quadrilateral. E, F are on AB, CD respectively such that
BC // EF. We must have A, E, F, D concyclic.

In a quadrilateral ABCD, AB = AD and BC ≠ CD, if AC bisects ∠C, then ABCD
is cyclic.



•

•

•

Let O be the circumcenter of an acute angled triangle ΔABC and AD is a
height. We have ∠CAD = ∠BAO.

Let I be the incenter of ΔABC. If BI extended intersects the circumcircle of
ΔABC at P, we have AP = PI = CP.

Hence, P is the circumcenter of ΔAIC.

Let H be the orthocenter of an acute angled triangle ΔABC. AD ⊥ BC at D
and AD extended intersects the circumcircle of ΔABC at E. We have DE =
DH. Refer to the left diagram below.



•

•

NoƟce that the conclusion sƟll holds if ΔABC is a right angled triangle
(i.e., A is the orthocenter and BC is the diameter of the circumcircle) or
an obtuse angled triangle. Refer to the right diagram above. The proof
is similar and we leave it to the reader.

Let H be the orthocenter of ΔABC and M be the midpoint of AB. Let HM
extended intersect the circumcircle of ΔABC at D. We have that BDCH is
a parallelogram and hence, AD is a diameter of the circumcircle of
ΔABC. Refer to the left diagram below.

Moreover, we have AH = 2OM, where O is the circumcenter of ΔABC.
Refer to the right diagram above.

Let BD, CE be the heights of an acute angled triangle ΔABC. If the line DE
intersects the circumcircle of ΔABC at P, Q respecƟvely, we have AP =
AQ.



• Let P be a point outside O and PA, PB touch O at A, B respectively. We
have that the incenter of ΔPAB is the midpoint of the minor arc 

We shall see how these facts (together with theorems and standard results)
could be helpful in problem-solving.

Example 5.1.1 In an acute angled triangle ΔABC, AD, BE, CF are heights. Let
the incircle of ΔDEF touch EF, DF, DE at P, Q, R respecƟvely. Show that ΔPQR
~ ΔABC.

Proof. Refer to the diagram on the below Let H be the orthocenter of
ΔABC. It is well-known that H is also the incenter of ΔDEF. In parƟcular, DH
bisects ∠EDF and we have



Since DR = DQ, we have , which

implies BC // QR. Similarly, PQ // AB and PR // AC.

We must have ∠A = ∠P, ∠B = ∠Q and hence the conclusion.

Note:  One may attempt to show ∠A = ∠P by observing that ∠P = ∠DQR
and ∠A = ∠CDE. Can we show that ∠DQR = ∠DRQ = ∠CDE ? NoƟce that if
we have ∠DRQ = ∠CDE, it follows immediately that BC // QR and similarly,
PQ // AB and PR // AC. Indeed, we should have these parallel lines.

Example 5.1.2 (CHN 10)  Let  be a straight line and P is a point which does
not lie on . A, B, C are disƟnct points on . Let the circumcenters of ΔPAB,
ΔPBC, ΔPCA be O1, O2, O3 respectively. Show that P, O1, O2, O3 are concyclic.

Insight.  Refer to the diagram on the below. This is indeed a complicated
diagram and if we draw all the perpendicular bisectors explicitly, it will be
unreadable!

Since we are asked to show P, O1, O2, O3 are concyclic, it is natural to search
for equal angles. For example, can we show ∠1= ∠2?

NoƟce that both ∠1 and ∠2 are at the center of a circle. Moreover, it is

easy to see that O1O3 ⊥ PA and O2O3 ⊥ PC, i.e.,  and 

. Can we show ∠AO1P = ∠CO2P?

NoƟce that ∠CO2P = 2∠CBP, where ∠CBP = ∠AQP (Corollary 3.1.5) 

 (Theorem 3.1.1). This completes the proof.

AlternaƟvely, one may also show that P, O1, O2, O3 are concyclic via



∠PO1O2 = ∠PO3O2 Since O1O2 ⊥ PB, we have

Meanwhile,  This completes the proof.

Note:  This could be considered a very easy problem if one is familiar with
the basic properƟes in circle geometry, including recognizing the angles
needed while disregarding the unnecessary line segments. Indeed, if one
decides to show the concyclicity via angle properƟes, it is natural to
consider either of the approaches above.

Example 5.1.3 Given ΔABC and its incenter I, the circumcircles of ΔAIB and
ΔAIC intersect BC at D, E respectively. Show that DE = AB + AC − BC.

Insight. One recalls that the circumcenter of ΔAIB is indeed the intersecƟon
of CI extended with the circumcircle of ΔABC. Refer to the diagram on the
below. Let CI extended intersect the circumcircle of ΔABC at P. We have PA
= PB = PI = PD. Notice that CI bisects ∠C.

It is not difficult to see ΔACP  ΔDCP. (Can you show it?) Hence, AC = CD.
Similarly, AB = BE. Now it is easy to see the conclusion because BE + CD − DE



= BC. We leave the details to the reader.

Warning:  One should not conclude ΔACP  ΔDCP via PA = PD, ∠DCP =
∠ACP and PC = PC. This is NOT S.A.S.! Instead, one may show that ∠PAC =
180° − ∠PBC = 180° − ∠PDB = ∠PDC and apply A.A.S.

Example 5.1.4 (CMO 11)  Let P be a point inside ΔABC such that ∠PBA =
∠PCA. Draw PD ⊥ AB at D and PE ⊥ AC at E. Show that the perpendicular
bisector of DE passes through the midpoint of BC.

Insight.  Refer to the diagram on the below. It seems the conclusion is
easy to show if P is the orthocenter of ΔABC (i.e., when BD and CE intersect

at P), in which case we have  where M is the midpoint of

BC. The conclusion follows immediately.

Of course, P may not be the orthocenter of ΔABC, but we should sƟll have
MD = ME. How can we show it? We cannot apply the previous argument
since M is not the midpoint of the hypotenuse in a right angled triangle.
What if we construct one, say the midpoint of BP?

Proof. Refer to the diagram on the below. Let M be the midpoint of BC.
Let F, G be the midpoints of BP, CP respectively.

In the right angled triangle 



In ΔBCP, MG is a midline and hence,  It

follows that EF = MG.

Similarly, FM // CP and FM = DG. Now FPGM is a parallelogram.
Notice that ∠EFM = ∠EFP + ∠PFM = 2∠PBA + ∠PFM .
Similarly, ∠MGD = 2∠PCA + ∠PGM. Since ∠PFM = ∠PGM (in the
parallelogram FPGM) and given that ∠PBA = ∠PCA, we must have ∠EFM =
∠MGD.
Now ΔEFM  ΔMGD (S.A.S.), which implies MD = ME. It follows that M lies
on the perpendicular bisector of DE.

Note:  The condiƟon ∠PBA = ∠PCA seems not easy to apply at first. We
leave it aside. Once we see that ΔEFM and ΔMGD should be congruent, it
becomes natural to show equal angles using this condition.

Example 5.1.5 Let I be the incenter of ΔABC. AI extended intersects the
circumcircle of ΔABC at P. Draw ID ⊥ BP at D and IE ⊥ CP at E. Show that ID +
IE = AP sin ∠BAC.

Insight.  Refer to the diagram on the below. We immediately recall that
PB = PC = PI. However, one may find it difficult to construct a line segment
equal to ID + IE. Since ID, IE are heights, perhaps we could use the area
method. Notice that

 (*)

It follows that ID + IE = BC sin ∠1. Now it suffices to show that BC sin ∠1 =
AP sin ∠BAC.



Is it reminiscent of Sine Rule? Shall we show that 

Indeed, applying Sine Rule repeatedly gives  

One sees the conclusion by showing ∠ABP = ∠1. We leave it to the reader
to complete the proof. (Hint: ∠PBC = ∠PAC = ∠PAB .)

Note:  We use the fact that  Indeed,

this holds for a general quadrilateral. Refer to the leŌ diagram below where

AC, BD intersect at P. We must have 

NoƟce that  where

h1, h2 are heights from A, C to BD respecƟvely. NoƟce that h1 = AP sin ∠1
a n d h2 = CP sin ∠1 because sin ∠1 = sin ∠APB. Hence, 

AlternaƟvely, one may also draw lines passing through A, C and parallel to
BD, and lines passing through B, D and parallel to AC. Refer to the right
diagram above. NoƟce that EFGH is a parallelogram. One sees that 

Example 5.1.6 (CWMO 12)  In an acute angled triangle ΔABC, D is on BC
such that AD ⊥ BC. Let O and H be the circumcenter and orthocenter of
ΔABC respectively. The perpendicular bisector of AO intersects BC extended
at E. Show that the midpoint of OH is on the circumcircle of ΔADE.



Insight.  Refer to the diagram on the below. Let N be the midpoint of OH.
One sees that M lies on the circumcircle of ΔADE. i.e., A, M, D, E are
concyclic since ∠AME = ∠ADE = 90°. We are to show N also lies on this
circle.

It seems easier to show the concyclicity involving M instead of E, as we
know more about M than E.
Can we show that A, M, N, D are concyclic? NoƟce that M, N are both
midpoints and we have MN // AH. Hence, we should have MNDA an
isosceles trapezium. How can we show it?

NoƟce that we have used the condiƟon about M and the perpendicular
bisector of AO, the midpoint N and the orthocenter H, but we have not used
the condiƟon about O and the circumcircle. How could we relate O and the
circumcircle to A, M, N and D?
Recall that if AD extended intersects the circumcircle at D'. we have DH =
DD'. Refer to the diagram above.
It follows that DN // OD'. This implies ∠ADN = ∠AD'O = ∠OAD. Hence,
ADNM is an isosceles trapezium and the conclusion follows.

Example 5.1.7 Given a non-isosceles acute angled triangle ΔABC, O is its
circumcenter. P is a point on AO extended such that ∠BPA = ∠CPA. Refer
to the diagram on the below. Draw PQ ⊥ AB at Q, PR ⊥ AC at R and AD ⊥



BC at D. Show that PQDR is a parallelogram.

Insight.  It is natural to consider showing PQ // DR and PR // DQ. Given
that PQ ⊥ AB and PR ⊥ AC, it suffices to show DQ ⊥ AC and DR ⊥ AB. Let
us focus on one of them, say DQ ⊥ AC : most probably a similar argument
applies for the other. How can we show that ∠BAC + ∠AQD = 90°?

Recall ∠BAC = 90° − ∠OBC, i.e., it suffices to show ∠AQD = ∠OBC. Refer to
the diagram above. How are these two angles related? It seems not very
clear.
On the other hand, we are given ∠BPA = ∠CPA. How can we use this
condiƟon? Can you see that O, B, P, C are concyclic (Example 3.1.11)? Now
we have ∠OBC = ∠APC. Can we show ∠APC = ∠AQD?
One may also noƟce that ∠CAO = ∠BAD. It seems that we should have
ΔPAC ~ ΔQAD. Refer to the diagram below.

Proof.  It is easy to see ∠CAD = ∠BAO (Example 3.4.1). Hence, ΔAQP ~

ΔADC and 



NoƟce that ∠CAO = ∠BAD. We must have ΔQAD ~ ΔPAC. It follows that
∠AQD = ∠APC.

Since ΔABC is non-isosceles, we must have PB ≠ PC. Otherwise OP is the
perpendicular bisector of BC, which implies AB = AC. It follows that O, B, P, C
are concyclic (Example 3.1.11), which implies that ∠OBC = ∠APC = ∠AQD.
NoƟce that ∠OBC + ∠BAC = 90° because O is the circumcenter of ΔABC. It
follows that ∠AQD + ∠BAC = 90°, which implies that DQ ⊥ AC, i.e., DQ //
PR.
Similarly, DR // PQ and the conclusion follows.

Note:  One sees that familiarity with basic facts in geometry is important
in solving this problem.

Example 5.1.8 In an equilateral triangle ΔABC, D is a point on BC. Let O1, I1
be the circumcenter and incenter of ΔABD respecƟvely, and O2, I2 be the
circumcenter and incenter of ΔACD respecƟvely. If the lines O1I1 and O2I2
intersect at P, show that D is the circumcenter of ΔO1PO2.

Insight.  Apparently, the construcƟon of the diagram is not simple.
Perhaps we shall consider the circumcenters and incenters separately.

Refer to the following diagrams. Can you see ∠I1AI2 = 30° ? Can you see 
O1 and O2 have the same radius (by Sine Rule) and hence, AO1DO2 is a
rhombus?



If we focus on one triangle, say ΔACD with its incenter and circumcenter, we

have 

But these two angles are the same since ∠C = 60°! This implies A, O2, I2, D
are concyclic. Refer to the left diagram below.

One sees that ΔO1O2D is an equilateral triangle. Hence it suffices to show
that ∠P = 30°. Refer to the previous right diagram. We should have ∠P =
∠I1 AI2. It seems that AI1PI2 is a parallelogram. Can we show it? (We have
not used the concyclicity of A, O2, I2, D.)

Proof.  Since O2, I2 are the circumcenter and A incenter of ΔACD

respectively, we have 



It follows that ∠AO2D = ∠AI2D = 120° because ∠C = 60°. Hence, A, O2, I2, D
are concyclic and we have ∠AI2O2 = ∠ADO2 = 30° (because AO2 = DO2 and
∠AO2D = 120°).

NoƟce that  which implies ∠I1AI2 = ∠AI2O2,

i.e., AI1 // O2P. Similarly, AI2 // O1P and AI1PI2 is a parallelogram.

In particular, ∠P = ∠I1AI2 = 30°.

On the other hand, let the circumradius of ΔABD and ΔACD be r1, r2

respectively. By Sine Rule, 

Notice that sin ∠ADB = sin ∠ADC (because ∠ADB = 180° − ∠ADC) and AB =
AC. It follows that r1 = r2 and hence, AO1DO2 is a rhombus. In parƟcular,
ΔO1O2D is an equilateral triangle.

Now  implies that P lies on the circle centered at D

with radius O1D. This completes the proof.

Example 5.1.9 (EGMO 12)  Given an acute angled triangle ΔABC, its
circumcircle Γ and orthocenter H, K is a point on the minor arc  Let L be

the reflecƟon of K about the line AB and M be the reflecƟon of K about the
line BC. The circumcircle of ΔBLM intersects Γ at B and E. Show that the lines
KH, EM and BC are concurrent.

Insight.  Refer to the diagram on the below. It seems not easy to show the
concurrency using Ceva’s Theorem. However, we noƟce that H and D are L
symmetric about BC, where D is the intersecƟon of AH extended and Γ. On
the other hand, it is given that M and K are symmetric about BC.



Now it is easy to see that MD, KH and BC are concurrent, because BC is the
perpendicular bisector of HD and MK, where HD // MK. Since we are to
show the lines KH, EM and BC are concurrent, it suffices to show that E, M, D
are collinear. NoƟce that there are many equal angles in the diagram due to
the two circles and the symmetry of K, L and K, M. Is there any angle related
to say the point E?

How about ∠BEM ? One sees immediately that ∠BEM = ∠BLM . Refer to
the diagram on the below. Since L, M are reflecƟons of K about AB, BC
respecƟvely, we have BK = BM = BL. It follows that ∠BLM = ∠BML. Can we
show that ∠BAD = ∠BED = ∠BEM ?

Unfortunately, neither ∠BLM nor ∠BML seems directly related to ∠BAD.

Perhaps we can write  NoƟce that ∠MBL =

∠ABL + ∠ABM and these angles, aŌer applying the reflecƟons, might be
related to ∠BAD.

Proof.  Let AH extended intersect Γ at D. We know that D is the reflecƟon
o f H about BC. Since M is the reflecƟon of K about BC, BC is the
perpendicular bisector of both MK and HD. Hence, MK // HD. Now DHMK is
an isosceles trapezium and it is easy to see that KH, DM, BC are concurrent.
We claim that E, M, D are collinear.



Since L, M are reflecƟons of K about AB, BC respecƟvely, one sees that BK =
BM = BL, which implies ∠BLM = ∠BML.

Now we have 

=90° − ∠ABC = ∠BAD = ∠BED. Hence, E, M, D are collinear. We conclude
that KH, EM and BC are concurrent.

Note:  One may find it difficult to show that E, M, D are collinear by
∠BME + ∠BMD = 180°. Indeed, we do not know much about ∠BMD or
∠BKH because K is an arbitrary point.

Example 5.1.10 (USA 12)  Let ABCD be a cyclic quadrilateral whose
diagonals AC, BD intersect at P. Draw PE ⊥ AB at E and PF ⊥ CD at F. BF and
CE intersect at Q. Show that PQ ⊥ EF.

Insight.  Refer to the diagram on the below. Apparently, the construcƟon
of the diagram is straighƞorward, but it is not clear how we could show PQ
⊥ EF. Even if we extend QP, intersecƟng EF, it seems difficult to find the
angles at the B intersecƟon. Perhaps we shall leave the conclusion aside
and study the diagram further.

NoƟce that E and F are introduced by perpendicular lines. ABCD is cyclic. If
we introduce more perpendicular lines, we should obtain more concyclicity
by the right angles. Refer to the left diagram below.



Let us draw say PG ⊥ AD at G. Refer to the right diagram above. We
immediately obtain two circles, i.e., A, E, P, G and D, F, P, G are concyclic.
Even though this seems not directly related to our conclusion, it gives us an
inspiraƟon: what if we draw PG ⊥ EF at G instead? Perhaps we could sƟll
obtain concyclicity and it would suffice to show that P, G, Q are collinear, or
PG passes through Q. Refer to the diagram below.

Since BF, CE intersect at Q, it suffices to show PG, BF, CE are concurrent. Is it
reminiscent of radical axes? Let Γ1, Γ2 denote the circumcircles of ΔEGP and
ΔFGP respectively. We see that PG is the radical axis of Γ1, Γ2.

If we can find another circle Γ3 such that EQ, FQ are the radical axes of Γ1, Γ3
and Γ2, Γ3 respecƟvely, the conclusion follows. Let Γ 1 intersect the line EQ at
X and Γ2 intersect the line FQ at Y. It is easy to see that X, Y are the feet of
the perpendiculars from P to EQ, FQ respectively. Can we show that E, X, Y, F
are concyclic? This should not be difficult to as we have an abundance of
concyclicity in the diagram (for example, B, E, P, Y are concyclic because
∠BEP = ∠BYP = 90°) and hence, many pairs of equal angles.

Proof.  Draw PG ⊥ EF at G, PX ⊥ CE at X and PY ⊥ BF at Y. Clearly, E, G, P,
X are concyclic and F, G, P, Y are concyclic. We claim that E, X, Y, F are
concyclic, which implies the radical axes EX, FY and PG are concurrent at Q
(Theorem 4.3.2) and hence, leads to the conclusion. Refer to the leŌ
diagram below.



5.2

It suffices to show ∠EXF = ∠EYF. Since ∠PXE = ∠PYF = 90°, it suffices to
show ∠PXF = ∠PYE. Refer to the right diagram above. NoƟce that ∠BEP =
∠BYP = 90°. Hence, B, E, P, Y are concyclic and ∠PYE = ∠ABD. Similarly,
∠PXF = ∠ACD. This completes the proof as ∠ABD = ∠ACD (angles in the
same arc).

Basic Techniques

Knowing the basic facts and important theorems well is important for
solving geometry problems, but is sƟll insufficient. In fact, it is common to
see beginners who diligently learn many theorems, but do not know how to
apply those results and solve geometry problems. Indeed, many beginners
are not aware of the commonly used techniques (instead of theorems),
which are not found in most textbooks.

The following is an elementary example: NO advanced knowledge is
required to solve this problem. Can you see the clues without referring to
the solution?

Example 5.2.1 Given a quadrilateral ABCD where AD = BC and ∠BAC +
∠ACD = 180°, show that ∠B = ∠D.



•

•

Insight.  It seems not easy to apply the condiƟon ∠BAC + ∠ACD = 180°
since the angles are far apart. Can we put them together? If we extend the
line CD, say the lines AB and CD intersect at E, can you see that we obtain an
isosceles triangle?
If ∠BAC = ∠ACD = 90°, it is easy to see that ABCD is a parallelogram and we
have ∠B = ∠D immediately. Otherwise, say without loss of generality that
∠BAC < 90°, AB extended and DC extended intersect at E. Refer to the
diagram above. We have AE = CE. It seems not clear how AD = BC leads to
the conclusion because they are far apart. Can we put them together? If we
draw AF = BC, where F is on DC extended, we obtain an isosceles trapezium!

Proof.  If ∠BAC = ∠ACD = 90°, we have ΔBAC  ΔDCA (H.L.) and hence,
ABCD is a parallelogram and ∠B = ∠D.
Suppose ∠BAC < 90°. Let DC extended and AB extended intersect at E. Since
∠BAC + ∠ACD = 180°, we have ∠BAC = ∠ECA and AE = CE. Choose F on the
line CD such that AF = AD. We have ∠D = ∠AFD. Now BC = AD = AF gives
ΔABC  ΔCFA (S.A.S.). It follows that ∠B = ∠AFD = ∠D.
If ∠BAC > 90°, the lines AB and CD intersect at the other side of AC and a
similar argument applies.

Note:  We used “cut and paste” to find clues in this problem: since ∠ BAC
and ∠ACD are supplementary, if we put them together, a straight line is
obtained. We also put the line segments AD, BC together, which gives an
isosceles trapezium. NoƟce that simply applying any theorem directly to
this problem will not give the conclusion.

Basic and commonly used techniques in solving geometry problems include
the following:

Cut and paste

When given equal line segments, equal or supplementary angles, and
sum of angles or line segments which are far apart, one may cut and
paste, moving those angles or line segments together. This technique
may give straight lines, isosceles triangles or congruent triangles.

Construct congruent and similar triangles.

One strategy to show equal angles or line segments is to place them in
congruent or similar triangles. If no such triangles exist in the diagram,
consider drawing auxiliary lines and construct one! NoƟce that any
other angles or line segments known to be equal may give inspiraƟon
on which triangles could be congruent or similar.



•

•

•

Reflection about an angle bisector

When given an angle bisector, it is naturally a line of symmetry.
Reflecting about the angle bisector may bring angles and line segments
together and hence, it may be an effecƟve technique besides “cut and
paste”.

Double the median.

Refer to the diagram on the below. Given ΔABC and its median AD,
extending AD to E with AD = DE gives ΔABE where BE = AC and ∠ABE =
180° − ∠A.

Hence, sin ∠A = sin ∠ABE and [ΔABC] = [ΔABE].

Moreover, (twice) the median of ΔABC becomes a side of ΔABE. This
may be a useful technique when construcƟng congruent and similar
triangles.

Midpoints and Midpoint Theorem

When midpoints are given, it is natural to apply the Midpoint Theorem,
which not only gives parallel lines, but also moves the (halved) line
segments around. In parƟcular, if connecƟng the midpoints does not
give a midline of the triangle, one may choose more midpoints and
draw the midlines. Refer to the diagram below.



•

•

Given a quadrilateral ABCD where M, N are the midpoints of AD, BC
respectively, simply connecting MN does not give any conclusion. If we

choose P, the midpoint of BD, then 

If we know more about AB and CD, say AB = CD, then we conclude that
ΔPMN is an isosceles triangle.

On the other hand, if midpoints are given together with right angled
triangles, one may consider the median on the hypotenuse. Example
5.1.4 illustrates this technique.

Angle bisector plus parallel lines

One may easily see an isosceles triangle from an angle bisector plus
parallel lines. Refer to the diagram on the below. If AD bisects ∠A, we
have ∠1= ∠2.
If AC // BD, ∠2 = ∠3. It follows that AB = BD.

NoƟce that this technique could also be applied reversely. In the
diagram above, if we know AB = BD, then by showing AC // BD, we
conclude that AD bisects ∠A.

Similar triangles sharing a common vertex

A pair of similar triangles sharing a common vertex may immediately
give another pair of similar triangles. Refer to the following diagrams
where ΔABC ~ ΔAB'C'.

Since  by subtracƟng ∠B'AC, we

see that ∠BAB' = ∠CAC'. It follows that ΔABB' ~ ΔACC'.

NoƟce that this technique applies for the inverse as well. If we have
ΔABB' ~ ΔACC', we may also conclude that ΔABC ~ ΔAB'C'.



•

•

(1)

(2)

(3)
(4)

One may recall that we applied this technique in the proof of
Ptolemy’s Theorem, as well as in Example 5.1.7.

Angle-chasing

This is an elementary but effecƟve technique when we explore angles
related to a circle, especially when an incircle or circumcircle of a
triangle is given (because the incenter and circumcenter give us even
more equal angles). If more than one circle is given, it is a basic
technique to apply the angle properƟes repeatedly and idenƟfy equal
angles far apart or apparently unrelated. Indeed, experienced
contestants are very familiar with the angle properƟes and are sharp in
observing and catching equal angles. (For example, can you write down
the proof of Simson’s Line quickly?)

However, one should avoid long-winded angle-chasing which leads
nowhere. If that happens, one may seek clues from the line segments
instead, say idenƟfying similar triangles, or applying the IntersecƟng
Chords Theorem and the Tangent Secant Theorem.

Watch out for right angles.

When right angles are given, it is worthwhile to spend Ɵme and effort
digging out more informaƟon about them, because right angles may
lead to a number of approaches:

If a right angled triangle with a height on the hypotenuse is given,
we will have similar triangles.
If there are other heights or the orthocenter of a triangle, we may
find parallel lines.
One may see concyclicity when a few right angles are given.
If a right angle is extended on the circumference of a circle, it
corresponds to a diameter of the circle.

One should always refer to the context of the problem and determine
which approach might be effective.



•

•

•

Perpendicular bisector of a chord

Introducing a perpendicular from the center of a circle to a chord is a
simple technique but occasionally, it may be decisively useful. NoƟce
that the perpendicular bisector gives both right angles and the
midpoint of the chord.

Draw a line connecting the centers of two intersecting circles.

This is a very basic technique where the line connecƟng the centers of
the two circles is a line of symmetry.
Refer to the diagram on the below. NoƟce that O1O2 ⊥ AB and O1O2 is
the angle bisector of both ∠AO1B and ∠AO2B. Even though this is an
elementary result, one may apply it to solve difficult problems.

Example 3.2.13 illustrates this technique. It is noteworthy that
beginners tend to overlook this elementary property during problem-
solving, especially when the diagram is complicated.

Relay: Tangent Secant Theorem and Intersecting Chords Theorem

When more than one circle is given and there is a common chord or
concurrency, one may apply the Tangent Secant Theorem or the
IntersecƟng Chords Theorem repeatedly to acquire more concyclicity.
Refer to the diagrams below. Can you see C, D, E, F are concyclic in both
diagrams? Can you see that PC · PD = PA · PB = PE · PF ?



Refer to the diagram on the below. If A, B, C, D are concyclic, C, D, E, F
are concyclic and E, F, G, H are concyclic, can you see that A, B, G, H are
concyclic? (Hint: PA · PB = PC · PD = PE · PF = PG · PH.)

One may recall that we applied these basic techniques extensively when
solving problems in the previous chapters. We shall illustrate these
techniques with more examples in this section.

Example 5.2.2 (ITA 11)  Given a quadrilateral ABCD, the external angle
bisectors of ∠CAD, ∠CBD intersect at P. Show that if AD + AC = BC + BD,
then ∠APD = ∠BPC.



Insight.  Refer to the leŌ diagram above, where AP, BP are the external
angle bisectors of ∠CAD, ∠CBD respecƟvely. How can we apply the
condition AD + AC = BC + BD? Cut and paste!
Extend DB to C' such that BC' = BC and extend CA to D' such that AD = AD'.
Can you see that C, C' are symmetric about the line PB, and D, D' are
symmetric about the line PA? (Hint: ΔBCC' is an isosceles triangle and PB is
the perpendicular bisector of CC'.) Now BC = BC' and AD = AD'. Refer to the
right diagram above. Can you see that AD + AC = BC + BD implies CD' = C'D ?
Can you see that PC = PC', PD = PD' and hence, ΔPC'D  ΔPCD'?
Now ∠C'PD = ∠CPD' and the conclusion follows. We leave the details to
the reader.

Example 5.2.3 (GER 08)  Given an acute angled triangle ΔABC, AD is the
angle bisector of ∠A, BE is a median and CF is a height. Show that AD, BE, CF
are concurrent if and only if F lies on the perpendicular bisector of AD.

Insight.  We are to show AF = DF if and only if AD, BE, CF are concyclic.
Since AD bisects ∠A, the isosceles triangle ΔADF gives AC // DF. Refer to
the diagram on the below. How can we show the concurrency?

What if we apply Ceva’s Theorem to the height CF, the median BE and the
angle bisector AD? By the Angle Bisector Theorem and AE = CE, we may
obtain the ratio of line segments leading to AC // DF.



Proof.  By Ceva’s Theorem, AD, BE, CF are concurrent if and only if 

 Since BE is a median, it is equivalent to  or

DF // AC.

We claim that DF // AC if and only if AF = DF. In fact, since AD bisects ∠A, DF
// AC if and only if ∠ADF = ∠CAD = ∠BAD, which is equivalent to AF = DF.
In conclusion, AD, BE, CF are concurrent if and only if AF = DF, i.e., F lies on
the perpendicular bisector of AD.

Example 5.2.4 (BRA 08)  Given a quadrilateral ABCD inscribed inside O,
draw lines 1, 2 such that 1 and the line AB is symmetric about the angle
bisector of ∠CAD, and 2 and the line AB is symmetric about the angle
bisector of ∠CBD. If 1 and 2 intersect at M, show that OM ⊥ CD.

Insight.  It is easy to see that the angle bisectors of ∠CAD and ∠CBD
meet at the midpoint of the arc  say P. Refer to the diagram on the

below. NoƟce that the reflecƟons 1, 2 and the circle give a lot of equal
angles.

How can we show OM ⊥ CD ?
It may not be wise to find the angle directly because we do not know where
OM and CD intersect. Shall we explore the angles around the circles and
seek more clues? If for example OM is the perpendicular bisector of AF
(i.e., AM = FM ), then it suffices to show AF // CD.

Proof.  Let P be the midpoint of  Clearly, AP, BP are the angle

bisectors of ∠CAD, ∠CBD respectively.

Let 1 and 2 intersect O at A, E and B, F respectively.

Since 1 and AB are symmetric about AP, we must have ∠BAP = 180° −



∠EAP = ∠ECP (because A, E, C, P are concyclic).   (1)

Since P is the midpoint of  we have ∠PCD = ∠PAC. (2)

(1) and (2) imply that ∠BAP − ∠PAC = ∠ECP − ∠PCD, which gives ∠BAC =
∠DCE, i.e.,  extend the same angle on the circumference.

This implies BC = DE and hence, BCDE is an isosceles trapezium with BE //
CD.

Since 2 and AB are symmetric about BP, a similar argument applies which
gives AF // CD and ADCF is an isosceles trapezium. Now it is easy to see that
AEBF is also an isosceles trapezium. NoƟce that AM = MF and hence, OM is
the perpendicular bisector of AF. Since AF // CD, we must have OM ⊥ CD.

Note:  If the diagram becomes complicated and the angles on the
circumference do not give clear insight, it might be easier to consider the
corresponding arcs. NoƟce that we showed  in the proof above,

which simplifies the argument. In fact, one would easily see the isosceles
trapeziums via equal arc lengths.

Example 5.2.5  Let I be the incenter of ΔABC. M, N are the midpoints of AB,
AC respecƟvely. NM extended and CI extended intersect at P. Draw QP ⊥
MN at P such that QN // BI. Show that QI ⊥ AC.

Insight.  Refer to the following diagram. NoƟce that the angle bisector CI
and the parallel lines BC // MN give PN = CN.

Since  we must have ∠APC = 90°.

Given PQ ⊥ PN, i.e., ∠QPN = 90° = ∠APC, one immediately sees that
∠QPI = ∠APN. Since we are to show QI ⊥ AC, we should have ∠PIQ = 90°
− ∠ACI = ∠PAC.



Hence, we should have ΔAPN ~ ΔIPQ.

Can we show it, say via  Notice that AP, PN, IP, PQ are the sides

of the right angled triangles ΔAPI and ΔPQN. Indeed, if we can show that
ΔAPI ~ ΔNPQ, it follows that ΔAPN ~ ΔIPQ.

We have not used the condiƟon QN // BI yet. Perhaps this could help us to
find an equal pair of angles in ΔAPI and ΔNPQ.

Proof.  Since CI bisects ∠C and BC // MN, we have ∠NCP = ∠BCP =
∠NPC, i.e., PN = CN. Since N is the midpoint of AC, we have PN = AN = CN
and hence, ∠APC = 90° (Example 1.1.8).

Since I is the incenter of ΔABC, we have  and

hence, ∠AIP = 180° − ∠AIC = 90° −  ∠ABC = 90° − ∠CBI.

Notice that ∠CBI = ∠PNQ (because MN // BC and BI // QN). Hence, ∠AIP =
90° − ∠PNQ = ∠PQN. Since ∠APC = ∠QPN = 90°, we must have ΔAPI ~
ΔNPQ. Refer to the diagram below.

Now we have 

It follows that ΔAPN ~ ΔIPQ.

Let QI extended intersect AC at D. We have ∠CID = ∠PIQ = ∠PAC = 90° −
∠ACI, i.e., ∠CDI = 90°. This completes the proof.

Example 5.2.6 (HEL 09)  Let O, G denote the circumcenter and the centroid
of ΔABC respecƟvely. Let the perpendicular bisectors of AG, BG, CG
intersect mutually at D, E, F respecƟvely. Show that O is the centroid of
ΔDEF.



Insight.  Refer to the diagram below. What can we say about O and ΔDEF ?
O is the circumcenter of ΔABC where ΔDEF is constructed by the
perpendicular bisectors of AG, BG, CG. Can you see the link between
perpendicular bisectors and circumcenters? Indeed, one immediately
concludes that D, E, F are the circumcenters of ΔBCG, ΔACG, ΔABG
respectively.

How can we show that O is the centroid of ΔDEF ? Let DO extended intersect
EF at P. If we can show that EP = FP (which should be true), perhaps it is
similar to show that EO, FO pass through the midpoints of DF, DE
respecƟvely. NoƟce that we have many right angles in the diagram, which
give a lot of concyclicity.

Let L be the midpoint of BC. Can you see that ∠CAL = ∠OEP and ∠ACB =
∠EOP ? What can you say about ΔACL and ΔEOP ? How about ΔABC and
ΔDEF ?

Proof.  It is easy to see that D, E, F are the circumcenters of ΔBCG, ΔACG,
ΔABG respecƟvely. Let L, M, N be the midpoints of BC, AC, AB respecƟvely.
NoƟce that the lines DL, EM, FN are the perpendicular bisectors of BC, AC,
AB respecƟvely and hence, intersect at O. Let DL extended intersect EF at P.
We claim that P is the midpoint of EF.

Let AG intersect EF at Q. Since AG ⊥ EF and EM ⊥ AC, A, E, M, Q are
concyclic and hence, ∠CAL = ∠OEP. (1)

Since ∠CLO + ∠CMO = 180°, we also have C, L, O, M concyclic and hence,
∠ACL = ∠EOP. (2)



(1) and (2) give ΔACL ~ ΔEOP and hence,    (3)

Similarly, one sees that ΔABL ~ ΔFOP and hence,    (4)

(3) and (4) imply EP = FP, i.e., DO extended passes through the midpoint of
EF. Similarly, EO extended and FO extended pass through the midpoints of
DF and DE respectively. We conclude that O is the centroid of ΔDEF.

Note:  Even though we did not explicitly double the median in the proof
above, it is essenƟally the technique we applied. Refer to Example 1.2.11,
where ΔABC and ΔAEF are related in a similar manner as ΔABC and ΔOEF in
this example. Refer to the diagram on the below. If we extend AL to A' such
th at AL = AL', can you see ΔACA' ~ ΔEOF ? NoƟce that P and L are
corresponding points because ∠ACL = ∠EOP.

One may also show that ΔDEP ~ ΔCGL and ΔDFP ~ ΔBGL, which also leads to
the conclusion.

Example 5.2.7 Let Γ1, Γ2, Γ3 be three circles such that Γ1, Γ2 intersect at A
and P, Γ2, Γ3 intersect at C and P, and Γ1, Γ3 intersect at B and P. Refer to the
following diagram. If AP extended intersects Γ3 at D, BP extended intersects
Γ2 at E and CP extended intersects Γ1 at F, show that 



Insight.  We focus on  first. Since we do not have much informaƟon

about the line segments, we may consider re-wriƟng the raƟo by areas of
triangles.

However, applying this to  gives raƟos of no common

denominator and hence, it is not easy to calculate the sum.

Perhaps we should use the triangles independent of AD, BE, CF. NoƟce that
AP, BP, CP are common chords of circles. How about connecƟng the centers
of the circles? It gives us the perpendicular bisector of the common chords.
Refer to the diagram below, where we denote the centers of Γ1, Γ2, Γ3 by O1,
O2, O3 respectively. If we draw O3H ⊥ AD, it is the perpendicular bisector of

DP. Hence,  This seems closely related to ΔO1O2O3.



Proof.  Let O1, O2, O3 denote the centers of Γ1, Γ2, Γ3 respecƟvely. Let
O1O2 intersect AP at M. Clearly, AM = PM. Draw O3 ⊥ DP at H.

It is easy to see that DH = PH. Hence, 

NoƟce that  MH, because O1O2 ⊥ AD

and O3H ⊥ AD, i.e., O1O2 // O3H. It follows that 

Refer to the diagram below.



The conclusion follows as 

Example 5.2.8 (CHN 07)  Let AB be the diameter of a semicircle centered at
O. Given two points C, D on the semicircle, BP is tangent to the circle,
intersecting CD extended at P. If the line PO intersects CA extended and AD
extended at E, F respectively, show that OE = OF.

Insight.  Clearly, AO = BO. One sees that AEBF should be a parallelogram.
How can we show it? Refer to the leŌ diagram below. Perhaps the most
straightforward way is to show ∠ABE = ∠BAF.

By applying circle properƟes, we obtain many equal angles, for example
∠BAD = ∠BCD and ∠BDC = ∠BAE. It seems that we should have ΔBDC ~
ΔEAB. Refer to the right diagram above. Can we show it by considering the

sides, say  Unfortunately, this is not easy because we do not



know much about CD or AE.

On the other hand, we have not used the condiƟon BP ⊥ AB. This is when
drawing a perpendicular to the chord becomes handy: we bisect CD and
obtain a right angle as well. NoƟce that the midpoint of CD and O should be
corresponding points in ΔBDC and ΔEAB.

Proof. Draw OM ⊥ CD at M. We have CM = DM. Since BP ⊥ AB, we have
B, O, M, P concyclic and hence, ∠BMP = ∠BOP = ∠AOE. (1) Since A, B, D, C
are concyclic, we have ∠BDC = ∠BAE. (2)

(1) and (2) imply that ΔBDM ~ ΔEAO and hence,  Refer to the

following diagram.

Since O and M are midpoints of AB, CD respectively, we have

   (3)

(2) and (3) imply that ΔBDC ~ ΔEAB. Hence, ∠BCD = ∠ABE.

Since ∠BCD = ∠BAD, we must have ∠BAD = ∠ABE.

One sees that ΔAOF  ΔBOE (A.A.S.) and hence, OE = OF.

Example 5.2.9 (IRN 09)  Given an acute angled triangle ΔABC where AD, BE,
CF are heights, draw FP ⊥ DE at P. Let Q be the point on DE such that QA =
QB. Show that ∠PAQ = ∠PBQ = ∠PFC.

Insight. Refer to the diagram on the below. Clearly, ∠PAQ = ∠PBQ if and
only if A, B, Q, P are concyclic. We are given many perpendicular lines, but
we should not draw all the lines explicitly: otherwise, the diagram will be in



a mess. NoƟce that there are a few concyclicity due to the right angles. For
example, A, B, D, E are concyclic.

Can you see that the circumcircle of ΔPQF passes through M, the midpoint
of AB? (Hint: QM is the perpendicular bisector of AB.) Can you see that that
the circumcircle of ΔDEF pass through M as well? (Hint: Consider the nine-
point circle of ΔABC.) Suppose BA extended and DE extended intersect at X.
Perhaps we can apply the Tangent Secant Theorem repeatedly and show
that A, B, Q, P are concyclic.
How about ∠PFC ? Can you see that ∠PFC = ∠X, because FP ⊥ DE and CF
⊥ AB?

Proof. Clearly, Q lies on the perpendicular bisector of AB. Let M be the
midpoint of AB. We must have QM ⊥ AB. Since FP ⊥ DE, F, M, Q, P are
concyclic. Let the lines AB and DE intersect at X. By the Tangent Secant
Theorem, XP · XQ = XF · XM. (1)
It is well known that A, B, D, E are concyclic and hence, we have XA · XB = XD
· XE. (2) NoƟce that D, E, F, M are concyclic because they lie on the nine-
point circle of ΔABC. Hence, XD · XE = XF · XM. (3) Refer to the diagram on
the below. (1), (2) and (3) give XA · XB = XP · XQ.



5.3

Hence, A, B, Q, P are concyclic and ∠PAQ = ∠PBQ .

Let H denote the orthocenter of ΔABC. Consider the right angled triangle
ΔFHX . Since FP ⊥ HX, we have ∠PFC = ∠X . Refer to the leŌ diagram
below. It suffices to show ∠X = ∠PAQ .

Notice that ∠X = ∠PAB − ∠APX, where ∠APX = ∠ABQ = ∠BAQ. It follows
that ∠X = ∠PAB − ∠BAQ = ∠PAQ. Refer to the right diagram above. This
completes the proof.

Constructing a Diagram

Most geometry problems in compeƟƟons held recently were presented in
descripƟve sentences without any diagram. Contestants are expected to
construct the diagram on their own, usually with a straightedge and a
compass allowed. Indeed, a well-constructed diagram is very important, if
not indispensable, for solving a geometry problem: it not only helps in
seeking geometric insight (for example, catching equal angles around a
circle), but also gives inspiration on what could or should be true.

ConstrucƟng a diagram with only a straightedge and a compass involves a
lot of skills. For example, given O and a point P outside the circle, do you
know how to introduce tangent lines from P to O accurately? (Hint: Draw
a circle Γ where OP is a diameter. Let O and Γ intersect at A, B. Can you see
that PA, PB are the tangent lines from P to O, because the diameter OP
extends right angles on the circumference of Γ ? Refer to the diagram on the
below.)



•

•

•

In this secƟon, we shall introduce a few techniques (related to the diagram)
which one may find useful.

Turn the paper around.

If one thinks there might be symmetry in the diagram constructed but
cannot see it clearly, a wise strategy is rotaƟng the diagram (by turning
the paper around) to the upright posiƟon, for example, with respect to
the angle bisector, the perpendicular bisector or the line connecƟng
the centers of two intersecƟng circles. Usually, the symmetry would
become clearer in this view.

This technique is also helpful for beginners to catch the geometric
insight. It is common that beginners cannot idenƟfy similar triangles or
equal tangent segments if a (complicated) diagram is drawn in an
oblique manner. Hence, by turning the paper around, one may observe
the diagram more thoroughly and find clues more easily.

Coincidence and equivalent conclusions

Occasionally, finding a direct proof could be difficult (or infeasible due
to technical difficulƟes). Hence, one may consider showing an
equivalent conclusion instead by coincidence. For example, if showing
that a line  passes through a specific point X on a circle Γ is difficult,
one may let  intersect Γ at X' and show that X and X' coincide. In fact,
this technique is oŌen applied when showing collinearity and
concurrency, and is also illustrated in Example 1.4.3.

Uniquely determined points

It is an advanced technique to examine the diagram and check how it
could be constructed and which points (and angles, line segments,
etc.) are uniquely determined by the given condiƟons. For example,
given a circle Γ and a point O outside Γ, if we are to construct O which
touches Γ, then it is easy to see that the point of tangency, called P, is
uniquely determined. In fact, P lies on the line connecƟng O and the



center of Γ. NoƟce that OP, the radius of O, is also uniquely
determined.

Although this technique may not help the problem-solving directly, it
gives clues on how the diagram could vary and which points and line
segments are more closely related. Acquiring such insight may greatly
help us understand the diagram, idenƟfy the links and design an
effective strategy leading to the solution.

Example 5.3.1 (RUS 09)  Let O be the circumcircle of ΔABC. D is on AC
such that BD bisects ∠B. Let BD extended intersect O at E. Draw a circle Γ
with a diameter DE, intersecƟng O at E and F. Draw a line  such that the
line BF and  are symmetric about the line BD. Show that  passes through
the midpoint of AC.

Insight. Refer to the diagram on the below. NoƟce that there are a few
symmetries in the diagram due to the angle bisector.

Suppose  intersects AC at M (which should be the midpoint of AC). It
seems from the diagram that M lies on Γ as well! Can we show it?
On the other hand, it may not be easy to show AM = CM directly because we
do not know much about the point M. How about choosing M as the
midpoint of AC ? Would it be easier to show BD bisects ∠MBF ? (We can
probably apply the angle properties about O and Γ.)

NoƟce that E is the midpoint of the arc  and hence, EM is the

perpendicular bisector of AC.

Proof. Let M be the midpoint of AC. Let BM extended intersect O at G.
Since BE bisects ∠ABC, E must be the midpoint of . Hence, EM is the

perpendicular bisector of AC. We claim that BM coincides with , i.e., BE
bisects ∠FBG. NoƟce that it suffices to show that F and G are symmetric
about EM, or equivalently, ∠EFM = ∠G. Refer to the left diagram below.



(1)

(2)

Since EM ⊥ AC, M must lie on Γ where DE is a diameter. It follows that
∠EFM = ∠EDM = ∠CBD + ∠C = ∠ABD + ∠C.

Refer to the right diagram above. NoƟce that ∠ABD = ∠AGE and ∠C =
∠AGB. It follows that ∠ABD + ∠C = ∠AGE + ∠AGB = ∠BGE. This
completes the proof.

Note:
Given  and O, E and M are determined regardless of the choice of

B. By choosing D, other points including B, F and G are determined.
Hence, it is a wise strategy to explore the properƟes of angles around
D.
By rotaƟng the diagram, one may see the symmetry about the line EM.
Refer to the diagram on the below. Let FM extended intersects O at
B'. Notice that BG and B'F are symmetric about the line EM.

Example 5.3.2 Let P be a point inside ΔABC such that ∠APB − ∠ACB =
∠APC − ∠ABC. Let I1, I2 be the incenters of ΔAPB, ΔAPC respecƟvely. Show
that AP, BI1, CI2 are concurrent.

Insight. Apparently, the condiƟons given are unusual, not easy to apply
and unrelated to the conclusion. In fact, we do not even know how to
construct such a diagram. Let us focus on the conclusion: we are to show AP,



BI1, CI2 are concurrent. Since BI1, CI2 are angle bisectors of ∠ABP, ∠ACP
respecƟvely, it suffices to show that these angle bisectors intersect AP at
the same position.

Refer to the leŌ diagram above. Let us draw ΔABP first where BQ is the
angle bisector of ∠ABP. We shall find a point C such that CQ bisects ∠ACP.

What condiƟons must C saƟsfy? For example, we must have  In

this case, we see that it suffices to show  which leads to the

conclusion.

Now we are to apply the condiƟon ∠APB − ∠ACB = ∠APC − ∠ABC. NoƟce
that these angles are far apart. Can we bring them together? Refer to the
leŌ diagram below. NoƟce that ∠ APB − ∠ACB = ∠1 + ∠2 and ∠APC −
∠ABC = ∠3 + ∠4. Hence, ∠1 + ∠2 = ∠3 + ∠4.

It seems these angles are sƟll far apart. Recall that if P is the orthocenter,
then we have ∠1 = ∠2 and ∠3 = ∠4. Refer to the right diagram above. This
is because the perpendicular lines imply concyclicity and give equal angles.
For a general P, there are no perpendicular lines given, but perhaps we can
introduce some!



Proof. Refer to the diagram on the below. Since ∠APB − ∠ACB = ∠1 +
∠2 and ∠APC − ∠ABC = ∠3 + ∠4, we have ∠1 + ∠2 = ∠3 + ∠4.
L e t D, E, F be the feet of the perpendiculars from P to BC, AC, AB
respecƟvely. Since ∠AFP = ∠AEP = 90°, A, F, P, E are concyclic and ∠1 =
∠EFP. Similarly, ∠2 = ∠DFP. It follows that ∠1 + ∠2 = ∠EFP + ∠DFP =
∠DFE. A similar argument gives ∠3 + ∠4 = ∠DEF. Now ∠DEF = ∠DFE and
we must have DE = DF.

By Sine Rule,  (since BP is a diameter of the circumcircle of

ΔBDF). Similarly,  Since DE = DF, we have 

 by applying Sine Rule to ΔABC. Hence, 

 By the Angle Bisector Theorem, the angle bisectors of ∠ABP

and ∠ACP must intersect AP at the same point. (Otherwise, say they

intersect AP at X, Y respecƟvely, we have   which

implies X, Y coincide.) This completes the proof.

Example 5.3.3 Refer to the diagram on the below. O1 and O2 intersect
a t A and B. O3 touches O1 and O2 at C, D respecƟvely. A common
tangent of O1 and O2 touches the two circles at E, F respectively.



If the lines CE and DF intersect at P, show that P lies on the line AB.

Insight. One sees that AB is the radical axis of O1 and O2 . Hence, it
suffices to show that the powers of P with respect to O1 and O2 are the
same, i.e., PC · PE = PD · PF (or by the Tangent Secant Theorem if one is not
familiar with the power of a point with respect to circles). However, the
difficulty is that we do not know the posiƟon of P and hence, we cannot
calculate PC, PD, PE, PF directly.

Refer to the diagram on the below. (We omit A, B to have a clearer view of
the angles.) It seems from the diagram that P, the intersecƟon of the lines
CE and DF, lies on O3 . Can we prove it?

Since O3 is tangent to O1 and O2, the line connecƟng the centers of
the circles must pass through the point of tangency, i.e., O1O3 passes
through C and O2O3 passes through D. NoƟce that ∠CO3D is an angle at the
center of O3. Now P lies on  O3 if and only if ∠CO3D = 2∠CPD. Can we
show this?

NoƟce that ∠CO3D could be calculated via the pentagon O1O3O2FE (which



has two right angles) and ∠CPD could be calculated via ΔEPF.

If we denote ∠O1EC = α and ∠O2FD = β, all the interior angles in the
pentagon O1O3O2FE and ΔEPF could be expressed in α,β, (using the fact that
ΔO1CE and ΔO2DF are isosceles triangles). Refer to the diagram on the
below.

On the other hand, if P indeed lies on O3, we have similar isosceles

triangles ΔO1CE ~ ΔO3CP and ΔO2 DF ~ ΔO3DP. Now and 

could be expressed using the radii of O1, O2 and O3. We should not
be far away from the conclusion.

Proof. First, we claim that P lies on O3. Let ∠O1EC = α and ∠O2FD = β.
Consider ΔEPF. We have

∠CPD = 180° − ∠CEF − ∠DFE = 180° − (90° − α) − (90° − β) = α + β .

On the other hand, by considering the pentagon O1O3O2FE, we have
∠CO3D = 540° − ∠O1EF − ∠O2FE − ∠CO1E − ∠DO2F

= 540° − 90° − 90°−(180° − 2α) − (180° − 2β) = 2(α +β)= 2∠CPD .

Hence, P lies on O3 (Theorem 3.1.1).

Now it is easy to see that ΔO1CE ~ ΔO3CP since both are isosceles triangles
and ∠O1CE = ∠O3CP = α. Similarly, ΔO2DF ~ ΔO3DP.

Let the radii of O1, O2 and O3 be a, b, c respecƟvely. Let CE = x and DF

= y. We have  Similarly, 



Consider ΔO1CE. We have  Similarly, 

Now  On the other hand, applying Sine Rule in

ΔPEF gives 

It follows that  or PC · PE = PD · PF.

Now the power of P with respect to O1 and O2 are the same, which
implies that P lies on the line AB, the radical axis of O1 and O2.

Example 5.3.4 (CHN 10)  Refer to the diagram on the below. O is tangent
to AB at H. Draw a semicircle with the diameter AB, touching O at E. C is a
point on the semicircle such that CD ⊥ AB at D and CD touches O at F.

Show that CH2 = 2DH · BH .

Insight. Clearly, ∠BCH is not 90°, but if it were, we could have concluded

CH2 = DH · BH . Now we are to show CH2 = 2DH · BH .

Hence, if one draws PC ⊥ CH at C, intersecting AB extended at P, we should
have PH = 2BH, i.e., BH = BP. Can we show it? Refer to the diagram on the
below. It seems we do not have many clues about BH and BP, although
there are many points of tangency given in the diagram.

One may find equal angles or apply the Tangent Secant Theorem, but those
are not directly related to BH or BP. Perhaps we should study the diagram



more carefully and see how it could be constructed.

Suppose we are given O. NoƟce that if we choose AB casually, the
semicircle may not touch O. In fact, once the center of the semicircle,
cal led O1, is chosen, the posiƟons of A, B, E (and C, F) are uniquely
determined. Refer to the leŌ diagram below. Can you see that OFDH is a
square?

Since E is the point of tangency, O, O1, E are collinear. Since OF // AB, the
isosceles triangles ΔOEF and ΔO1EB are similar, which implies B, E, F are
collinear! Now we have plenty of clues to apply the Tangent Secant

Theorem. Refer to the right diagram above. One sees that BE · BF = BH2. Can
you see that BE · BF = BA · BD because A, D, F, E are concyclic? Can you see

that BA · BD = BC2?

It follows that BC = BH. This is almost what we want. Refer to the diagram on
the below. Can you see why BH = BP ?

Proof. Let O1 be the midpoint of AB. Extend AB to P such that BH = BP.
Connect OF and O1E. It is easy to see that O1E passes through O. Refer to the
diagram below.



Since OF ⊥ CD and AB ⊥ CD, we must have OF // AB and hence, ∠EOF =
∠EO1B. Since ΔOEF and ΔO1EB are both isosceles triangles, we have ∠OFE
= ∠O1BE. It follows that B, E, F are collinear.
Connect AC, BC and AE. NoƟce that ∠ACB = ∠AEB = ∠ADC = 90°. Hence, A,

D, F, E are concyclic. Now BC2 = BD · BA (Example 2.3.1) = BE · BF = BH2

(Tangent Secant Theorem). Hence, BC = BH.

Notice that BC = BP = BH implies CH ⊥ CP (Example 1.1.8). Now we have CH2

= DH · PH = DH · 2BH. This completes the proof.

Example 5.3.5 Let P be a point inside the cyclic quadrilateral ABCD such
that ∠BPC = ∠BAP + ∠CDP. Draw PE ⊥ AB at E, PF ⊥ AD at F and PG ⊥ CD
at G. Show that ΔFEG ~ ΔPBC.

Insight. Refer to the diagram on the below. It seems ∠BPC = ∠BAP +
∠CDP is not a straighƞorward condiƟon. How can we show ΔFEG ~ ΔPBC ? It
should be via equal angles or sides of equal raƟo. One easily sees that A, E,
P, F are concyclic and D, F, P, G are concyclic. Can you see that ∠BPC = ∠EFG
? What else can we derive from ∠BPC = ∠BAP + ∠CDP ? Even though this
condiƟon is not straighƞorward, it seems the only source for us to
understand the diagram. (NoƟce that E, F, G could be obtained simply by
drawing circles using AP, DP as diameters.) Hence, we shall explore further
about this condition.

One sees that ∠BPC, ∠BAP, ∠CDP are either an angle around P, or an
angle inside ABCD, both of whom might give 360° :

∠APB + ∠CPD = 360° − ∠BPC − ∠APD   (1)

∠APB + ∠CPD = (180° − ∠ABP − ∠BAP ) + (180° − ∠CDP − ∠DCP) (2)

(1) and (2) give ∠APD = ∠ABP + ∠DCP. This is a symmetric version of what
is given. Is it useful? Perhaps we shall examine the construcƟon of our
diagram, i.e., how can we locate a point P such that ∠BPC = ∠BAP + ∠CDP
? By taking ∠BPX = ∠BAP, we must have PX tangent to the circumcircle of



ΔABP at P (Theorem 3.2.10). Refer to the diagram on the below.

Now we construct another circle tangent to the circumcircle of ΔABP at P
(which is simple because the line connecƟng the centers of the two circles
must be perpendicular to PX). This circle intersects the circumcircle of ΔABC
at D because ∠CDP = ∠CPX .
In conclusion, given ΔABC and P, D is uniquely determined and PX should be
a common tangent of the circumcircles of ΔABP and ΔCDP.

Since ABCD is cyclic, we now have three circles, whose radical axes should
be concurrent (Theorem 4.3.2). Refer to the left diagram below. Can you see
similar triangles in this diagram involving BP and CP, for example, ΔQAP ~

ΔQPB and ΔQDP ~ ΔQPC ? Recall that we are to show  What do

we know about EF and FG?

Refer to the right diagram above. Since A, E, P, F are concyclic where AP is a



diameter, we have EF = AP sin ∠BAD (Sine Rule). Similarly, FG = DP sin
∠ADC. Now AP, BP, CP, DP are related by similar triangles. It seems we
have gathered all the links!

Please note that in the formal proof, one should also consider the case if AB
// CD or if AB, CD intersect at the other side of line AD, i.e., our argument
should not depend on the diagram.

Proof. First, we claim that the circumcircles of ΔABP and ΔCDP touch at P.
Let PX be tangent to the circumcircle of ΔABP at P. We have ∠BPX = ∠BAP.
Refer to the diagram on the below.

We also draw PY tangent to the circumcircle of ΔCDP at P, which implies
∠CDP = ∠CPY. It follows that ∠BPC = ∠BAP + ∠CDP = ∠BPX + ∠CPY, i.e.,
P, X, Y are collinear. This is only possible if the circumcircles of ΔABP and
ΔCDP are tangent at P.

Consider the lines AB and CD.

Case I: BA extended and CD extended intersect at Q.

Refer to the diagram on the below. Since ABCD is cyclic, QA · QB = QC · QD,
i.e., the power of Q with respect to the circumcircles of ΔABP and ΔCDP are
the same. Hence, QP must be tangent to both circles.



It is easy to see that ΔQAP ~ ΔQPB.

Hence,    (1)

Similarly, ΔQDP ~ΔQPC and we have    (2)

Since ∠AEP = ∠AFP = 90°, A, E, P, F are concyclic where AP is a diameter. By

Sine Rule,  EF = AP sin ∠BAD.

Similarly, FG = DP sin ∠ADC.

It follows that 

By (1) and (2), we have 

Case II: AB extended and DC extended intersect at Q.
Refer to the leŌ diagram below. A similar argument applies and we sƟll

have 
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Case III: AB // CD

Refer to the right diagram above. We see that ABCD is an isosceles
trapezium (Exercise 3.1) and E, P, G are collinear (Example 1.1.11). We sƟll
have the circumcircles of ΔABP and ΔCDP tangent at P. Now the radical axes,
two of which are AB, CD, must be parallel (Theorem 4.3.2). Hence, AB, CD
are perpendicular to the line connecƟng the circumcenters of ΔABP and
ΔCDP. It follows that P lies on the perpendicular bisectors of AB and CD,
which implies AP = BP and CP = DP.
Since A, E, P, F are concyclic where AP is a diameter, we still have EF = AP sin
∠BAD and similarly, FG = DP sin ∠ADC.

Since AB // CD, we have sin ∠BAD = sin ∠ADC because ∠BAD and ∠ADC

are supplementary. Now 

In conclusion,  holds in all cases.

Now ∠BPC = ∠BAP + ∠CDP = ∠EFP + ∠GFP (angles in the same arc) =
∠EFG. We conclude that ΔFEG ~ ΔPBC.

Exercises

1. Given an acute angled triangle ΔABC and its circumcenter O, BD, CE are
heights. Show that AO ⊥ DE.

2. Given a semicircle centered at O whose diameter is AB, draw OP ⊥ AB,
intersecƟng the semicircle at P. Let M be the midpoint of AP. Draw PH ⊥

BM at H. Show that PH2 = AH · OH.

3. (IND 94) Let I be the incenter of ΔABC and the incircle of ΔABC touches



BC, AC at D, E respecƟvely. If BI extended and DE extended intersect at P,
show that AP ⊥ BP.

4. (AUT 09) Given an acute angled triangle ΔABC where D, E, F are the
midpoints of BC, AC, AB respecƟvely and AP, BQ, CR are heights. Let X, Y, Z
be the midpoints of QR, PR, PQ respecƟvely. Show that DX, EY, FZ are
concurrent.

5. Given a non-isosceles acute angled triangle ΔABC and its circumcircle O,
H is the orthocenter of ΔABC and M, N are the midpoints of AB, BC
respecƟvely. If MH extended and NH extended intersect O at P, Q
respectively, show that P, Q, M, N are concyclic.

6. Given a right angled triangle ΔABC where ∠A = 90°, AD ⊥ BC at D. Let the
radii of the incircles of ΔABC, ΔABD, ΔACD be r, r1, r2 respecƟvely. Show that
r + r1 + r2 = AD.

7. Given a rectangle ABCD where AB = 1 and BC = 2, P, Q are on BD, BC
respectively. Find the smallest possible value of CP + PQ.

8. Given an acute angled triangle ΔABC and its orthocenter H, M is the
midpoint of BC. Draw a line  passing through H and perpendicular to MH,
intersecting AB, AC at P, Q respectively. Show that H is the midpoint of PQ.

9. Let P be a point outside O and PA, PB touch O at A, B respectively. C is
a point on AB and the circumcircle of ΔBCP intersects O at B and D. Let Q
be a point on PA extended such that OP = OQ. Show that AD // CQ.

10. Given an acute angled triangle ΔABC and its circumcircle, AD, BE are
heights. X lies on the minor arc  If the lines BX and AD intersect at P, and

the lines AX and BE intersect at Q, show that DE passes through the
midpoint of the line segment PQ.

11. Given a right angled triangle ΔABC where ∠A = 90° and its circumcircle Γ,
P is a point on Γ and PH ⊥ BC at H. D, E are points on Γ such that PD = PE = PH.
Show that DE bisects PH.

12. Let AB be a diameter of O. P, Q are points outside the circle such that
PA intersects O at C, PB extended intersects O at D and QC, QD touch 
O at C, D respecƟvely. If AD extended and PQ extended intersect at E, show
that B, C, E are collinear.

13 (CHN 12) Let Γ be the circumcircle of ΔABC and I be the incenter of
ΔABC. Let AI extended and BI extended intersect Γ at D, E respecƟvely. Draw



a line 1 passing through I such that 1 // AB. Draw a line 2 tangent to Γ at C.
If 1, 2 intersect at F, show that D, E, F are collinear.

14. In ΔABC, ∠A = 90° . D, E are on AC, AB respecƟvely such that BD, CE
bisect ∠B, ∠C respecƟvely. Draw AP ⊥ DE, intersecƟng BC at P. Show that
AB − AC = BP − CP.

15. Given a parallelogram ABCD, the circumcircle of ΔABD intersects AC
extended at E. P is a point on BD such that ∠BCP = ∠ACD. Show that ∠AED
= ∠BEP.

16. Let CD be a diameter of O. Points A, B on O are on opposite sides of
CD. PC is tangent to O at C, intersecƟng the line AB at P. If the lines BD
and OP intersect at E, show that AC ⊥ CE.

17. Refer to the diagram on the below. Given a cyclic quadrilateral ABCD,
where BA extended and CD extended intersect at P, E, F lie on CD. Let G, H
denote the circumcenters of ΔADE and ΔBCF respecƟvely. Show that if A, B,
F, E are concyclic, then P, G, H are collinear.
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Chapter 6

Geometry Problems in Competitions

We have included a number of geometry problems from compeƟƟons in
the previous chapters as examples. One may see that those problems are
generally much harder than the standard exercises: simply applying a
known theorem will not be an effecƟve strategy. It could be difficult to
even relate the conclusion to the condiƟons given. Indeed, this is a major
obstacle encountered by the beginners: how to start problem solving? On
the other hand, reading the soluƟons provided does not seem to be
inspiring. Those soluƟons are usually wriƩen in an elegant and splendid
manner, but do not show the beginners how one can think of such a
solution.

One definitely finds it useful to be familiar with the basic skills and
commonly used techniques illustrated in the previous chapters. Besides,
we will introduce a few strategies in this chapter to tackle challenging
geometry problems, while elaboraƟng these strategies with examples from
various compeƟƟons in the past years. Our focus is to seek clues and
insights for each problem and hence, carry out the strategy which gradually
leads to the solution.

Reverse Engineering

Not all compeƟƟon quesƟons are unreasonably difficult. Indeed, for those
(relaƟvely) easy quesƟons, one simple but effecƟve strategy is reverse
engineering. This includes the following:

Expect what the last step of the solution could be.

For example, if we are to show concyclicity, it could be concluded by
equal angles, supplementary angles or line segments which compose
of the Tangent Secant Theorem or the IntersecƟng Chords Theorem. If
we are to show collinearity, it could be concluded by either Menelaus’
Theorem or supplementary angles. If we are to show equal line
segments, it could be concluded by isosceles, congruent or similar
triangles.
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Knowing the sketch of (the last part of) the proof gives inspiraƟon on
what intermediate steps one may expect and attempt to show.

Discover what should be true by assuming the conclusion is true.

Of course, the conclusion to be shown should be true. Hence, by
assuming this extra condition, we may discover what should be true
(but is yet to be shown). For example, if we are to show equal angles
and we assume they are, we may find a pair of triangles which should
be similar. Now showing the similar triangles (say by line segments in
ratio) leads to the conclusion!

Simplify the conclusion (“It suffices to show…”).

One shall always attempt to link the conclusion to the condiƟons given.
WriƟng down “it suffices to show…” could transform the conclusion,
moving it towards the given conditions.

Unfortunately, there is oŌen more than one way to approach the
conclusion or the intermediate steps, while most approaches will not
lead to a complete proof. Be resilient and do not give up easily! It is
common for even the most experienced contestants to have a few
failed attempts before reaching a valid proof.

Example 6.1.1 (HRV 09) Given a quadrilateral ABCD, the circumcircle of ΔABC
intersects CD, AD at E, F respecƟvely, and the circumcircle ΔACD intersects
AB, BC at P, Q respecƟvely. If BE, BF intersect of PQ at X, Y respecƟvely,
show that E, F, Y, X are concyclic.

Insight. We are not given much informaƟon besides the two circles.
Hence, it is natural to expect a proof by the angle properƟes. Refer to the
diagram on the below.

Since we do not know much about EXF or EYX, can we show that FYP = 
FEX ? FEC is on the circumference of a circle, but FYP is not. However,



one may write FYP = PBY + BPY.

Proof. Refer to the diagram on the below. Since A, B, E, F are concyclic,
we have BEF = 180° – BAF = ABF + AFB.
Notice that AFB = ACB = BPY (because A, C, Q, P are concyclic). Hence, 

BEF = ABF + BPY = FYP. It follows that E, F, Y, X are concyclic.

Note: There is more than one way to solve this problem. For example,
one sees that ∠FYP = ∠PBY + ∠BPY = ∠ACF + ∠ACB = ∠BCF = ∠BEF,
which also leads to the conclusion. Indeed, it is an effecƟve strategy to
apply reverse engineering for this problem, i.e., repeatedly simplifying the
conclusion by wriƟng down “it suffices to show…” which eventually leads to
a clear fact (about angles) and completes the proof.

Example 6.1.2 (SVN 08) ABCD is a trapezium where BC // AD and AB  BC.
It is also given that AC  BD. Draw AE  CD, intersecƟng CD extended at E.

Show that 

Insight. Refer to the diagram on the below. One immediately sees 

 and hence, we are to show 

Can we simplify  ? If yes, the problem may be solved by similar

triangles.



How is AB related to AD and BD? Can you see that AB2 = AD · BC?

Proof. It is easy to see  Hence, we have ,

o r AB2 = AD · BC. It follows that 

. Now it suffices to show 

Since ∠AEC = ∠ABC = 90°, we have A, B, C, E concyclic and hence, ∠CBD =
∠BAC = ∠CEB. Now ΔBCD ~ ΔECB and the conclusion follows.

Note: If one writes AB2 = BD · BF where AC and BD intersect at F, it may

not be easy to show  because it is not clear how AD is related to

BE or CE. Hence, AD should be cancelled out, i.e., we shall write AB2 = AD · *.
Now it is easy to see that * is BC.

Example 6.1.3 (CGMO 12)  Let I be the incenter of ΔABC whose incircle
touches AB, AC at D, E respectively. If O is the circumcenter of of ΔBCI, show
that ODB = OEC.

Insight. Refer to the leŌ diagram below. Even though BD, CE are tangent
to the incircles, it is not clear which angle on the circumference is equal to 

ODB or OEC, as we do not know where OD, OE intersect I. How about
the supplement of these angles? Can we show ADO = AEO? At least we
know ADI = AEI = 90°. Can we show ODI = OEI ?

Since DI = EI, we should have ΔODI  ΔOEI. How can we show these triangles
are congruent? Can we show ∠OID = ∠OIE?

Proof. Refer to the right diagram above. We write ∠OIE = ∠1 + ∠2 and



∠OID = ∠3 + ∠4.

Notice that  and since OC = OI,

 (Theorem 3.1.1).

It follows that 1 + 2 = 3 + 4, i.e., ∠OID = ∠OIE. This implies ODI  
OEI (S.A.S.). Now we have ∠ODI = ∠OEI and hence the conclusion.

Note: One familiar with the basic facts about the incenter and the
circumcircle easily sees that AI extended intersects the circumcircle of ΔABC
at O, the circumcenter of ΔBIC (Example 3.4.2 and Exercise 3.14). Since O lies
o n AI, the perpendicular bisector of DE, the conclusion follows
immediately.

Example 6.1.4 (APMO 13)  Given an acute angled triangle ΔABC and its
circumcenter O, AD, BE, CF are heights. Show that the line segments OA, OF,
OB, OD, OC, OE dissect ΔABC into three pairs of triangles that have equal
areas.

Insight.  First, we shall decide which of the triangles could be of equal
area. Refer to the diagram on the below. Since F is not the midpoint of AB, 

 Observe that we shall not have 

(Consider the case when ∠C is almost 90°.)

Nor shall we have [ΔAOF] = [ΔCOE]. Otherwise the triangles cannot be
paired up in a symmetric manner. It seems that we should show 



Apparently, these triangles are not congruent. Notice that

Since AO = CO, it suffices to show AF sin∠OAF = CD sin∠OCD. This should
not be difficult since we have the right angled triangles (heights) and the
circumcircle.

Proof. Refer to the diagram on the below. We have AF = AC cos∠A and CD
= AC cos∠C.

Hence,  (1)

Notice that 

Similarly, ∠OCD = 90° – ∠A.

 by (1).

Similarly, 

Example 6.1.5 (IMO 98) In a cyclic quadrilateral ABCD, AC  BD and AB, CD
are not parallel. If the perpendicular bisectors of AB and CD intersect at P,
show that [ΔABP] = [ΔCDP].

Insight. One noƟces that ΔABP and ΔCDP are isosceles triangles. Hence,
we are to show



How are AP and CP related? Since ABCD is cyclic, say inscribed inside the
circle Γ, the center of Γ must lie on the perpendicular bisectors of AB, CD.
Indeed, P is the center of Γ and we have AP = CP. Refer to the diagram
above.
Now it suffices to show sin∠APB = sin∠CPD. It seems from the diagram
∠APB ≠ ∠CPD. Can we show ∠APB = 180° – ∠CPD instead?
(Hint: Can you see ∠APB = 2∠ACB ?)

Proof. S i nce ABCD is cyclic, one sees that P is the center of the
circumcircle of ABCD. Hence, PA = PB = PC = PD.

S i nce  and  it

suffices to show sin∠APB = sin CPD.

We claim that APB + ∠CPD = 180°. In fact, since P is the centre of the
circumcircle of ABCD, ∠APB = 2∠ACB (Theorem 3.1.1).
Similarly, ∠CPD = 2∠CBD. Since ∠ACB + ∠CBD = 90°, we must have APB
+ CPD = 180°. This completes the proof.

Note: One may also solve the problem by considering

It suffices to show 



NoƟce that in the right angled triangle ΔABE, AB = 2EM because M is the
midpoint of AB.

Similarly, CD = 2EN. Now it suffices to show  (1)

In fact, we claim that EMPN is a parallelogram. Refer to the diagram above
on the right. We have ∠BEM = ∠1 = ∠2 = ∠CEN. Now
∠EMP = 90° – ∠AME = 90° – 2 1 (2)
∠MEN = 90° + ∠BEM + ∠CEN = 90° + 2 1 (3)
(2) and (3) give ∠EMP + ∠MEN = 180° and hence, EM // PN.
Similarly, EN // PM and EMPN is a parallelogram. This implies (1) and the
conclusion follows.

Example 6.1.6 (HEL 11)  In an acute angled triangle ΔABC, AB < AC, AD  BC
a t D and AD extended intersects the circumcircle of ΔABC at E. The
perpendicular bisector of AB intersects AD at L. BL extended intersects AC at
M and intersects the circumcircle of ΔABC at N. EN and the perpendicular
bisector of AB intersect at Z. Show that if AC = BC, then MZ  BC.

Insight. Refer to the diagram below. Since AD  BC, we should have MZ //
AD. Can we show 1 = 2? We should have 2 = ∠MCN and hence, C, N,
M, Z should be concyclic.

NoƟce that there are many equal angles in the diagram. In fact, the



isosceles triangle ΔABC is symmetric about the perpendicular bisector of
AB. One may also noƟce that L is the orthocenter of ΔABC. It should not be
difficult to show the concyclicity by angle-chasing.

Proof. Since AC = BC, it is easy to see that ΔABC is symmetric about the
perpendicular bisector of AB. Hence, C, Z, L are collinear, which gives the
angle bisector of ∠ACB (and the perpendicular bisector of AB). In
particular, L is the orthocenter of ΔABC.
Recall that E and L are symmetric about BC (Example 3.4.3). It follows that
∠N = ∠BCE = ∠BCL = ∠ACL. Hence, C, N, M, Z are concyclic. Now 2 =
∠MCN = 1, which implies AE // MZ, i.e., MZ  BC.

Example 6.1.7 (USA 07) Refer to the diagram on the below. Γ1,Γ2 are circles
intersecƟng at P,Q. AC,BD are chords in Γ1,Γ2 respecƟvely such that AB
intersects CD extended at P. AC intersects BD extended at X Let Y,Z be on
Γ1,Γ2 respecƟvely such that PY // BD and PZ // AC. Show that Y, X, Q, Z are
collinear.

Insight. It seems that Y and Z are constructed in a symmetric manner. If we
can show that X, Q, Z are collinear, perhaps a similar argument applies for X,
Q, Y. Refer to the following diagram.

We are to show l = 180°– ∠DQZ = ∠2. Since PZ // AC, we have 2 = 3
and hence, it suffices to show 1 = 3. Hence, C, Q, D, X should be
concyclic. Can we show ∠DCQ = ∠DXQ ?
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Refer to the right diagram above. Clearly, ∠DCQ = ∠PAQ and hence, we
should have ∠BAQ = ∠BXQ and A, B, Q, X should be concyclic. Hence, it
suffices to show 5 = 6.
Can you see that 5 = ∠7 = 6 by concyclicity? We leave it to the reader to
complete the proof. (Hint: One may conclude that Q, X, Y are collinear by
observing that ∠CQX = ∠CQY, where ∠CQX = ∠CDX = ∠CPY = ∠CQY by
concyclicity and PY // BD.)

Recognizing a Relevant Theorem

Occasionally, one may encounter a geometry problem in the compeƟƟon
where the construcƟon seems closely related to a parƟcular theorem (or a
well-known fact). It might be a wise strategy to apply the theorem and find
the missing links during the process. If you are successful, there is a high
chance that the proof is almost complete.

Example 6.2.1 (CHN 08) Given a convex quadrilateral ABCD where ∠B +
∠D < 180°, P is an arbitrary point in ΔACD and we define f(P) = PA · BC + PD ·
AC + PC · AB. Show that when f(P) aƩains the minimal value, B, P, D are
collinear.

Insight. One should recognize that f(P) is closely related to Ptolemy’s
Theorem. In fact, we have PA · BC + PC · AB ≥ PB · AC and the equality holds
if and only if P lies on the circumcircle of ΔABC. Refer to the diagram on the
below. Now it is easy to complete the proof.

Proof. NoƟce that f(P) = PA · BC + PD · AC + PC · AB ≥ PB · AC + PD · AC by



Ptolemy’s Theorem (1)
= (PB + PD) · AC ≥ BD · AC by Triangle Inequality. (2)
Hence, the minimal possible value of f(P) is BD · AC. This is only aƩainable if
the equality holds in both (1) and (2), i.e., we must have that P lies on the
circumcircle of ΔABC and P lies on BD (i.e., B, P, D are collinear). This
complete the proof.

Note: Refer to the diagram on the below. It is easy to see that D must be
outside the circumcircle of ABC since ∠B + ∠D < 180°. Hence, P must lie
between B and D. Indeed, P is the intersecƟon of BD and the circumcircle of
ΔABC.

Example 6.2.2 (RUS 04) Let O be inscribed inside a quadrilateral ABCD. It
is given that the external angle bisectors of ∠A, ∠B intersect at K, the
external angle bisectors of ∠B, ∠C intersect at L, the external angle
bisectors of ∠C, ∠D intersect at M, and the external angle bisectors of
∠D, ∠A intersect at N. If the orthocenters of ΔABK, ΔBCL, ΔCDM, ΔDAN are
P, Q, R, S respectively, show that PQRS is a parallelogram.

Insight. Refer to the following leŌ diagram. How are the external angle
bisectors related to the orthocenter (right angles)? Recall that the angle
bisectors of neighboring supplementary angles are perpendicular. Can you
see that OA  AK? Can you see that OA // BP and similarly, OB //AP ? We
have a parallelogram AOBP.



Proof. It is easy to see that OA bisects BAD. Hence, OA  AK because
they bisect neighboring angles which are supplementary. We also have BP 

 AK because P is the orthocenter of ΔABK.
Hence, OA // BP and similarly, OB // AP. It follows that AOBP is a
parallelogram. Similarly, BOCQ, CODR and DOAS are parallelograms. Now
AP = OB = CQ and AP // OB // CQ. Similarly, AS = CR and AS // CQ. It follows
that ΔAPS  ΔCQR (S.A.S.). Refer to the right diagram above. We conclude
that PS = QR, PS // QR and hence, PQRS is a parallelogram.

Note: One may recall that AB + CD = BC + AD since O is inscribed inside
ABCD. However, this is not related to the conclusion.

Example 6.2.3 (IMO 12) Let J be the ex-center of ΔABC opposite the vertex
A. This ex-circle (i.e., the circle centered at J and tangent to BC, AB
extended and AC extended) is tangent to BC at M, and is tangent to the
lines AB, AC at K, L respecƟvely. Let the lines LM, BJ meet at F and the lines
KM, CJ meet at G. If AF extended and AG extended meet the line BC at S, T
respectively, show that M is the midpoint of ST.

Insight.  Refer to the following diagram. We are to show SM = TM. NoƟce
that there are many lines intersecƟng each other and the ex-circle gives us
many equal line segments. Hence, we may apply Menelaus’ Theorem
involving SM and TM.

Apply Menelaus’ Theorem to ΔASC intersected by the line FL and we obtain

Since CM = CL, we have



Similarly, apply Menelaus’ Theorem to ΔATB intersected by the line GK and

we have 

We are to show SM = TM, i.e., 

Clearly, AK = AL. Hence, it suffices to show that  i.e., should

have FG // BC.

NoƟce that we can simplify the diagram significantly because A, S, T can be
neglected. Refer to the diagram on the below. It suffices to show that ∠1 =
∠2. Since BJ  MK and C J  ML, one sees a number of concyclicity and
hence, many equal angles.

Indeed, we have ∠1 = ∠MDE (since D, E, G, F are concyclic)

= ∠MJE (since D, J, E, M are concyclic)
= 90° – ∠EMJ = ∠2 (since MJ  BC). This completes the proof.

Example 6.2.4 (IND 11) Refer to the diagram on the below. A quadrilateral
ABCD is inscribed inside a circle. Let E, F, G, H be the midpoints of arcs 

 respectively.



It is known that AC · BD = EG · FH. Show that AC, BD, EG and FH are
concurrent.

Insight. Apparently there are very few clues. In parƟcular, we do not
know how AC · BD = EG · FH can be applied. How are these line segments
related?

While AC may not be related to EG, it is not difficult to see that AC is related

t o EF, because  (Can you see it?) Refer to the leŌ

diagram below.

Similarly, AC is related to HG and BD is related to EH, FG (Can you see that
∠GBH = 90° – ∠EDF?) Refer to the right diagram above. If we can replace
AC and BD by EF, FG, GH and EH, the condiƟon given becomes a relaƟonship
between the sides of a cyclic quadrilateral and its diagonals. Is it
reminiscent of Ptolemy’s Theorem?

Proof. It is easy to see that 

  By

Sine Rule,  where R is the radius of the

circle. Let EDF = α.

We have (1)

Similarly, AC = 2HG cos∠GBH = 2HG cos(90° – α) = 2HG sin α. (2)
Let ∠FAG = β. We also have BD = 2FGcos β = 2EH sinβ. Ptolemy’s Theorem
states EF · HG + FG · EH = EG · FH. (3)
By (1) and (2),



Similarly, FG · EH = BD · R.
Now (3) gives EF · HG + FG · EH = (AC + BD) · R = EG · FH.

Since EG · FH = AC · BD, we have (AC + BD) · 2R = 2AC · BD. (4)
Notice that 2R is the diameter, i.e., AC, BD ≤ 2R.

It follows that (AC + BD) · 2R = AC · 2R + BD · 2R ≥ AC · BD + BD · AC = 2AC · BD,
where the equality holds by (4). This is only possible if AC = BD = 2R, i.e., AC,
BD are both diameters of the circle.
Since AC · BD = EG · FH, EG, FH are also diameters. In conclusion, AC, BD, EG,
EH are concurrent at the center of the circle.

Note: In (1), we applied the double angle formula sin 2α = 2 sinα cosα,
which could be found in most pre-calculus textbooks.

Example 6.2.5 (UKR 11) Given a trapezium ABCD, AD // BC and F is a point
on CD. AF and BD intersect at E. Draw EG // AD, intersecƟng AB at G. BD and
CG intersect at H. AB and FH extended intersect at I. Show that the lines AD,
CI, FG are concurrent.

Insight. Refer to the diagram on the below. It seems not easy to show the
lines AD, CI, FG are concurrent. NoƟce that the intersecƟon of these lines is
far from the trapezium ABCD.

Since AD // EG // BC, the Intercept Theorem gives many equaƟons of line
segments in the trapezium ABCD. Is it possible for us to derive the
conclusion from these line segments instead of the extensions of AD, CI,
FG? Recall Desargues’ Theorem. Can we find two triangles whose verƟces
are A, D, C, I, F, G, while the lines connecƟng corresponding verƟces are AD,
CI, FG respectively?

It is not a difficult task. In fact, since A, G, I and C, D, F are collinear, we do
not have many choices leŌ, one of which is ΔAFI and ΔDGC. Can we show
that these two triangles saƟsfy the condiƟon for Desargues’ Theorem, i.e.,
say the lines AB, CD intersect at P and AF, DG intersect at Q, can we show
that P, Q, H are collinear? Refer to the diagram below.

Proof. Let the lines AB, CD intersect at P and AF, DG intersect at Q. We
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claim that P, Q, H are collinear. By Menelaus’ Theorem, it suffices to show

that 

Since EG // AD // BC, we have

It follows that 

Since P, Q, H are collinear, the conclusion follows by applying Desargues’
Theorem to ΔAFI and ΔDGC.

Unusual and Unused Conditions

A typical geometry problem in compeƟƟons comes with a few given
condiƟons. Besides those more standard condiƟons (parallel and
perpendicular lines, midpoints, angle bisectors, circles and tangency), there
may be unusual condiƟons which easily catch the aƩenƟon of the
contestants. For example:

Angles or line segments which are far apart but equal
30°, 45° or 60° angles
Points constructed in an unusual manner
Equations of line segments or angles, the geometric meanings of which are
apparently not clear
Points, lines or circles which coincide unexpectedly

One naturally expects such condiƟons to play a criƟcal role when solving
the geometry problem. Hence, it is worthwhile to spend Ɵme and effort
focusing on these condiƟons, which may lead to an important intermediate
step.



On the other hand, it is also common that one cannot find any clue aŌer
exploring the unusual condiƟon, or even cannot see any sense about it. Do
not be frustrated! It could be a wise strategy to leave it aside and focus on
other condiƟons, wriƟng down intermediate steps which could be derived.
We shall aƩempt to link those steps to the conclusion and expect to be
stuck during the process (because we sƟll have unused condiƟons). Now
you may find the unused condiƟon handy: it may be exactly the missing link
needed!

Geometry problems in compeƟƟons are generally well constructed and the
condiƟons given are exactly sufficient (because unnecessary extra
condiƟons may cause inconsistency). Hence, if all the condiƟons given have
been applied and a chain of derivaƟons is constructed, most probably you
are very close to the complete proof.

Example 6.3.1 (CZE-SVK 09) Given a rectangle ABCD inscribed inside O, P
is a point on the minor arc  Let K, L, M be the feet of the perpendiculars

from P to AB, AC, BD respectively. Show that ∠LKM = 45° if and only if ABCD
is a square.

Insight. One immediately noƟces that ∠LKM = 45° is an unusual
condiƟon. How is it related to ABCD, in which case a square? Refer to the
diagram on the below. If ABCD is a square, we must have CAD = CBD =
45°.

It seems we shall apply the angle properƟes around the circles. (NoƟce that
the right angles give a number of concyclicity.)

Proof. Since BKP = BMP = 90°, B, K, M, P are concyclic and PKM = 
PBM. Similarly, A, K, L, P are concyclic, which implies PKL = PAL = PBC
(angles in the same arc).
Now LKM = PKM + PKL = PBM + PBC = CBD. Hence, LKM = 45° if
and only if CBD = 45°, i.e., ABCD is a square.



Note: One who aƩempts to show LKM = CBD by concyclicity directly
may find it difficult because we do not know much about the intersecƟon of
the lines KL and BC

Example 6.3.2 (IRN 11) Given ΔABC where A = 60°, D, E are on AB, AC
extended respecƟvely such that BD = CE = BC If the circumcircle of ΔACD
intersects DE at D and P, show that P lies on the angle bisector of ΔBAC.

Insight. Refer to the diagram on the below. One immediately noƟce that 
A = 60° is an unusual condiƟon. Moreover, it is not easy to draw BD = BC =

CE when given ΔADE. How could we apply these conditions?

Notice that BD = BC = CE gives two isosceles triangles ΔBCD and ΔCBE, where
l and 2 are related to ∠A.

In fact, ∠ABC = 2∠2 and ∠ACB = 2∠1. Since ∠A = 60°, we must have 
ABC + ∠ACB = 120° and hence, ∠1 + ∠2 = 60°.
Let BE and CD intersect at F. One sees that ∠BFD = ∠1 + ∠2 = 60° = A and
hence, A, B, F, C are concyclic.

NoƟce that the diagram should be symmetric: since P should lie on the
angle bisector of ∠BAC, if A, C, P, D are concyclic, then A, B, P, E should be
concyclic as well. Can you show it?

Refer to the leŌ diagram below. Since A, B, F, C are concyclic, we have
∠ABF = ∠ECF. Since A, C, P, D are concyclic, we must have ∠ECF = 180° –
∠ACD = 180° – ∠APD = ∠APE. It follows that ∠ABF = ∠APE and hence, A,
B, P, E are concyclic.



We are to show AP bisects ∠A, i.e., ∠BAP = ∠CAP. Since ∠BAP = ∠BEP
and ∠CAP = ∠CDP by concyclicity, it suffices to show DF = EF. Refer to the
right diagram above.
Can you see that DF = EF = AF, i.e., F is the circumcenter of ΔADE ? (Hint: Can
you see ∠BAF = ∠BCF = ∠BDF?) We leave it to the reader to complete the
proof.

Note: Upon showing the concyclicity of A, B, F, C and A, B, P, E, there are
many ways to show that AP is the angle bisector. For example, can you see
that P is of the same distance from the lines AB and AC? Refer to the
following leŌ diagram. Can you see ΔBDP  ΔECP (A.A.S.)? Since BD and CE
are corresponding sides, the heights from P to BD, CE respecƟvely must be
the same.

AlternaƟvely, one may also show the conclusion by the Angle Bisector

Theorem, i.e., we are to show 

Refer to the right diagram above. By the Tangent Secant Theorem, AD · BD =
PD · DE and AE · CE = PE · DE.

S i n c e BD = CE, we have  which

completes the proof.

Example 6.3.3 (RUS 08) Given I inscribed inside ΔABC, AB, AC touch I



at X, Y respecƟvely. Let CI extended intersect the circumcircle of ΔABC at D.
If the line XY passes through the midpoint of AD, find BAC.

Insight. One immediately noƟces that the line XY passing through the
midpoint of AD is an unusual condiƟon, without which ΔABC, its incenter I
a n d CD give a standard diagram (Example 3.4.2). Refer to the diagram
below.

We have AD = DI, i.e., ΔAID is an isosceles triangle. It is easy to see that XY 
AI. Let M be the midpoint of AD. How could you apply the condiƟon that X,
Y, M are collinear?

Can you see where AI and XY intersect? Refer to the diagram above.

Let N be the midpoint of AI. Clearly, DN  AI and hence, DN // XY.

Let AI intersect XY at P. Since X, Y, M are collinear, P is the midpoint of AN. It

follows that 

What can you say about the right angled triangle ΔAXI? Can you see that 

 and hence, 

Now it is easy to see that ∠XAI = 60° and hence, ∠BAC = 120°. We leave the
details to the reader.

Note: If one draws an acute angled triangle ΔABC, the line XY will not
even intersect the line segment AD. By construcƟng the diagram carefully,
one should realize that ∠BAC is obtuse.

Example 6.3.4 (CGMO 11) L e t ABCD be a quadrilateral where AC, BD
intersect at E. Let M, N be the midpoints of AB, CD respecƟvely and the



perpendicular bisectors of AB, CD intersect at F. If the line EF intersects BC,
AD at P, Q respecƟvely and it is given that FM · CD = FN · AB and BP · DQ = CP
· AQ, show that PQ  BC.

Insight. One immediately notices the unusual conditions FM · CD = FN · AB
and BP · DQ = CP · AQ, but apparently, they refer to different properties.

FM · CD = FN · AB implies  Refer to the previous diagram. What

can you conclude about the (isosceles) triangles ΔABF and ΔCDF?

Can you see that ΔBDF and ΔACF are congruent? What can you conclude
upon obtaining the equal angles, say ∠CAF = ∠DBF ?

BP · DQ = CP · AQ gives  Is it reminiscent of the Angle Bisector

Theorem? Where is the angle bisector?

Indeed, the diagram is symmetric. If one sees that F is the center of the
circle where ABCD is inscribed, the proof is almost complete.

Proof. NoƟce that FM · CD = FN · AB implies  Since M, N are

the midpoints of AB, CD respecƟvely, it is easy to see that the isosceles
triangles ΔABF and ΔCDF are similar.

In parƟcular, we have ∠AFB = ∠CFD, which implies ∠AFC = ∠BFD. Since
AF = BF and CF = DF, we have ΔBDF  ΔACF (S.A.S.).
It follows that ∠CAF = ∠DBF and hence, A, B, F, E are concyclic. Similarly,
∠BDF = ∠ACF and C, D, E, F are concyclic.

We have ∠BEF = ∠BAF and ∠CEF = ∠CDF by concyclicity. NoƟce that
∠BAF = ∠CDF (because ΔABF ~ ΔDCF ). Now ∠BEF = ∠CEF, i.e., EP bisects

∠BEC. By the Angle Bisector Theorem,  (1)



Similarly, EQ bisects AED  (2)

We are given BP · DQ = CP · AQ, i.e.,  (3)

(1), (2) and (3) imply that  i.e., BE · DE = AE · CE.

By the IntersecƟng Chords Theorem, ABCD is cyclic. Clearly, it is inscribed in
a circle centered at F.

Now AF = BF = CF = DF and hence, AB = CD. Refer to the diagram on the
below. It is easy to see that ΔABF  ΔDCF (S.A.S.). Hence, AB = CD and ABCD
is an isosceles trapezium where AD // BC. It follows that PQ  BC.

Note: Since the diagram is symmetric, we should have PQ  AD as well,
i.e., AD // BC. Upon showing that EF bisects ∠BEC, one naturally expects
that ABCD is an isosceles trapezium.

Example 6.3.5 (BGR 11) Let P be a point inside the acute angled triangle
ΔABC. D, E, F are the feet of the perpendiculars from P to BC, AC, AB
respectively. Q is a point inside ΔABC such that AQ  EF and B Q  DF. Draw
QH  AB at H. Show that D, E, F, H are concyclic.

Insight. We are given a lot of right angles. In parƟcular, one noƟces that
the construction of Q is unusual. What can we obtain from Q? 
Refer to the leŌ diagram below. By applying the properƟes of right angles,
can you see that 1 = 2 =  3 ?



If we draw QI  BC at I, can you see that the right angled triangles ΔPBD,
ΔPBF, ΔQBH, ΔQBI are closely related? (Hint: Can you see similar triangles?)
Refer to the right diagram above. How are BI, BH, BD, BF related to BP and
BQ, say via similar triangles? How are HF and DI related to PQ?

Proof. Since PD  BC and PF  AB, B, D, P, F are concyclic and hence, 1 = 
2. Let BQ extended intersect BF at X. We have 2 = 3 in the right angled

triangle ΔBFX. Hence, 1 = 3 and it follows that ∠CBQ = ∠ABP.
Draw QI  BC at I. We have BI · BD = BQ cos∠CBQ · BP cos 1 and BH · BF =
BQ cos 3 · BP cos ABP. It follows that BI · BD = BH · BF. Now H, F, D, I are
concyclic by the Tangent Secant Theorem.

Le t M be the midpoint of PQ. It is easy to see that the perpendicular
bisectors of both HF and DI pass through M. Let M denote the circle
centered at M with radius DM. Clearly, H, F, D, I lie on M. Refer to the
diagram on the below.

Similarly, if we draw QJ  AC at J, one sees that E, J, I, D also lie on M, i.e.,
D, E, F, H, I, J are concyclic. This completes the proof.

Example 6.3.6 (IMO 13) Given ΔABC with ∠B > ∠C, Q is on AC and P is on
CA extended such that ∠ABP = ∠ABQ = ∠C. D is a point on BQ such that PB
= PD. AD extended intersect the circumcircle of ΔABC at R. Show that QB =
QR.



Insight. Refer to the diagram on the below. One immediately noƟces the
condiƟon 1 = 2 = ∠ACB. We also have ∠ACB = 3 (angles in the same
arc).

Recall a basic result of similar triangles as shown in the diagram above.
Since 2 = C, we must have ΔABQ~ΔACB. Since 2 = 3, we also have
ΔABD~ΔARB. It follows that ∠ABR = ∠ADB = ∠QDR. Since ∠ABR + ∠ACR =
180°, we must have ∠QDR + ∠ACR = 180°, which implies C, Q, D, R are
concyclic.

Refer to the diagram on the below. We are to show QB = QR. Of course, the
most straightforward method is to show that ∠QBR = ∠QRB. Since we have
two circles and a few pairs of similar triangles, perhaps we shall seek more
equal angles.



•
•

We can write:

Now it suffices to show that ∠ACB + ∠QCD = ∠CAR + ∠CBQ. (1)

NoƟce that all these angles are related to the shaded region in the diagram.
In parƟcular, ∠ACB + ∠CAR + ∠CBQ = ∠ADB (exterior angles of ΔACD and
ΔBCD ). How is this related to (1)? If one cannot see the clue, subsƟtute
∠CAR + ∠CBQ = ∠ADB – ∠ACB into (1)! Now it suffices to show that
2∠ACB + ∠QCD = ∠ADB. (2)

How can we show (2)? NoƟce that this is not true for an arbitrary (concave)
quadrilateral ABCD. Which are the condiƟons given we have not used yet?
We have not used:

PB = PD
PB is a tangent (i.e., 1 = ∠C ).

Could these two conditions help us?

Since PB = PD, we immediately have ∠PDB = ∠PBD = 2∠ACB. This is
awesome! Now (2) becomes ∠PDB + ∠QCD = ∠ADB and it suffices to show
that ∠QCD = ∠ADB – ∠PDB = ∠PDA.

Refer to the diagram on the below. We could reach the conclusion by
showing ΔPAD ~ ΔPDC. In fact, these two triangles should be similar.



Can we show  or equivalently, PA · PC = PD2 ?

NoƟce that we have PB = PD and PB2 = PA · PC since PB is a tangent. Now
both unused condiƟons have made their contribuƟons, which complete the
proof.

Proof. Refer to the diagram on the below. It is given that ∠1 = ∠2 =
∠ACB = 3. Hence, ΔABD ~ ΔARB and we have ∠ADB = ∠ABR = 180° –
∠ACR. It follows that ∠BDR = ∠ACR, which implies that C, Q, D, R are
concyclic.
Since ∠1 = ∠ACB, PB is tangent to the circumcircle of ΔABC. Given PB = PD,

we have PD2 = PB2 = PA · PC.

This implies  and hence, ΔPAD ~ ΔPDC. We have 4 = 5.



(1)

(2)
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Now ∠QBR = ∠CBR + ∠CBQ = ∠CAR + ∠CBQ
= ∠ADB – ∠ACB (exterior angles of ΔACD and ΔBCD)

Note:
The last section of angle-chasing is a concise argument and one needs to
be very familiar with basic properƟes of angles, especially in circles. In
fact, such angle-chasing is commonly seen in geometry problems and is
considered a fundamental technique. Nevertheless, we should point
out that such a compact argument presented is only for mathemaƟcal
elegance. In fact, it is not inspiring as the reader following the
argument may not see how to search for clues and reach the
conclusion. This is exactly why we spend a few more pages in
explaining the insight.
One may find an alternaƟve soluƟon starƟng from the Angle Bisector

Theorem: Since BA bisects of ∠PBD, we have  Since we are

to show QB = QR, it suffices to show that  because PB

= PD Upon showing C, Q, D, R concyclic, it is easy to see that

ΔACD~ΔARQ and hence,  Now it suffices to show 

 but this is because ΔPCD~ΔPDA.

Seeking Clues from the Diagram

A well-constructed diagram could be very helpful in problem-solving,
especially for those more challenging problems in compeƟƟon where the
insight is not clear. Although referring to the diagram is not a valid proof, it
may give us hints on what could be correct. One should always construct a
diagram according to the descripƟon in the problem without any loss of
generality. For example, given a triangle ΔABC where P is an arbitrary point
on BC, one should avoid drawing an isosceles or right angled triangle, and
choose P to be disƟnct from the midpoint of BC and the feet of the
perpendicular from A. If one constructs a general diagram and observes any
geometric fact from the diagram, for example, a right angle, collinearity or
concyclicity, it may be true! One may aƩempt to show it, or assume it is true



and seek intermediate steps which could be deduced.

Drawing a (reasonably) accurate diagram may help us substanƟally in
seeking clues. Note that if circumcircles, incircles, tangent lines or equal
angles are given, one should not construct these geometric objects casually.
For example, when given a circle inscribed in a triangle, it is recommended
that one draws the triangle and its angle bisectors to locate the incenter,
constructs the incircle with a compass, and introduces heights to find the
points of tangency. A poorly constructed or distorted diagram may be
misleading and heavily distract one from acquiring the insight.

One should also learn to simplify the diagram, erasing lines, points and
circles during problem-solving when necessary. Indeed, when the diagram
is complicated, one may fail to recognize even the most elementary
geometric facts (for example, radii of a circle which are the same, equal
tangent segments, perpendicular bisectors which give isosceles triangles,
etc.). In parƟcular, if circumcenters or orthocenters are given, one should
only draw explicitly the circles and alƟtudes which are necessary.
Otherwise, the diagram may become unreadable!

When exploring a part of the diagram which demonstrates a specific
geometric structure, one may consider drawing a separate diagram focused
on that part. In a much simpler seƫng, one may find it easier to seek clues
or recognize a well-known result. Refer to Example 6.3.3 for an illustraƟon
on this strategy.

Example 6.4.1 (APMO 91) Let G be the centroid of ΔABC. Draw a line XY //
BC passing through G, intersecƟng AB, AC at X, Y respecƟvely. BG and CX
intersect at P. CG and BY intersect at Q. If M is the midpoint of BC, show that
ΔABC ~ ΔMQP.

Insight. Refer to the diagram on the below. It seems that the
corresponding sides of ΔABC and ΔMQP are parallel. Can we show it, say PQ
// BC? Since we are given the centroid and a parallel line, we can find the
ratio of the line segments easily.



Proof. Let L, N be the midpoints of AB, AC respecƟvely. Since XY // BC and
G is the centroid, it is easy to see that GX = GY.

Hence,  and by the Intercept Theorem, PQ // BC.

One also sees that  Hence, 

S i nce  we have  i.e., Q is the

midpoint of CL. Hence, MQ // AB by the Midpoint Theorem.

Similarly, MP // AC and the conclusion follows.

Example 6.4.2 (TUR 10) Given a circle Γ1 where AB is a diameter, C, D lie on
Γ1 and are on different sides of the line AB. Draw a circle Γ2 passing through
A, B, intersecƟng AC at E and AD extended at F. Let P be a point on DA
extended such that PE is tangent to Γ2 at E. Let Q be a point (different from
E) on the circumcircle of ΔAEP such that PE = PQ. Let M be the midpoint of
EQ. If CD and EF intersect at N, show that PM // BN.

Insight. One may noƟce that construcƟng such a diagram following the
instrucƟons given is not a simple task. However, it could be rewarding.
Refer to the diagram on the right. It seems that E, F, Q are collinear. Is it
true?



Since PE = PQ and M is the midpoint of EQ, we immediately have P M  EQ.
If E, F, Q are indeed collinear, we should have BN  EF.
What can we say about BN and EF? Can you see BC  AC and BD  AD?
Can you see BN  EF while CD is a Simson’s Line of ΔAEF ?

We are to show PM // BN. Hence, we should have E, F, Q collinear. Can we
show that 1 + 2 3 = 180°?

Proof. Since PE = PQ, we have PM  EQ. Since AB is a diameter of Γ1, C, D
are the feet of the perpendiculars from B to AE, AF respecƟvely. Hence, CD
is the Simson’s Line of ΔAEF with respect to B. It follows that B N  EF. Now
it suffices to show that E, F, Q are collinear.
NoƟce that ∠1 = ∠Q = ∠EAF (Corollary 3.1.5) and ∠2 = ∠F (Theorem
3.2.10). Now 1 + 2 + 3 = ∠EAF + ∠F + ∠3 = 180°. This completes the
proof.

Example 6.4.3 (VNM 09)  Let Γ be the circumcircle of an acute angled
triangle ΔABC, where D, E, F are the feet of the alƟtudes from A, B, C
respecƟvely. Let D' , E' , F' be the points of reflecƟon of D, E, F about the
midpoints of BC, AC, AB respecƟvely. The circumcircles of ΔAE'F', ΔBD'F',
ΔCD'E' meet Γ again at A', B', C' respecƟvely. Show that A'D, B'E and C'F are
concurrent.

Insight.  Apparently, the construcƟon of the diagram is complicated. For
example, we draw the diagram on the right to locate A'. (NoƟce that we



have already omiƩed the midpoints of AB, BC, CA.) If we conƟnue to
construct B' and C', the diagram might be unreadable! Perhaps we should
examine the property of A' first.

I t seems from the diagram that A' is symmetric to A with respect to the
perpendicular bisector of BC, i.e., A'D'  BC. If we can show that A′ is indeed
symmetric to A, the diagram could be significantly simplified.

Proof. We first show the following lemma.

Let ABCD be an isosceles trapeium where AD // BC and AB = CD. Draw BE 
AC at E and CF  AB at F. Let E', F' be on AC, AB respecƟvely such that AE = CE'
and AF = BF'. We have A, D, E', F' concyclic.

Refer to the diagram on the below. Let P be the reflecƟon of F′ about the
perpendicular bisector of BC. Since ABCD is an isosceles trapezium, we have
CP = BF'= AF.

Notice that 

Since AE = CE' and AB = CD, we must have  i.e, 

 Now CP · CD = CA · CE', which implies A, D, P, E' are concyclic.

Since ADPF' is an isosceles trapezium, we conclude that A, D, P, E' , F' are
concyclic.



(1)

We apply this lemma to the original problem. Let X be the point symmetric
t o A with respect to the perpendicular bisector of BC. Now ABCX is an
isosceles trapezium and by the lemma, A, X, E, F' are concyclic. This implies
A' and X coincide (since the circumcircle of ΔAE'F' intersect Γ only at A and
A'). In particular, ADD' A' is a rectangle.

We are to show that A'D, B'E, C'F are concurrent. Let us examine the
property of A'D. Refer to the diagram on the right where M is the midpoint
of BC.

Since ADD'A' is a rectangle, we have 

It follows that  and hence, G is the centroid of ΔABC.

We conclude that A'D passes through the centroid of ΔABC. Similarly, B'E
and C'F must pass through the centroid of ΔABC as well. This completes the
proof.

Note:

One may also use the power of a point to show that A' is symmetric to A
with respect to the perpendicular bisector of BC. In parƟcular, one may

show that BF' · BA = CE' · CA (because ) and hence, B

and C have the same power with respect to the circumcircle of ΔAE'F'.

Refer to the diagram on the below. It follows that the circumcenter of
ΔAE'F' is equidistant to B and C and hence, lies on the perpendicular
bisector of BC. Now the line passing through the circumcenters of
ΔAE'F' and ΔABC is perpendicular to BC.



(2)

This line must be perpendicular to AA' as well (Theorem 3.1.20). We
conclude that AA' // BC.
One may also observe the diagram and attempt to show DE // A'B'. Given
the reflecƟons A' and B', this is not difficult (Exercise 3.13). Similarly,
we have EF // B'C' and DF // A'C.' Refer to the diagram on the below.
Now A'D, B'E, C'F are concurrent by Theorem 2.5.11.

Example 6.4.4 (BLR 11) Given an acute angled triangle ΔABC, M is the
midpoint of AB. Let P, Q be the feet of the perpendiculars from A to BC and
from B to AC respecƟvely. If the circumcircle of ΔBMP is tangent to the line
segment AC, show that the circumcircle of ΔAMQ is tangent to the line BC.

Insight. Refer to the diagram on the below. It is not easy to show a circle
tangent to a line. However, noƟce that the circle passing through A, M and
tangent to the line BC is unique. Hence, we may draw this circle and show
that it intersects AC exactly at Q.



Let AC touch the circumcircle of ΔBMP at D. If BC extended touches the

circumcircle of ΔAMQ at E, we would have BE2 = BM · BA. Since M is the

midpoint, we should have BE2 = BM · BA = AM · AB = AD2, i.e., BE = AD.

It seems from the diagram that M, D, E are collinear. Can we show it? If M, D,
E are indeed collinear, we should have, by Menelaus’ Theorem, that 

 which implies CD = CE. (NoƟce that we have uƟlized

the condition AM = BM once more, even though it is not clear at first glance
how this condition could be applied.)

Can we show CD = CE, say by showing ∠CED = ∠CDE? NoƟce that ∠CDE =
∠ADM = ∠ABD.

Proof. Refer to the diagram on the below. Let the circumcircle of ΔBMP
touch AC at D and MD extended intersect BC extended at E. We claim that
∠CED = ∠CDE. Notice that:

∠CDE = ∠ADM = ∠ABD. (1)

∠CED = 180°– ∠BME – ∠ABE. (2)

Since PM is the median on the hypotenuse of the right angled triangle
ΔABP, we must have ∠ABE = ∠BPM = ∠BDM.



By (2), ∠CED = 180°– ∠BME – ∠BDM = ∠ABD. (3)

(1) and (3) imply ∠CED = ∠CDE and hence, CD = CE.

By Menelaus’ Theorem,  Since AM = BM and CD = CE,

we must have BE = AD. It follows that BE2 = AD2 = AB · AM = AB · BM. By the
Tangent Secant Theorem, BE touches the circumcircle of ΔAME at E.

Let the circumcircle of ΔAME intersect AC at Q'. We claim that BQ'  AC.
S i nce AM = BM, it suffices to show AM = MQ (Example 1.1.8), or
equivalently, ∠AQ'M = ∠MAQ'.

Refer to the diagram on the below. Notice that

∠AQ'M = ∠ADM – ∠Q'ME.

Since ∠ADM = ∠CDE = ∠CED = ∠MAE and ∠Q'ME = ∠Q'AE, we have

∠AQ'M = ∠MAE – ∠Q'AE = ∠MAQ'.

This completes the proof.

Example 6.4.5 (USA 10) Given ΔABC, M, N are on AC, BC respecƟvely such
that MN // BC, and P, Q are on AB, BC respecƟvely such that PQ // AC. Given
that the incircle of ΔCMN touches AC at E and the incircle of ΔBPQ touches
AB at F, the lines EN, AB intersect at R and the lines FQ, AC intersect at S.
Show that if AE = AF, then the incenter of ΔAEF lies on the incircle of ΔARS.

Insight. First, we draw the diagram according to the descripƟon. Refer to
the leŌ diagram below. There are many circles and lines and it becomes
difficult to seek clues. Since the incircles of ΔBPQ and ΔCMN are
constructed similarly, we may focus on one of them.



Refer to the right diagram above. It is easy to see that ΔABC ~ ΔMNC. Hence,
if we draw the incircle of ΔABC, which touches AB, AC at R1,S1 respecƟvely,
then S1 and E are corresponding points in ΔABC and ΔMNC respecƟvely. It
follows that BS1 // EN. Similarly, we have CR1 // FQ. It seems from the leŌ
diagram above that BC // RS. Can you prove it by the Intercept Theorem?
(Notice that AE = AF and AR1 = AS1.)

Now ΔABC ~ ΔARS and hence, the incircle of ΔABC corresponds to the
incircle of AARS. Since R1 and F (and similarly S1 and E) are corresponding
points of the similar triangles ΔABC and ΔARS, the incircle of ΔARS touches
AR, AS at E, F respecƟvely! Refer to the leŌ diagram below. NoƟce that we
have removed the unnecessary lines and points.

Proof. Let the incircle of ΔABC touch AB, AC at R1, S1 respecƟvely. Since
MN // AB, ΔABC ~ ΔMNC. NoƟce that S1 and E are corresponding points in
the similar triangles ΔABC and ΔMNC. We conclude that BS1 // ER.



It follows that  Similarly, we must have CR1 // FS and 

 Since AR1 = AS1 and AE = AF, we must have  By the

Intercept Theorem, BC // RS. Refer to the right diagram above.

Now we have ΔARS ~ ΔABC. We are to show the incenter of ΔAEF lies on the
incircle of ΔARS. Notice that R1 and F are corresponding points in the similar

triangles ΔABC and ΔARS, because  A similar argument

applies for S1 and E as well. Now it suffices to show that the incenter of
ΔAR1S1 lies on the incircle of ΔABC.

Since AR1, AS1 are tangent to the incircle of ΔABC, called I, the incenter of
ΔAR1S1 is exactly the intersecƟon of AI and I, i.e., the midpoint of the arc 

 (Exercise 3.5). This completes the proof.

Note: We used correspondence between similar triangles extensively in
the proof above. One not familiar with these properƟes could always use
similar triangles to argue instead, although it will make the proof
unnecessarily lengthy.

Example 6.4.6 (CHN 12) Refer to the diagram below. I is the incenter of
ΔABC, whose incircle I touches AB, BC, CA at D, E, F respecƟvely. If the
line EF intersects the lines AI, BI, DI at M, N, K respecƟvely, show that DM ·
KE = DN · KF.

Insight. Since there is a circle in the diagram, the conclusion reminds us of
the Tangent Secant Theorem. However, it seems DM, KE are not part of a
secant line of I.

Can we show  instead?



It seems not easy either because we do not see similar triangles
immediately which relate DM, DN, KE and KF.

Where does the difficulty come from? We do not know the properƟes of
the line MN (including E, F and K). Perhaps we should first study the
properƟes of this line and the points on it. Let us focus on one side of the
triangle and its incircle. Refer to the diagram on the below. We have erased
the unnecessary lines and points.

Now it is clear that 1 = 2 because AD is tangent to I. We also have 1 = 
3 because A D  DI and A I  DF. Hence, 2 = 3, which implies ∠DEM =

∠DIM (since A, I, M are collinear). It follows that D, I, E, M are concyclic.

Similarly, we also have D, I, F, N concyclic. Refer to the diagram on the
below. NoƟce that the three circles give KE · MK = KI · DK = KF · NK (Tangent
Secant Theorem).

Now we have  and hence, it suffices to show 

NoƟce that this is equivalent to DK bisecƟng ∠MDN (Angle Bisector
Theorem).



It seems from the diagram that B, D, I, E are concyclic. One may easily see
this because ∠BDI = BEI = 90°. Now B, D, I, E, M are concyclic (where BI is a
diameter). Hence, ∠BMI = 90° and AM  BM.
Can you see that I is the orthocenter of a larger triangle? How is it related to
the angle bisector of ∠MDN ?

Proof. Refer to the diagram on the below. We have

Hence, ∠DIM = ∠DEM and we must have D, I, E, M concyclic. It is easy to
see that B, D, I, E are also concyclic.
We conclude that B, D, I, E, M are concyclic. Similarly, A, D, I, F, N are
concyclic.

Now KE · MK = KI · DK = KF · NK, which implies  (1)

NoƟce that ∠BMA = ∠BEI = 90°, i.e., A M  BM. Similarly, we have AN 
BN. Let the lines AM, BM intersect at X.
N o w I is the orthocenter of ΔABX and hence, the incenter of ΔDMN
(Example 3.1.6).

By the Angle Bisector Theorem,  (2)

(1) and (2) give  or equivalently, DM · KE = DN · KF.

Example 6.4.7 (CHN 06) Let ABCD be a cyclic quadrilateral inscribed in O,



where O does not lie on any side of the quadrilateral. The diagonals AC, BD
intersect at P. Let O1, O2, O3, O4 denote the circumcenters of ΔOAB, ΔOBC,
ΔOCD, ΔODA respecƟvely. Show that the lines O1O3, O2O4 and OP are
concurrent.

Insight. Refer to the leŌ diagram below. We draw the circumcenters only,
but hide other related details like the perpendicular bisectors and the
circumcircles. It seems not clear how the lines O1O3, O2O4 and OP are
related. (Notice that applying Ceva’s Theorem is not feasible.)

However, it seems that both O1O3 and O2O4 pass through the midpoint of
OP. Is it true?

We focus on the line O1O3. Let O1 and O2 denote the circumcircles of
ΔOAB and ΔOCD respecƟvely and the circles intersect at O and E. Refer to
the right diagram above. We know that O1O3 is the perpendicular bisector
of OE. If O1O3 indeed passes through the midpoint of OP, we should have
PE  OE (Midpoint Theorem).

Can we show P E  OE? One may consider calculaƟng the angles, as there
are many circles (and circumcenters) in the diagram. Refer to the diagram
on the below. It suffices to show that ∠1 + ∠DEP = 90°.



We do not know much about ∠DEP, but we know

Similarly, 

Now, 

= ∠ADB, which implies A, D, P, E are concyclic.

NoƟce that we have used the properƟes of the circumcenters extensively.
Indeed, we are not given many conditions other than the circumcenters.

We have obtained one more circle. One should be able to show the
conclusion easily using the properties of angles.

Proof.



6.5

Let the circumcircles of ΔABO and ΔCDO intersect at O and E. Refer to the
diagram above. Consider the isosceles triangle ΔOCD.

We have 

Similarly, 3 = 4 = 90° – ∠ADB.

Now ∠AED = ∠1 + 3 = 180° – ADB – ∠CAD = ∠APD. We conclude that A,
D, P, E are concyclic.

Hence, ∠DEP = ∠DAP = 90° – 1 by (1), which implies PE  OE.

Since O1O3 is the perpendicular bisector of OE, we must have PE // O1O3
and hence, O1O3 passes through the midpoint of OP.

Similarly, O2O4 also passes through the midpoint of OP. It follows that
O1O3, O2O4 and OP are concurrent (at the midpoint of OP).

Exercises

(CZE-SVK 89) Let O be the circumcenter of ΔABC. D, E are points on AB, AC
respectively. Show that B, C, E, D are concyclic if and only if DE  OA.

2. (IWYMIC 14) In ΔABC, ∠A = ∠C = 45°. M is the midpoint of BC. P is a
point on AC such that BP  AM. If  find AB.

3. (JPN 14) Let ABCDEF be a cyclic hexagon where the diagonals AD, BE, CF



are concurrent. If AB = 1, BC = 2, CD = 3, DE = 4 and EF = 5, find AF.

4. (IND 11) ΔABC is an acute angled triangle where D is the midpoint of BC.
BE bisects B, intersecƟng AC at E. CF  AB at F. Show that if ΔDEF is an
equilateral triangle, then ΔABC is also an equilateral triangle.

5. (USA 90) ΔABC is an acute angled triangle where AD, BE are heights. Let
the circle with diameter BC intersect AD and its extension at M, N
respecƟvely. Let the circle with diameter AC intersect BE and its extension
at P, Q respectively. Show that M, P, N, Q are concyclic.

6. (CAN 11) ABCD is a cyclic quadrilateral. BA extended and CD extended
intersect at X. AD extended and BC extended intersect at Y. If the angle
bisector of ∠X intersects AD, BC at E, F respecƟvely, and the angle bisector
of ∠Y intersects AB, CD at G, H respecƟvely, show that EGFH is a
parallelogram.

7. (ROU 08) Given ΔABC, D, E, F are on BC, AC, AB respecƟvely such that 

 Show that if the circumcenters of ΔABC and ΔDEF

coincide, then ΔABC is an equilateral triangle.

8. (IMO 04) Given a non-isosceles acute angled triangle ΔABC where O is
the midpoint of BC, draw O with diameter BC, intersecƟng AB, AC at D, E
respecƟvely. Let the angle bisectors of ∠A and ∠DOE intersect at P. If the
circumcircles of ΔBPD and ΔCPE intersect at P and Q, show that Q lies on BC.

9. (CHN 04) Given ΔABC, D is a point on BC and P is on AD. A line ℓ passing
through D intersects AB, PB at M, E respectively, and intersects AC extended
and PC extended at F, N respectively. Show that if DE = DF, then DM = DN.

10. (IMO 08) Given an acute angled triangle ΔABC where O1, O2, O3 are the
midpoints of BC, AC, AB respecƟvely, H is the orthocenter of ΔABC. Draw 
O1, O2, O3 whose radii are O1H, O2H, O3H respecƟvely. If O1
intersects BC at A1, A2, O2 intersects AC at B1, B2 and O3 intersects AB at
C1, C2, show that A1, A2, B1, B2, C1, C2 are concyclic.

11. (IMO 14) Given an acute angled triangle ΔABC, P, Q are on BC such that
∠PAB = ∠C and ∠CAQ = ∠B. M, N are on the lines AP, AQ respecƟvely
such that AP = PM and AQ = QN. Show that the intersecƟon of the lines BM
and CN lies on the circumcircle of ΔABC.

12. (CHN 13) Given ΔABC where AB < AC, M is the midpoint of BC. O
passes through A and is tangent to BC at B, intersecƟng the lines AM, AC at



D, E respecƟvely. Draw CF // BE, intersecƟng BD extended at F. Let the lines
BC and EF intersect at G. Show that AG = DG.

13. (RUS 13) Let I denote the incircle of ΔABC, which touches BC, AC, AB
a t D, E, F respecƟvely. Let J1, J2, J3 be the ex-centers opposite A, B, C
respecƟvely. If J2F and J3E intersect at P, J3D and J1F intersect at Q, J1E and
J2D intersect at R, show that I is the circumcenter of ΔPQR.

14. (IMO 10) Refer to the diagram below. ABCDE is a pentagon such that
BC // AE, AB = BC + AE and ∠B = ∠D. Let M be the midpoint of CE and O be
the circumcenter of ΔBCD. Show that if OM  DM, then ∠CDE = 2∠ADB.



Insights into Exercises

Chapter 1

1.1 NoƟce that ∠B + ∠C = ∠A. If ∠PAB = ∠C, what can you say about
∠PAC?

1.2 We are to show AC = AB + BD. If we choose E on AC such that AB = AE, it
suffices to show CE = BD. Since AD bisects ∠A, can you see that E is the
reflection of B about AD, i.e., ΔABD  ΔAED ? 
How can we use the condition ∠B = 2∠C ? Can you see ∠B = ∠AED ?

1.3 Can you see congruent triangles? It is similar to Example 1.2.6.

1.4 NoƟce that the ex-center is sƟll about properƟes of angle bisectors.
How did we show the existence of the incenter?

1.5 NoƟce that AI, AJ1 are angle bisectors of neighboring supplementary
angles. Can you see AI  AJ1 ? Refer to Example 1.1.9.

1.6 We have  However, the remaining porƟons of

∠BAD are far apart. How can we put them together? Moreover, BE and DF
are far apart as well. Cut and paste! It is similar to Example 1.2.9.

1.7 Can you see congruent triangles? Given that BP = AC and CQ = AB,
which two triangles are probably congruent?

1.8 We are given the angle bisector of ∠CBE and BE = AB. NoƟce that
ΔABC is an equilateral triangle. Can you see congruent triangles (say by the
reflecƟon about the angle bisector BD)? Can you see D is on the
perpendicular bisector of AB?

1.9 Since I is the incenter of ΔABC, can you express both ∠BID and ∠CIH
in terms of ∠A, ∠B and ∠C? Alternatively, you may apply Theorem 1.3.3.

1.10 One may immediately see that ΔABC  ΔADC. Even though this is not
related to PE and PF, we have more equal angles and line segments now.
Can you find more congruent triangles which lead to PE = PF?



(1)
(2)

Note:
P could be on the line segment AC or its extension.
One may see many pairs of congruent triangles in the diagram, but
careful jusƟficaƟon is needed for each pair and the argument must not
depend on the diagram.

1.11 By definiƟon, O lies on the perpendicular bisector of BC and I lies on
the angle bisector of ∠A. What can you conclude if AB = AC?

1.12 Can you see D is an ex-center of ΔABP, i.e., AD bisects the exterior
angle of ∠BAC? Now can you express both ∠PAD and ∠BDP in terms of
∠ABP and ∠APC ?

1.13 I f ABCD is a parallelogram, one sees that BC – AB = AD – CD holds.
Since AD // BC, we may draw a parallelogram ABCD' such that D' lies on the
line AD. Now AD – CD = BC – AB = AD' – CD'. This is only possible when D and
D' coincide. (You may show it using triangle inequality. Notice that you need
to discuss both cases when AD > AD' and AD < AD'.)

1.14 NoƟce that the condiƟon AB is equal to the distance between ℓ1ℓ2 is
important. If we move ℓ2 downwards, ∠GIH will be smaller, i.e., it is not a
fixed value.

If we draw a perpendicular from E to ℓ2, say EP  ℓ2 at P, we have AB = EP.



Does it help us to find congruent triangles?
Are there any other equal angles or sides? If EH  FG, then we have EH = FG
(Example 1.4.12). However, it seems from the diagram that EH and FG are
not perpendicular. Moreover, EH and FG are apparently not equal. What
should we do? It is difficult to calculate EH and FG because we do not know
the positions of E, F, G, H on the sides of the square. Perhaps we can use the
same technique as in Example 1.4.12, say to push EH upwards.
If we draw AQ // EH, intersecting CD at Q, it is easy to see that AQ = EH. Now
we have ΔEPH  ΔADQ (H.L.) and hence, 1 = 2. This implies that EH
bisects the exterior angle of ∠CHG. A similar argument applies for FG as
well. Can you see I is an ex-center of ΔCGH (Exercise 1.4)? Now we can
calculate ∠GIH using the properties of angle bisectors.

Chapter 2

2.1 Can you express [BCXD], [ACEY] and [ABZF] in terms of [ΔABC]?

2.2 It is easy to show BG = CE (Example 1.2.6). How are BG, CE related to
(the midpoints) O1, O2, M, N ?

2.3 Can you see right angled isosceles triangles in the diagram (for

example, CD = CF + AF)? Since we are to show  what do we

know about CD – 2AE ?

2.4 M, N are midpoints, but we cannot apply the Midpoint Theorem
directly on MN. What if we consider more midpoints (Example 2.2.8)?

2.5 Can you see EFGH is a parallelogram? Now we can focus on the
parallelogram EFGH, which is a simpler problem. Can we use the techniques
of congruent triangles to solve it?

2.6 NoƟce that every point in the diagram is uniquely determined once
the square is drawn. Let AB = a. We can calculate AP, for example, by
drawing P Q  AD at Q and applying Pythagoras’ Theorem. Can you find AQ

and PQ ? Can you find ? 

2.7 Given BG  CG, can you see AB, BC, AC can all be expressed in terms of
the medians BD, CE (by the Midpoint Theorem and Pythagoras’ Theorem)?

2.8 Given ΔABC, we can calculate [DEF] by subtracƟng [ΔADF], [ΔBDE] and
[ΔCEF] from [ΔABC], while the areas of the small triangles are determined
once the positions of D, E, F are known.



[ΔD'E'F'] can be calculated in a similar manner, while the posiƟons of D', E',
F' are determined by D, E, F.

Since D, E, F are arbitrarily chosen, the conclusion should hold if we let 

 and express both areas in terms of a, b, c and

[ΔABC].

2.9 We are to show BD · CD = BE · CF, or equivalently,  Since

∠B = ∠C = 60°, we should have ΔBDE ~ ΔCFD. Can we prove it, say by equal
angles? NoƟce that A and D are symmetric about MN, i.e., ∠EDF = ∠A =
60°.

2.10 Example 1.2.7 is a special case of this problem, where ∠A = 45° and
AH = BC. We solved Example 1.2.7 using congruent triangles. Can you see a
pair of similar triangles in this problem?

2.11 We know how to calculate a median, but what about trisecƟon
points? Can you see AD is a median of ΔABE? Similarly, AE is a median of
ΔACD.

2.12 NoƟce that the parallel line is almost the only condiƟon. If we apply
Ceva’s Theorem, the conclusion would be concurrency instead of
collinearity. Nevertheless, we can show GM passes through D, which is
equivalent to the conclusion.
Applying Menelaus’ Theorem directly to D, G, M will probably not show the
collinearity because it is not related to the condiƟon AB // CE. How about
applying Menelaus’ Theorem more than once?

2.13 This is similar to Example 2.5.3.

2.14 It seems natural to apply Menelaus’ Theorem. Even though the line
where D, E, F should lie does not intersect any triangle, Menelaus’ Theorem
sƟll holds when the points of division are on the extension of the sides of
the triangle.
One may also consider applying the Angle Bisector Theorem to the exterior
angle bisectors.

2.15 Refer to the diagram below. If we apply Menelaus’ Theorem when

the line DE intersects ΔABC, we have  AlternaƟvely, if

we consider the line BC intersecting ΔADE, we have



 However, neither gives us a clue for  or 

 Perhaps we shall apply Menelaus’ Theorem to another triangle, but

which triangle (and the line intersecting it) should we choose?

We are to show  where AB = AC. How could we obtain say 

 If we apply Menelaus’ Theorem, BD should be a side of the triangle

and the line should pass through A. It seems we should choose the line AE
intersecƟng ΔBDM. Even though AE intersects BD, DM and BM only at the
extension, we could still apply Menelaus’ Theorem.

Can you give a similar argument for 

Chapter 3

3.1 Apply Corollary 3.1.4.

3.2 This is similar to Example 3.1.7. Connect EF and one could see
concyclicity.

3.3 Can you see  How does this relate to the

exterior angle of ∠C?

3.4 Since AB is the diameter, AC  BC and A D  BD. Can you construct a
triangle whose orthocenter is P? Example 3.1.6 relates the orthocenter of a
triangle to the incenter of another triangle.



3.5 Le t M be the midpoint of  Clearly the angle bisector of ∠PAB
passes through M. Can you find another angle bisector which passes
through M? You may apply Theorem 3.2.10 for angles related to tangent
lines.

3.6 Notice that ∠BHC = 180° – ∠A because H is the orthocenter.

3.7 It is easy to see that OD is the perpendicular bisector of BC. How can
we show O M  PM? Draw a diagram and one may see many equal angles
and right angles. It should not be difficult to find concyclicity.

3.8 This is similar to Example 3.1.17. Besides, one may also recall the
property of ΔACD, i.e., an isosceles triangle with 120° at the vertex (Example
2.3.4).

3.9 There are many right angles in this diagram due to the orthocenter and
diameters. (Draw a diameter of O.)

3.10 Since we are to show CDEF is a rectangle, it suffices to show CF and
DE bisect each other and are equal. We know CM = DM = EM. Hence, it
suffices to show CF = DE.
NoƟce that both CF and DE are uniquely determined by AC and BC. In
particular, CF and DE can be calculated by Pythagoras’ Theorem.

3.11 How can we apply the condiƟon ∠B = 2∠C ? Since AD is the angle
bisector, it is natural to reflect ΔABD about AD, i.e., choose E on AC such that
AB = AE.
Now ∠AED = 2∠C, which implies ∠C = ∠CDE, i.e., DE = CD.
I t seems that BDEI is a rhombus. Can you show it? (NoƟce that if BDEI is
indeed a rhombus, then E is the circumcenter of ΔCDI. )

3.12 Let the circumcircle of ΔABP intersect AQ at M'. What do you know



about M' ? Can you see M' is the midpoint of AQ?

3.13 Can you see AA'CB and ABB'C are isosceles trapeziums? NoƟce that
there are many equal angles in the diagram due to concyclicity, heights,
parallel lines and equal arcs.

3.14 This follows immediately from Example 3.4.2.

3.15 Can you see I is the orthocenter of ΔJ1J2J3 ?

3.16 One may see many right angles from the diagram. (NoƟce that the
diameter also gives right angles.) Moreover, P, Q, R, S are the feet of the
perpendiculars from Y, a point on the circumference. Is it reminiscent of
Simson’s Line? What if you draw YC'  AB at C'?

We are to show  Can we replace  by an angle

on the circumference? Those right angles should give plenty of concyclicity.
It seems we are not far from the conclusion.

AlternaƟvely, one may also noƟce that PXQY and SYRZ are rectangles. What
can we say about these rectangles?

3.17 Since AD // BC and we are to show ℓ1 // ℓ2, we should have a
parallelogram enclosed by AD, BC, ℓ1 and ℓ2. Can we show it?

By extending the sides of ABCD and ℓ1, ℓ2, we will have many equal tangent
segments. Hence, we may be able to find an equaƟon of various line
segments. (Refer to Example 3.2.7. You may need to draw a large diagram.)

Now we may idenƟfy the parallelogram by applying Exercise 1.13. Even
though this is not a commonly used result, it is most closely related to the
parallelogram given the sum or difference of neighboring sides. (If you are
not familiar with this result, you may prove it first as a lemma.)

Chapter 4

4.1 Draw a common tangent at C. Can you see AB // DE ? What other equal



angles can you obtain if A, C, D, E are concyclic?

4.2 Draw DE  AP at E. By definition, 

Can you see C is the midpoint of AP? Can you see a number of right angled
isosceles triangles?

4.3 It seems not easy to see the geometrical sense of AB3 and AD3.

However, there are many right angles and we know AB2 and AD2 (by
Example 2.3.1). In parƟcular, if G, H are the feet of the perpendiculars from

D, B to AC respectively, one can show that 

Now it suffices to show  Since DE // BF, applying the

Intercept Theorem will probably solve the problem. Are you fluent and
skillful in manipulating ratios?

4.4 Since P is an arbitrary point and ∠OPF = ∠OEP should always hold,
can we replace P by a special point on the circumference? Unfortunately,
we cannot use M because M lies on the line OE.

What can we say about P? NoƟce that we should have ΔOPE ~ ΔOFP, or

equivalently, OP2 = OE · OF. Since OP = OM, can we show that OM2 = OE ·
OF? NoƟce that we do not need the circle anymore! Since EF // AD, we may

probably show  using the Intercept Theorem. (Are you skillful

in applying the Intercept Theorem? Refer to the remarks aŌer Corollary
2.2.2.)

4.5 The only equal lengths we have are PA = PB. Apparently, it is not easy
to place QE, QF in congruent triangles. NoƟce that there are many equal
angles in the diagram due to the circle, tangents and parallel lines. Can you
idenƟfy similar triangles involving QE and QF? For example, can you see



ΔAEQ ~ ΔABC? If we express QE, QF as raƟos of line segments, perhaps we
can show that the ratios are the same.

Note that it is not easy to solve the problem by applying the Intercept

Theorem even though we have AP // EF : we do not know 

4.6 Apply the Tangent Secant Theorem. (You may need Example 2.3.1.)

4.7 Can you see AD is both an angle bisector and a height? Can you
construct the isosceles triangle? Can you find BC using similar triangles or
the Tangent Secant Theorem? (You are given CE and BD. How are they
related to BC?)

4.8 We are to show D, E, F are collinear where D, E, F are closely related to
ΔABC : shall we apply Menelaus’ Theorem? Can you show that 

 What do we know about  We

know AF · BF = CF2 by the Tangent Secant Theorem, i.e.,  Can

you see that 

NoƟce that the circumcircle of ΔABC and the tangent lines give similar
triangles. For example, can you see that ΔBCF ~ ΔCAF ?

N o w  and hence, . This

implies  is uniquely determined by ΔABC. Can you express  and 

 similarly?

4.9 We see that AJ, AK are not related to the choice of P. How are CE, BF



related to ΔABC? One easily sees that CJ = AJ and BK = AK (because of the
perpendicular bisectors). Now CE, BF are in ΔCEJ and ΔBFK respectively.

If we have ΔCEJ ~ ΔFBK, then 

Hence,  The conclusion follows because .

Can we show ΔCEJ ~ ΔBFK ? There are many equal angles in the diagram due
to the circle and the perpendicular bisectors.

4.10 Since AP = AQ, one immediately sees that 2 = 1 = 3 (angles in
the same arc). Can you see similar triangles?

Since we are to show DE // BC, BCDE should be a trapezium. Can you see
that BCDE should be an isosceles trapezium? How is O related to BCDE?
(Hint: OB = OC.) Now it suffices to show that B, C, D, E are concyclic. What
can you conclude from AP = AQ and the similar triangles?

4.11 Naturally, we suppose two common tangents intersect at P and show
that P lies on the third common tangent. One may see this as a special case
of Theorem 4.3.6, while the radical axes are the common tangent. We sƟll
apply the Tangent Secant Theorem and construct a proof by contradiction.

4.12 Since three circles intersect (or touch) each other, one may consider



applying Theorem 4.3.6. Can you see which lines are the radical axes? What
can you obtain by applying the Tangent Secant Theorem?

4.13 Since ∠B = 2∠C, drawing the angle bisector of ∠B gives an isosceles
triangle. One may aƩempt a few techniques with the angle bisector, but
noƟce that applying the Angle Bisector Theorem or reflecƟng the diagram

about the angle bisector would not give AC2. Since we have an isosceles
triangle, how about reflecƟng the diagram about the perpendicular bisector
of BC?

4.14 Refer to the leŌ diagram below. What property do we know about
the circumcenter of ΔACE? By Example 4.3.3, the circumcircle of ΔACE, say I,
is the incircle of ΔO1O2O3 and moreover, A, C, E are the feet of the
perpendiculars from I to O1O2, O2O3, O1O3 respectively.

We are to show B, I, C are collinear. It suffices to show BC  O1 O2. Let O1P 
 ℓ1 at P. Refer to the right diagram above. Since O1C = O1P, we should have

ΔBPO1  ΔBCO1. However, it may not be easy to find equal angles since we
do not know how the line segments, say O1B or BC, intersect the circles
given. Can we show BC = BP?

Would it be easier to show O1B2 – O1C2 = O3B2 – O3C2 ? NoƟce that all these
line segments are uniquely determined by the radii of the three circles (by
Pythagoras’ Theorem).

Observe that those radii are not independent. Let the radii of  O1,  O2
and  O3 be r1, r2, r3 respecƟvely. For example, if we draw O3X  O2B at X,

we have O2X2 + O3X2 = O2O3
2, where O2X = 2r1 – r2 – r3, O2O3 = r2 + r3 and

O3X = DQ – BP.

Refer to the diagram below. One may find BP via the right angled trapezium
BPO1O2 and similarly DQ as well. Applying Pythagoras’ Theorem repeatedly
should lead to the conclusion.



4.15 How can we use the condiƟon that PQ is tangent to the circumcircle
of ΔMNL ? NoƟce that PQ only touches the circumcircle of ΔMNL once, i.e.,
a t L. We are to show OP = OQ. Hence, it suffices to show O L  PQ.
RegreƩably, this seems not clear because O is not the circumcenter of
ΔMNL.

Refer to the diagram below. Once we draw AMNL, it is easy to see AB // ML
and AC // NL because M, N, L are midpoints. Are there any similar triangles?

Clearly, ∠BAC = ∠MLN. We also have ∠LMN = ∠PLN = ∠APQ because of
Theorem 3.2.10 and AC // NL. Similarly, ∠LNM = ∠AQP. We must have
ΔLMN ~ ΔAPQ.

NoƟce that L is the midpoint, i.e.,  Can you see

this implies AP · CP = AQ · BQ? How does this remind you of OP and OQ?
Consider the power of points P, Q with respect to  O, the circumcircle of
ΔABC !

Chapter 5

5.1 Recall Example 3.4.1.

5.2 There are many right angles in the diagram. One immediately sees

that PH2 = MH · BH. Hence, it suffices to show MH · BH = AH · OH, or 

 Can we show it by similar triangles?

Notice that M and O are midpoints. If we cannot find many angle properƟes
related to them, perhaps we can calculate more lengths.



On a side note, all the points are uniquely determined in the circle because
ΔPAB is a right angled isosceles triangle. One may calculate PH, AH, OH
explicitly, say by Pythagoras’ Theorem and Cosine Rule. Of course, this
would not lead to an elegant solution, but is still a valid proof.

5.3 One may solve it by either similar triangles or angle properƟes in a
circle. Can you see any pair of angles which should be equal? Can you see
that A, I, E, P should be concyclic?

5.4 Can you see DR = DQ? Can you see that DX is the perpendicular
bisector of QR? What can you say about EY and CZ?
Hint: This is an easy quesƟon if you construct the diagram wisely. Do not
draw all the points explicitly as it only complicates the diagram
unnecessarily and distracts you from seeking the clues.

5.5 Given the orthocenter H and the midpoint M, one immediately sees
that A'BHC is a parallelogram, where AA' is a diameter of O (Example
3.4.4).
In particular, A', H, Q are collinear and N is the midpoint of A'H.
We are to show M, N, P, Q are concyclic.

It seems we may consider the IntersecƟng Chords Theorem. Refer to the
diagram above. Can you see that A'H · QH = C'H · PH, where C' is obtained by
PH extended intersecting O? (CC' is also a diameter!)

5.6 Recall that  since ∠A = 90°. NoƟce that a

similar argument applies for r1, r2 as well.

5.7 Consider the reflecƟon of C about BD, called C'. Can you see that CP +
PQ = C'P + PQ ≥ C'Q? What is the smallest possible value of C'Q ? (Notice that
C'Q does not depend on the choice of P and Q.)

5.8 We should have PM = QM. However, it is not easy to show because
BQ, CP are not the alƟtudes. How are ΔAPQ and ΔBCH related? NoƟce that



∠BHC = 180° – ∠A. Does it remind you of any technique? Double the
median HM!

5.9 It suffices to show ACQ = ∠BAD. NoƟce that ∠CAQ = ∠ADB
(because AP is tangent to O). Hence, we should have ΔACQ ~ ΔDAB. Can

we show 

Notice that AQ = AP = BP. Can we show  Is there another pair of

similar triangles which imply this? We have two circles and hence, plenty of
equal angles.

5.10 If X lies on BE extended, then P, H coincide and Q, X coincide, where
H is the orthocenter of ΔABC. It is easy to see that E is the midpoint of PQ
(Example 3.4.3). Refer to the left diagram below.

Let X be an arbitrary point. Now it is not easy to show DE passes through the
midpoint of PQ since P, H do not coincide and Q does not lie on the
circumcircle of ΔABC. Nevertheless, since P sƟll lies on the line AD, perhaps
we can draw QR // DE, intersecƟng the line AD at R. Refer to the right
diagram above.
We should have PD = DR. Since ΔBFH is an isosceles triangle (Example 3.4.3),



P and R should be symmetric about the line BC.
On the other hand, what properƟes do we know about Q? It is easy to see
that ∠BFH = ∠BHF = ∠AHQ and ∠QAH = ∠PBF.

Hence, we have ΔAHQ ~ ΔBFP, where ΔBFP should be the reflecƟon of
ΔBHR. Refer to the diagram below. Note that ΔBHR and ΔAHQ are related by
the parallel lines DE and QR.
If we equate the raƟos of the line segments via the similar triangles and the
parallel lines, we will probably see the conclusion.

5.11 One immediately noƟces that the point A could be neglected. Let DE
intersect PH at G. We are to show that G is the midpoint of PH. In fact, we
have a midpoint H if we extend PH, intersecƟng Γ at Q. How can we apply
the condition PD = PE? Can you see that ΔPEG ~ ΔPQE ?

If we choose M as the midpoint of PE, M and H are corresponding points in
the similar triangles. Is it reminiscent of Example 5.2.8?

Alternatively, one recognizes that P is the circumcenter of ΔDEH. Notice that
the circumcircle of ΔDEH intersects Γ exactly at D and E. If DE intersects PH at
G, one may probably show PG = HG by considering the power of point G (or
by the Intersecting Chords Theorem).

Note: One may refer to Example 3.5.1, the diagram of which apparently



shows a similar structure.
In fact, if PP' is a diameter of Γ, one may draw P' with radius P' D (where
PP' is the perpendicular bisector of DE). NoƟce that PD  P'D and PE  P'E,
i.e., PD, PE are tangent to  P'. Refer to the diagram below.

Let B'C' be the diameter passing through Q. It is easy to see that B'C' // BC.
B y Example 3.5.1, B'E, C'D and AQ are concurrent at H. Unfortunately,
knowing this fact is not helpful when showing PG = GH.

5.12 Can you see ∠CPD = 90° – CAD and ∠CQD = 180° – 2∠CAD ?
How are P and Q related?
Since B, C, E should be related, can you see that B should be the orthocenter
of ΔAPE ? Can you show that AB  PE?

5.13 Can you see that DE is the perpendicular bisector of CI? Can you show
F lies on the perpendicular bisector of CI? It may not be easy because we do
not know much about the line segments CF and FI. We are given a parallel
line ℓ1 and a tangent line ℓ2. If ℓ1 and the line DE intersect at F', can we
show that F'C is tangent to O (i.e., F and F' coincide) by angle properties?

5.14 We are to show AB – AC = BP – CP, where ∠A = 90° and angle
bisectors are given. It is natural to consider reflecƟng A about the angle
bisectors. In particular, if we draw DF  BC at F and EG  BC at G, it is easy to
see that AB – AC = BG – CF.
Hence, P should be the midpoint of FG. Can we show it? (NoƟce that there
are many right angles in the diagram.)

5.15 One may noƟce that the condiƟon and the conclusion are probably
related to similar triangles sharing a common vertex. In parƟcular, we are to
show ∠AED = ∠BEP and we know that ∠DAE = ∠DBE. Hence, we should
have ΔADE ~ ΔBPE.



However, showing ΔADE ~ ΔBPE may not be easy because we know neither
BP nor ∠BPE. Can we show ΔABE ~ ΔDPE instead? It seems the difficulƟes
remain: what do we know about P?
Perhaps we should seek more clues from the condiƟon. We are given a
circle and a parallelogram, the properƟes of which should give us many
pairs of equal angles. For example, ∠BDC = ∠ABD = ∠AED. NoƟce that we
also have ∠PCD = ∠ACB = ∠CAD from the given condition.

It follows that ΔPCD ~ ΔDAE, which gives us  Now we know

more properties of P. Can you see ΔABE ~ ΔDPE ?

5.16 Upon construcƟng the diagram, one may noƟce that this problem is
very similar to Example 5.2.8. Can we sƟll apply the technique by
introducing a perpendicular from O to the chord AB?
We are to show AC  CE, i.e., if CE intersects O at A', then AA' must be a
diameter of O.

5.17 Given A, B, C, D are concyclic and A, B, F, E are concyclic, can you see
that ∠DAE = ∠CBF? Is this useful? (NoƟce that AD and BF should not be
parallel because F could be arbitrarily chosen on CD).
Given the circumcenters G and H, can you see that ∠DGE = ∠2DAE ? What
can you conclude about the (isosceles) triangles ΔDEG and ΔCFH ? Can you
see that DG // FH ?

Since P, G, H should be collinear, can you see similar triangles from DG // FH
? How are ΔAPE and ΔBPC related? Clearly they are not similar, but how are 

 related?

Chapter 6

6.1 Recall Example 3.4.1.



6.2 Let AM and BP intersect at D. It is easy to find  in the right angled

triangle ΔABM. Can you find  by Menelaus’ Theorem?

AlternaƟvely, one may draw PE  BC at E. Can you see that ΔPEC is also a
right angled isosceles triangle?

Indeed, there are many ways to calculate  One may also draw the

square ABCX. Can you see that BP extended pass through the midpoint of

CX, called F? Can you see ΔABM  ΔBCF ? Can you see 

6.3 Since AD, BE, CF are concurrent, can you see many pairs of similar
triangles?

6.4 We are given a median, an angle bisector and an alƟtude. Can you
show that BE is an alƟtude as well (by considering the median on the

hypotenuse BC)? Can you see 

6.5 How will the circles drawn (with diameters BC and AC) intersect ΔABC
? If you draw a circle with a diameter AC, can you see that it must intersect
BC, AC at D, E respectively?
Can you see that MN, PQ intersect at the orthocenter of ΔABC, called H? Can
you show that MH · NH = PH · QH by the Intersecting Chords Theorem?

AlternaƟvely, one easily sees that CM = CN and CP = CQ. Since M, N, P, Q
should be cyclic, this circle should be centered at C. Can you show CM = CP?
(Notice that they are in right angled triangles!)

6.6 What can you say about  by the Angle Bisector Theorem or

similar triangles? How are ΔADX and ΔCDY (not similar) related?

6.7 Since ΔABC should be an equilateral triangle, one should draw an
almost equilateral triangle. Suppose the circumcircle of ΔDEF intersects BC
at D, D'. Can you see that D and D' are symmetric about the midpoint of BC?
(NoƟce that the perpendicular bisector from O to BC is also the
perpendicular bisector of DD'.)
How are BD and BD' related? How are BD and BF' related?



6.8 How to show Q lies on BC? One strategy is to show that if the
circumcircle of ΔBPD intersects BC at Q', then C, E, P, Q' are concyclic (say by
angle properƟes). However, this may not be easy because we do not know
how ΔBDP and ΔCEP are related.

Where should ΔBDP intersect BC? Refer to the diagram below. It seems that
A, P, Q' are collinear. If this is true, we should have ∠B = ∠APD.

NoƟce that ∠B = ∠AED (because BE, CD are heights). Hence, we should
have ∠AED = ∠APD, i.e., A, D, P, E should be concyclic.
It is easy to see that PD = PE because OP is the perpendicular bisector of DE.
Can you see why A, D, P, E are concyclic?

6.9 How can we construct such a diagram? If we choose D and P casually, it
is difficult to introduce ℓ which gives DE = DF.
Let us construct the diagram in the reverse manner. Refer to the diagram
below. First we draw a line segment EF with its midpoint D, and N is on EF
extended. Now if P and C are chosen, A and B will be uniquely determined
(illustrated by the broken lines).



Hence, M is uniquely determined (by the doƩed lines), where we should
have DM = DN.
It seems that DM can be calculated via other line segments. Is it reminiscent
of Menelaus’ Theorem?
Which triangle should we apply Menelaus’ Theorem to? We should have
line segments DM, DN (or equivalently, EM, FN) in the equaƟon, and
probably DE, DF as well. Apparently, more than one triangle will be
involved.

6.10 NoƟce that drawing all the circles given, O1, O2 and O3, only
makes the diagram unnecessarily complicated. Instead, we may study the
properties of two circles, say O2 and O3. Similar properties should apply
to O1 as well.

Let O2 and O3 intersect at P and H. One immediately sees that PH 
O2O3.

Since O2,O3 are the midpoints of AC, AB respecƟvely, we have O2O3 // BC
and hence, PH  BC. This implies A, P, H are collinear.

Now a simple applicaƟon of the Tangent Secant Theorem shows that B1, B2,
C1, C2 are concyclic. Similarly, we should have A1, A2, B1, B2 concyclic as
well. How can we show that A1, A2, B1, B2, C1, C2 all lie on the same circle?



Which circle does B1, B2, C1, C2 lie on? Do you know the center and the
radius of that circle? (You may idenƟfy the center by drawing the
perpendicular bisectors of B1B2 and C1C2.) How about the circle which A1,
A2, B1, B2 lie on?

6.11 Suppose BM and CN intersect at X. Since we are to show X lies on the
circumcircle of ΔABC, the most straighƞorward method might be showing
that ∠BXC = 180° – ΔBAC.

One noƟces that ∠PAB = ∠C is a useful condiƟon, with which one easily
sees that ΔABC ~ ΔPBA.
Similarly, ΔABC ~ ΔQAC. (*)
Refer to the diagram below. Can you see that 1 = 2 = BAC ?
Hence, we should have 4 = BAC = 1 = ∠BQN, which implies B, N, X, Q
are concyclic.

Now we should have ∠3 = ∠N and similarly, ∠BCN = ∠M. This implies
that ΔBPM ~ ΔNQC. Can we show it? Since 1 = 2, it suffices to show 

 NoƟce that we have not used the condiƟon that P, Q are

midpoints of AM, AN respecƟvely. Now it suffices to show  Can

you see it from (*)?

6.12 We are given a circle and a triangle, but the condiƟon CF // BE seems
not closely related to circle geometry. Perhaps we can find equal angles
through the parallel lines and the property of O.



Refer to the diagram above. Since BE // CF, we have ∠BFC = ∠EBF = ∠CAD,
which implies A, D, C, F are concyclic. AlternaƟvely, one  may obtain this
result by ∠ACF = ∠BEC = ∠ADF. Suppose A, D, C, F lie on O1.

We are to show AG = DG, which implies G should lie on the perpendicular
bisector of AD. Since AD is the common chord of O and O1, its
perpendicular bisector is the line OO1. Can we show that G, O, O1 are
collinear? Refer to the diagram below. Can we show ∠BGO = ∠BGO1?
Notice that BE // CF gives us similar triangles ΔBEG ~ ΔCFG. Hence, it suffices
to show O and O1 are corresponding points in ΔBEG and ΔCFG.

O is obtained by intersecƟng the perpendicular bisector of BE and the line
passing through B perpendicular to BC. Hence, it suffices to show BC is
tangent to O1. NoƟce that we have not used the condiƟon BM = CM.
Observe the posiƟon of M and the two circles. Does it remind you of the
Tangent Secant Theorem?

6.13 Refer to the diagram below. We are to show I is the circumcenter of
ΔPQR, which is equivalent to PI = QI = RI. How is I related to P, Q, R? We
know EI = FI and indeed, AI is the perpendicular bisector of EF. NoƟce that I



should lie on the perpendicular bisector of QR.

It seems from the diagram that EF // QR. Is it true?

If we can show  then QR // EF, which implies QI = RI (because

A, I, J1 are collinear and J1E = J1F). Similarly, PI = QI and the conclusion
follows. This is probably the critical step we need!

On the other hand, we know EF // J2J3 because AI  J2J3 (Exercise 1.5).
Similarly, we have DF // J1J3 and DE // J1J2. Refer to the diagram below.

NoƟce that the parallel lines give ΔDEF ~ ΔJ1J2J3. Now can you see 

6.14 We are given many condiƟons. It is easy to seek clues from some of
the conditions. Refer to the left diagram below. Since AB = BC + AE and AE //



•
•
•

BC, it is natural to move BC up (i.e., extend AE to G such that BC = EG). (*)

We obtain a parallelogram BCGE where M is the center, as well as an
isosceles triangle ΔABG. Given AE // BC, can you see that BG bisects ∠ABC?

Now it suffices to show that  = ∠AGB, i.e.,

we should have A, B, D, G concyclic.

Apparently, we do not know much about the line segments, but only about
the angles. Refer to the right diagram above. Can we show that ∠BDG =
180° –∠A? NoƟce that 180° – ∠A = ∠ABC = ∠CDE. Hence, we should have
∠BDG = ∠CDE, or equivalently, ∠BDC = ∠EDG.

Notice that we have not used the following conditions:
M is the midpoint of CE (and hence the center of the parallelogram BCGE
O is the circumcenter of ΔBCD.
OM  DM

It seems that these properƟes are related to symmetry. Refer to the
diagram below. Let D' be the reflection of D about OM.
What can you say about D' ? Can you see congruent triangles related to D' ?
How is the parallelogram BCGE related to D' ? How is D' related to O, the
circumcenter of ΔBCD ?



Note: If one extends BC instead of AE at (*) to G such that CG = AE, an
isosceles triangle ΔABG will be obtained where AG bisects ∠A.
Unfortunately, this is not useful because we need angles related to half of
∠ABC or ∠CDE.



Solutions to Exercises

Chapter 1

1.1 Since AP = BP, we have 1 = ∠B. Now 2 = 90° – 1 = 90° – ∠B = ∠C,
which implies AP = CP. The conclusion follows.

1.2 Choose E on AC such that AB = AE. Since AD bisects BAC, one sees
that ΔABD  ΔAED (S.A.S.). Hence, BD = DE and AED = ABD = 2 C.
Since AED = C + CDE, we conclude that ∠C = ∠CDE, i.e., CE = DE.
Now CE = DE = BD. We have AC = AE + CE = AB + BD.

1.3 It is easy to see that ΔACE  ΔAGB (S.A.S.). Hence, we have BG = CE and
∠ACE = ∠AGB. Let BG and CE intersect at P. NoƟce that ∠CPG = ∠CAG =
90° (Example 1.1.6) and hence, BG  CE.

1.4 Refer to the left diagram below. Let BP,CP bisect the exterior angles of
∠B, ∠C respectively. We are to show AP bisects ∠A. Draw PD  BC at D, PE

 AB at E and PF  AC at F. It is easy to see that ΔBPE  ΔBPD (A.A.S.) and
hence, PD = PE. Similarly, PD = PF.



Now we have PE = PF. Refer to the right diagram above. One sees that ΔAPE 
 ΔAPF (H.L.) and hence, AP bisects ∠A.

1.5 Connect AJ1. Since AI and AJ1 are the angle bisectors of neighboring
supplementary angles, we have AI  AJ1 (Example 1.1.9, or one may simply
see that

Similarly, AI  AJ2. Now J1AJ2 = 90° + 90° = 180° which implies A, J1, J2 are
collinear and hence, AI  J1J2.

1.6 Choose E' on CD extended such that DE' = BE. Connect AE' It is easy to
see that ΔABE  ΔADE' (S.A.S.). Hence, AE = AE' and ∠BAE = ∠DAE.' Now we
see that ∠EAF = ∠E'AF = 45° and ΔAEF  ΔAE'F (S.A.S.). Hence, EF = E'F = DF
+ BE.

1.7 We have ∠ABD = ∠ACE = 90° – ∠BAC. Hence, ΔABP  ΔQCA (S.A.S.). It



follows that AQ = AP and ∠QAD = ∠APD = 90° – ∠PAC, i.e., ∠QAD + ∠PAC
= ∠PAQ = 90°. Thus, ∠AQP = 45°.

1.8 Connect CD. Since BE = AB = BC and BD bisects ∠CBE, we have ΔBCD 
ΔBED (S.A.S.). Hence, ∠BED = ∠BCD.
Since AD = BD, D (and similarly C) lie on the perpendicular bisector of AB,
which is indeed the line CD. It follows that CD bisects ∠ACB.

Now 

1.9 Since I is the incenter, CI bisects ∠C. Theorem 1.3.3 gives 

 Hence, ∠BID = 180°’  = 90° –

∠BCI = ∠CIH.

1.10 Since ∠1 = ∠2 and 3 = 4, we have ΔABC  ΔADC (A.A.S.). Hence,
AB = AD and ∠ABF = ∠ADE. Now ΔABF  ΔADE (A.A.S.), which implies AE =
AF. It follows that ΔAEP  ΔAFP (S.A.S.) and PE = PF. Note that the proof
holds regardless of the position of P.



1.11 Let M be the midpoint of BC. Since O is the circumcenter of ΔBCD, OM
is the perpendicular bisector of BC. On the other hand, since I is the
incenter of ΔACD, AI is the angle bisector ∠A, which passes through M
since AB = AC. Thus, A, I, O lie on the perpendicular bisector of BC. The
conclusion follows.

1.12 Let ∠ABC = 2a and ∠APC = 2β. We have BAP = ∠APC – ∠ABC = 2(α
– β). Since BD, PD are angle bisectors, we have CBD = a and ∠CPD = β. It
follows that BDP = CPD – ∠CBD = α – β
NoƟce that D is the ex-center of ΔABP opposite B (Exercise 1.4), which
implies that AD bisects the exterior angle of ∠BAP.

N o w 

This completes the proof.

1.13 Suppose otherwise. Draw CD' // AB, intersecƟng the line AD at D' Now
ABCD' is a parallelogram and AB = CD' BC = AD' We have AD'–CD' = BC – AB =
AD – CD.



Case I: AD < AD'
Refer to the diagram below.
We have DD' = AD'–AD = CD' – CD, i.e., DD'+CD = CD' This contradicts triangle
inequality.

Case II: AD > AD'
Similarly, we have DD' = AD – AD' = CD – CD', i.e., DD'+CD' = CD. This
contradicts triangle inequality.

It follows that D and D' coincide, i.e., ABCD is a parallelogram.

1.14 Draw EP  ℓ2 at P and AQ // EH, intersecƟng CD at Q. It is easy to see
that AEHQ is a parallelogram and hence, EH = AQ. Given that EP = AD, we
must have ΔEPH  ΔADQ (H.L.). It follows that ∠1 = ∠AQD = ∠2.
Similarly, we have ∠BGF = ∠HGF.

Now 

 and similarly, 

Hence, 

 because ΔCGH is a right angled triangle

where ∠C = 90°.

Note: One may observe that I is the ex-center of ΔCGH opposite C (Exercise



1.4). Indeed, one may show, following a similar argument as above, that if J
is the ex-center of ΔABC opposite A, then we always have 

 (You may compare this result with Theorem 1.3.3.)

Chapter 2

2.1 Si nce  i.e., we have 

Similarly, [ACEY] = [ΔABC] and [ABZF] = 4[ΔABC].

Now the total area of parallelograms is 175 = 7[ΔABC]. It follows that [ΔABC]

= 25cm2.

2.2 It is easy to see that ΔACE  ΔAGB, which implies CE = BG and BG  CE

(Exercise 1.3). Since O1M is a midline of ΔBEC, we have  and

O1M // CE.

Similarly,  and O2N // CE. Now OlM = O2N and O1M // O2N

imply MO1NO2 is a parallelogram.

A similar argument gives  and O1N // O2M // BG. Now

BG = CE implies O1M = O1N while BG  CE implies O1M.  O2N It follows
that MO1NO2 is a square.

2.3 Draw B G  AF at G. It is easy to see that ΔABG and ΔADF are right
angled isosceles triangles and BCFG is a rectangle.
Hence, CF = BG = AG and AF = DF. Now CD – 2AE = CF + DF – 2AE = AG + AF –
2AE = (AG – AE) + (AF – AE) = EF – EG.



Since 

In conclusion, 

2.4 NoƟce that PM is a midline of ΔBDE. Hence,  and PM //

BD. Similarly,  and QN // BD // PM.

We also have  and QM // PN // CE. It follows that MPNQ

is a parallelogram. Since PM // AB, QM // AC and AB  AC, we must have
PM  QM. Hence, MPNQ is a rectangle and MN = PQ.

2.5 It is easy to see that EFGH is a parallelogram (Example 2.2.6). We focus
on EFGH. Refer to the diagram below. Let EM extended and FG extended
intersect at Q.

Since EH // FQ and GM = HM, ΔEHM  ΔQGM (A.A.S.). Hence, QG = EH = FG. It

is given that FG = PG. We have PG = FG = QG  It follows that FP  PQ

(Example 1.1.8).

2.6 Let AB = a. Since ABCD is a square, it is easy to see that BE = CF and
ΔBCE  ΔCDF. Now ∠BCE = ∠ CDF = 90° – ∠CFD, which implies CE  DF.



Notice that  (Example 2.3.1).

Draw PX  BC at X, PY  CD at Y and PQ  AD at Q. We have 

a n d  Hence,  and 

which implies 

By Pythagoras’ Theorem, 

 AP = AB.

Note: There is an alternaƟve soluƟon based on the median CE doubled.
Refer to the diagram below. Extend CE to X such that CE = EX. It is easy to
see that ΔBCE  ΔAXE.

Hence, X lies on the line AD and AD = AX. NoƟce that C E  DF as shown in
the proof above. It follows that AP is the median on the hypotenuse DX of

the right angled triangle ΔPXD. Hence,  = AD = AB (Theorem

1.4.6).

This is an elegant soluƟon, even though the previous soluƟon using
Pythagoras’ Theorem is more straightforward.

2.7 Let BD,CE be the medians. By the Midpoint Theorem, BG = 2DG and CG
= 2EG.



Let DG = a and EG = b. Since BG  CG, we have BE2 = (2a)2 + b2 = 4a2 + b2.

Hence, AB2 = (2BE)2 = 4·(4a2 + b2) = 16a2 + 4b2.

Similarly, AC2 = 4a2 + 16b2. It follows that AB2 + AC2 = 20(a2 + b2), while BC2 =

(2a)2 + (2b)2 = 4(a2 + b2). The conclusion follows.

2.8 Refer to the following diagrams. Since DD' // BC, by the Intercept

Theorem, we have 

Similarly, let 

Le t S = Δ[ABC]. Note that 

and 

One sees that 

Similarly, 

We also have 

and 

Hence, 

= [a + b + c – ac – ab – bc ] · S



The conclusion follows.

2.9 Connect DE, DF. We claim that ΔBDE ~ ΔCFD. NoƟce that ∠B = ∠C =
60°. It suffices to show that ∠1 = ∠2. Since EF is the perpendicular bisector
of AD, we must have AE = DE and AF = DF. Hence, ΔAEF  ΔDEF (S.S.S). Now
∠EDF = ∠EAF = 60° and hence, ∠2 = 180° – ∠EDF – ∠3 = 180° – 60° – ∠3 =
180° – ∠B – ∠3 = ∠1.

We conclude that ΔBDE ~ ΔCFD. It follows that  or equivalently,

BD · CD = BE · CF.

2.10 It is easy to see that ∠EAH = ∠DCH. Hence, ΔBCE ~ ΔHAE and we

have 

2.11 Let BC = a, AC = b, AB = c, AD = x and AE = y. Clearly, 

Since AD is a median of ΔABE, we have  by

Theorem 2.4.3. Similarly,  because AE is a



median of ΔACD. Hence, we have 

 which could

be simplified to 

Pythagoras’ Theorem gives b2 + c2 = a2 and the conclusion follows.

2.12 Let AE and BC intersect at G. Suppose GD extended intersects AB at

M'. By Ceva’s Theorem,  Since CE // AB, we have 

Hence,  i.e., M' coincides with M. We conclude that the line MD

passes through G, i.e., the lines AE, BC, MD are concurrent at G.

Note: One may solve this problem by Menelaus’ Theorem as well.

Consider the line BE intersecƟng  Since

AB // CE, . We obtain  from (*). Now 

implies  It follows from Menelaus’ Theorem that D, G,

M are collinear.

2.13 Refer to the diagram below. Let AQ intersect BC at Q', BR intersect AC

at R' and CP intersect AB at P'. We claim that 



(1)

(2)

Notice that 

 where BQ = CQ and a =

∠BCQ = ∠CBQ. It is easy to see that a = ∠ACR = ∠ABP.

Similarly,  It

follows that  and by Ceva’s Theorem, AQ, BR, CP are

concurrent.

2.14 By Menelaus’ Theorem, it suffices to show  By the

Angle Bisector Theorem,  The

conclusion follows.

Note:

One may find it easier to solve this problem by applying Menelaus’
Theorem and the Angle Bisector Theorem mechanically instead of
referring to the diagram.
One may also solve this problem using Desargues’ Theorem.
Refer to the diagram below, where P, Q, R are the ex-centers of ΔABC
opposite A, B, C respecƟvely. Apply Desargues’ Theorem to ΔABC and
ΔPQR.
One sees that D, E, F are the intersecƟons of the corresponding sides



extended: AB, PQ intersect at F, BC, QR intersect at D, AC, PR intersect
at E.
Now D, E, F are collinear if the lines AP, BQ, CR are concurrent. This is
clear because they all pass through the incenter of ΔABC.

2.15 Refer to the diagram below. Apply Menelaus’ Theorem when the line

AE intersects ΔBDM : 

Since  we have 

Apply Menelaus’ Theorem when the line AB intersects ΔCEM :

Since AB = AC, we have 

 This completes the proof.

Note: One may find an alternative solution using the area method. We are

to show . We claim that AD · AE

+ AB · 2AD · AE



3.1 (a)

(b)

Notice that  · AB sin ∠A (since AB = AC),

Hence, it suffices to show that [ΔACD] + [ΔABE] = 2[ΔADE].

Refer to the diagram below. Since BM = CM, we have [ΔBDE] = [ΔCDE]. (Can
you see it?)

Hence, [ΔADE]–[ΔACD] = [ΔABE]–[ΔADE], which completes the proof.

Chapter 3

We always have ∠A = ∠C in the parallelogram ABCD. Now ABCD is
cyclic if and only if ∠A + ∠C = 180°, which implies ∠A = ∠C = 90°.
Hence, ABCD is cyclic if and only if ABCD is a rectangle.
In a trapezium ABCD, say AD // BC, we always have ∠A + ∠B = 180°.
Now ABCD is cyclic if and only if ∠A + ∠C = 180°, which implies
∠B = ∠C, i.e., ABCD is cyclic if and only if it is an isosceles
trapezium.

3.2  Since ∠BAF = ∠CDE, A, D, F, E are concyclic. Hence, ∠BAD = ∠CFE
(Corollary 3.1.5). Since ∠BAD + ∠ABC = 180°, we have ∠ABC + ∠CFE = 180°,
i.e., B, C, F, E are concyclic.



Since ∠AFE = ∠ADE and ∠BFE = ∠BCE (Corollary 3.1.3), we have ∠AFB =
∠AFE + ∠BFE = ∠ADE + ∠BCE. One can easily see that ∠ADE + ∠BCE =
∠CED (Example 1.4.15). The conclusion follows.

3.3  Since  and 

 we have ∠1 = ∠2. Hence, A, I, C, J

are concyclic.

Note : One may also show that ∠CAI = ∠CJI.

3.4  Let the lines AD, BC intersect at X. Since AB is the diameter of the
semicircle, we must have AC ⊥ BC, AD ⊥BD (Corollary 3.1.13). Hence, P is
the orthocenter of ΔABX. It follows that XP ⊥ AB, i.e., X, P, E are collinear.
Example 3.1.6 states that P is the incenter of ΔCDE.

3.5  Let OP intersect O at M. It is easy to see ΔPAO  ΔPBO (H.L.). Hence,
∠AOM = ∠BOM and they must correspond to equal arcs. It follows that M
is the midpoint of .



S i n c e  (Theorem 3.2.10), we have 

Now AM bisects ∠PAB and clearly, PM bisects ∠APB. It follows that M is
the incenter of ΔPAB.

3.6  (a) Since H is the orthocenter, ∠BHC = 180° − ∠A (Example 2.5.5).
Since B, C, O, H are cyclic, we have ∠BOC = 2∠A = ∠BHC. It follows that
2∠A = 180° − ∠A, or ∠A = 60°.

(b) Let the circumradii of ΔABC and ΔBHC be R1, R2 respectively.

By Sine Rule, 

Since ∠BHC = 180° − ∠A, we have sin ∠A = sin(180° − ∠A). It follows that
R1 = R2.

3.7  It is easy to see that OD is the perpendicular bisector of BC. Hence, BM
= CM and we have ∠2 = ∠CMD = 90° − ∠C. On the other hand, consider the
right angled triangles ΔAOP and ΔBOP.



We have  (Theorem 3.1.1).

It follows that ∠1 = 90° − ∠C = ∠2 and hence, B, O, M, P are concyclic. Now
∠OMP = ∠OBP = 90°. This completes the proof.

3.8  Extend CD to P such that CD = PD. We have BP = 2DE and ΔADP is an
equilateral triangle (because ΔDAC is an isosceles triangle and ∠ADC =
120°). It follows that ∠APD = 60° = ∠ABD, i.e., A, P, B, D are concyclic. Refer
to the left diagram below.

Let F and F' be the trisecƟon points of AC. NoƟce that ΔDFF' is an equilateral
triangle (Example 2.3.4). Clealy, PF' // DF. We must have ∠AF'P = ∠AFD =
60° = ∠ADP. It follows that A, F' , D, P are concyclic. Refer to the right
diagram above.

Now A, P, B, D, F' lie on the same circle where PF' is a diameter (since ∠PAC
= 90º). We have DE // BP, EF // BF' and BP ⊥ BF' (since PF' is the diameter). It
follows that DE ⊥ EF.

3.9  Let CE be a diameter of O. Now BE ⊥ BC and AH ⊥ BC, which
implies BE // AH. Similarly, AE // BH since both are perpendicular to AC. It
follows that AEBH is a parallelogram. It suffices to show that H, M, E are
collinear, in which case the diagonals of AEBH bisect each other.
Notice that ∠CDH = 90° = ∠CDE. Hence, H, D, M, E are collinear.



3.10  Let the midpoints of AB, AC, BC be O, O1,O2 respecƟvely. We have
CM = DM = EM (equal tangent segments). Draw O2D' ⊥ O1D at D'. NoƟce
that DEO2D' is a rectangle and hence, DE = D'O2.

We denote O1C = r1 and O2C = r2. NoƟce that AB = 2(r1 + r2) and hence, OF =
OB = r1 + r2. It follows that O1D' = O1D − O2E = r1 − r2 and OC = OB − BC = (r1 +
r2) − 2r2 = r1 − r2, i.e., O1D' = OC. We also noƟce that 

Now ΔOCF  ΔO1D'O2 (H.L.), which implies CF = D'O2. Hence, CF = DE. Since
CM = DM = EM, we must have FM = DM.

Now CDFE is a parallelogram since CF and DE bisect each other. Moreover,
CDFE is a rectangle since CF = DE.

Note: One may also show CF = DE using Pythagoras’ Theorem, i.e., 

3.11  Choose E on AC such that AB = AE. It is easy to see that ΔABD  ΔAED,
BD = DE and AD is the perpendicular bisector of BE.
Now ∠AED = ∠ABD = 2∠C, which implies ∠CDE = ∠AED − ∠C = ∠C.
Hence, CE = DE = BD. We claim that E is the circumcenter of ΔCDI and it
suffices to show that EI = DE, or equivalently, BI = BD.



NoƟce that  and ∠BID = ∠2 + ∠3 

 we have ∠BDI = ∠BID, i.e.,

BI = BD. This completes the proof.

3.12  Let M' denote the midpoint of AQ. Since ∠A = 90° and Q is the
midpoint of BC, we have AQ = BQ = CQ.

Hence, 

Since QA = QB, we have PM' // AB by the Intercept Theorem. It follows that
ABPM' is an isosceles trapezium. Hence, A, B, P, M' are concyclic (Exercise
3.1), i.e., M' lies on the circumcircle of ΔABP. Similarly, M' also lies on the
circumcircle of ΔACQ. We conclude that M and M' coincide and hence, A, M,
Q are collinear.

3.13  It is easy to see that AA'CB and ABB'C are isosceles trapeziums.
Hence,  which extend equal angles on the circumference, i.e.,

∠1 = ∠2.



We also have ∠2 = ∠3 since AA' // BC.

NoƟce that A, B, D, E are concyclic (because AD, BE are heights) and hence,
∠1 = ∠4. It follows that ∠3 = ∠4 and hence, A'B' // DE.

3.14  Refer to the leŌ diagram below. Let AI extended intersect the
circumcircle of ΔABC at D. Example 3.4.2 gives BD = CD = DI, which implies
that D is the circumcenter of ΔBIC.

3.15  Refer to the right diagram above. By definiƟon, A, I, J1 are collinear.
Since AI ⊥ J2J3 (Exercise 1.5), we have AJ1 ⊥ J2J3. Similarly, BJ2 ⊥ J1J3 and
CJ3 ⊥ J1J2.

Now A, B, C are the feet of alƟtudes of ΔJ1J2J3 whose orthocenter is I. It
follows that the midpoints of IJ1, IJ2, IJ3, JJ1, JJ2, JJ3 lie on the nine-point
circle of ΔJ1J2J3.

3.16  Draw YC'⊥ AB at C'. Since P, Q, C' are the feet of the perpendiculars
from Y to the sides of ΔABX, we must have P, Q, C' collinear (Simson’s Line).
Similarly, S, R, C' are also collinear. It follows that PQ and SR intersect at C',
i.e., C and C' coincide.



Since ∠APY = ∠ARY = ∠ACY = 90°, we have A, P, Y, R are concyclic and A, P,
Y, C are concyclic. It follows that A, P, R, Y, C are concyclic. Now 

 which completes the proof.

Note:  One may also find the following alternaƟve soluƟon, which does
not requires the fact that C lies on AB. Refer to the diagram below. It is easy
to see that

Hence, it suffices to show that ∠PCS + ∠XYZ = 180°.

Consider the shaded quadrilateral PCSY, where the sum of the interior
angles is 360°, i.e.,
∠PCS +∠XYZ + ∠PYX + ∠CPY + ∠SYZ + ∠CSY = 360°. (*) Since AB is the
diameter, we have ∠AXB = 90° = ∠XPY = ∠XQY. Hence, PXQY must be a
rectangle. Now ∠PYX = ∠CPY = 90° − ∠1. Similarly, SYRZ is also a rectangle
and we have ∠SYZ = ∠CSY = ∠2. Now (*) gives ∠PCS + ∠XYZ + 2 × (90° −
∠1 + ∠2) = 360°.
This leads to the conclusion ∠PCS + ∠XYZ = 180° as one observes that ∠1 =
∠2 (Corollary 3.1.5).

3.17  Refer to the diagram below.



Let the lines AB, CD intersect at P. Let 1 touch Γ2 at F and intersect the line
BC at M. Let 2 touch Γ1 at L and intersect the line AD at N. It suffices to
show that AMCN is a parallelogram.
We claim that CM − AM = AN − CN. (*)
By applying equal tangent segments repeatedly, we have CM − AM = (CG +
MG) − (MF − AF) = CH + AE, because MG = MF.
Similarly, AN − CN = (AJ + NJ) − (NL − CL) = AI + CK
Now (CH + AE) − (AI + CK) = HK − EI = (PK − PH) − (PI − PE) = 0 since PI = PK and
PE = PH.
This completes the proof of (*).

Now it is easy to see that AMCN is a parallelogram (Exercise 1.13).

Chapter 4

4.1  Draw the common tangent of O and P at C. By applying Theorem
3.2.10 repeatedly, we have ∠A = ∠1 = ∠2 = ∠D. Hence, AB // DE. Since A,
B, D, E are concyclic, we have ∠A = ∠E (angles in the same arc).
Now ∠D = ∠E and since AB // DE, ∠B = ∠E = ∠A. It is easy to see that
ABDE is an isosceles trapezium and ΔABC ~ ΔEDC.



We have  since they are corresponding line segments. The

conclusion follows.

Note: One may also see that  Sine

Rule. Since ∠B = ∠D, we must have 

4.2  We are given that ACDO is a parallelogram, i.e., CD // AB. Since D is
the midpoint of BP, we must have AC = CP.

Connect BC. Since AB is the diameter, we have BC ⊥ AP. Since AC = CP, one
sees that ΔABP is a right angled isosceles triangle where AB = BP (because
ΔABC  ΔPBC).

Draw DE ⊥ AP at E. We have DE // BC Since D is the midpoint of BP, we must

have  by the Intercept Theorem.

Let OA = 1. It is easy to see that  and 

4.3 Let AC intersect DE, BF at G, H respectively. Since ∠B = 90° and ABCD is
cyclic, we must have ∠ADC = 90°.

Since DE ⊥ AC, we have AB2 = AH ⋅ AC.



(Example 2.3.1). Similarly, AD2 = AG ⋅ AC.

It follows that 

Since DE // EF, we have 

By (1), 

Now 

Note:  There are many ways to derive the conclusion from (2). For

example, one may write  and hence obtain 

4.4  Refer to the leŌ diagram below. We claim that  Since OP =

OM, it suffices to show 

Refer to the right diagram above. Let AD extended intersect BC extended at



X. We have 

Similarly,  We conclude that  or equivalently, 

 It follows that ΔOFP ~ ΔOPE and hence, ∠OPF = ∠OEP.

4.5  NoƟce that ∠ABC = ∠PAE = ∠E, which implies ΔABC ~ ΔAEQ. Hence, 

It follows that 

Similarly, ΔABD ~ ΔAFQ and 

Now it suffices to show that  but this is by Example 4.1.1.

4.6 Connect OA. In the right angled triangle ΔAOP, PA2 = PO·PM (Example

2.3.1). We also have PA2 = PC·PD by the Tangent Secant Theorem. Hence,
PC·PD = PO·PM and the conclusion follows.



4.7 Let AC extended and BD extended intersect at P. One sees that AD
bisects ∠BAC (Corollary 3.3.3). Since AB is the diameter, we have AD ⊥ BP
and hence, ΔABP is an isosceles triangle where AB = AP (because ΔABD 
ΔAPD). Now 

It is also easy to see that ΔBDE ~ ΔBCP since both are right angled triangles.
Hence, we have BE · BC = BD · BP. (One may also see this by the Tangent
Secant Theorem because C, E, D, P are concyclic.) It follows that 

 solving which gives BE = 5.

Hence, BC = 8 and by Pythagoras’ Theorem,

Since PA · PC = PB · PD by the Tangent Secant Theorem, we must have 
 We conclude that AB = PA = 10.

4.8 Since ∠BCF = ∠BAC (Theorem 3.2.10), we have ΔBCF ~ ΔCAF. Hence, 

 and we have 

Similarly, 

It follows that  and by

Menelaus’ Theorem, D, E, F are collinear.

Note: This is an example of Menelaus’ Theorem where the line does not
intersect the triangle, but the division points are on the extension of the
sides instead. In this case, wriƟng down the equaƟon mechanically could be
easier than referring to the diagram, especially for beginners.

4.9 Refer to the diagram below. Connect CJ, BK. It is easy to see that CJ =
AJ and BK = AK. (*)



NoƟce that ∠E = ∠ABF – ∠BPE, while ∠BPE = ∠A (Corollary 3.1.5) =
∠ABK (since AK = BK).
Hence, ∠E = ∠ABF – ∠ABK = ∠FBK.
Similarly, ∠F = ∠ECJ.
It follows that ΔCEJ ~ ΔFBK.

Now 

Hence, 

4.10 Connect BP, CP. Since AP = AQ, we have ∠2 = ∠1 = ∠3 (angles in the
same arc). Now ΔADQ ~ ΔAQC, which implies 

Similarly, AP2 = AB · AE. Since AP = AQ, we have AC · AD = AB · AE.
It follows that B, C, D, E are concyclic and hence, ∠ABO = ∠ACO. NoƟce
that ΔOBE ~ ΔOCD. Since OB = OC, we have ΔOBE  ΔOCD (A.A.S.) and hence,
OD = OE. Now ΔOBC ~ ΔODE since both are isosceles triangles. Hence, ∠OBC
= ∠ODE, which implies DE // BC.



Note: Since B, C, D, E concyclic, one sees that ΔABC and ΔADE are
isosceles triangles where AB = AC and AD = AE.

4.11 Let the common tangents passing through A and B intersect at P,
i .e., PA ⊥ O1O2 and PB ⊥ O2O3. NoƟce that PA = PB (equal tangent
segments). Refer to the diagram below. We claim that PC must be a
common tangent of O1 and O3.

Suppose otherwise, say the line PC intersects O1 at C and D. By the

Tangent Secant Theorem, PB2 = PA2 = PC · PD. If the line PC touches O3 at
C, we have PB = PC. This is only possible if PC is a common tangent of O1
and O3, i.e., C, D coincide. If the line PC intersects O3 at C and E, we

have PB2 = PC · PE and hence, D and E coincide. Since O1 and O3 are
tangent to each other at C, this implies C, D, E coincide and hence, PC is a
common tangent of O1 and O3.

In conclusion, PC is the radical axis of O1 and O3. Hence, ℓ1, ℓ2, ℓ3 are
concurrent at P.

4.12 Draw PA, PB tangent to O at A, B respecƟvely. NoƟce that AP is the
common tangent of O and O1 and hence, the powers of P with respect
to O and O1 are the same. Similarly, the power of P with respect to O
and O2 are the same. It follows that P lies on the radical axis of O1 and 

O2 (Theorem 4.3.6), i.e., P lies on the line CD.



Let OP intersect AB at H. Clearly, OP is the perpendicular bisector of AB.

Hence, we have PA2 = PH · OP (Example 2.3.1).

Since PA2 = PC · PD, we must have PC · PD = PH · PO. This implies C, D, O, H
are concyclic. It follows that ∠ODC = ∠OHC = 90°.

4.13 Let D be the point on the angle bisector of ∠B such that AD // BC.
Since ∠B = 2∠C, we have ∠1 = ∠2 = ∠C.
Since AD // BC, we have ∠1 = ∠3 = ∠C. It follows that ABCD is an isosceles
trapezium which is obviously cyclic.
By Ptolemy’s Theorem, AC · BD = AD · BC + AB · CD.

Since AC = BD and CD = AB = AD (because ∠2 = ∠3), we have AC2 = AB · BC +

AB2 = AB · (AB + BC).

Note: Once we have AB = AD = CD, one may also show the conclusion by
the area method. Refer to the diagram below. Extend CB to E such that BE =
AB. It is easy to see that AE = BD = AC.



H e n c e ,  and 

Since ∠CAE = ∠BAC + ∠1 and ∠1 = ∠AEB = ∠ACB by isosceles triangles,
we have ∠CAE = ∠BAC + ∠ACB = 180° – ∠ABC. It follows that sin ∠CAE =
sin ∠ABC = sin ∠BCD.

Since [ΔACE] = [ΔCDE], we must have AC2 = AB · (AB + BC).

One may notice that applying Ptolemy’s Theorem is much faster.

4.14 Refer to the leŌ diagram below. Let O1 touch ℓ1, ℓ2 at P, Q
respectively. It is easy to see that PQ is a diameter of O1 and O2B // O3D //
PQ. Let I be the circumcenter of ΔACE.

Example 4.3.3 states that the circumcircle of ΔACE is the incircle of ΔO1O2O3.
In particular, IC ⊥ O1O3. We claim that BC ⊥ O1O3.

Let the radii of O1, O2 and O3 be r1, r2, r3 respecƟvely. Refer to the
right diagram above. Draw O2X1 ⊥ PQ at X1 and O3X2 ⊥ BO2 at X2.

Pythagoras’ Theorem gives us  

 Similarly, 

In the right angled triangle ΔO2O3X2, O2O3
2 = O2X2

2 + O3X2
2. Observe that

O2O3 = r2 + r3, O2X2 = PQ – BO2 – DO3 = 2r1 – r2 – r3 and 

 Hence,  

 the simplification of which gives 

Now 



This implies 

It follows that BC ⊥ O1O3 by Theorem 2.1.9. Since IC ⊥ O1O3, B, I, C are
collinear. Similarly, A, I, D are collinear. The conclusion follows.

4.15 Since PQ is tangent to the circumcircle of ΔMNL, i.e., PQ touches the
circle exactly once, the point of tangency must be L. It is easy to see AB //
ML and AC // NL because M, N, L are midpoints.

Clearly, ∠BAC = ∠MLN. NoƟce that ∠APQ = ∠PLN = ∠LMN and similarly,

∠LMN = ∠AQP. It follows that ΔLMN ~ ΔAPQ and hence,  Since

PL = QL, we must have  

Now we have  or equivalently, AP · CP = AQ · BQ.

Let O denote the circumcircle of ΔABC. Consider the power of point P

with respect to O. We see that OP2 – r2 = – AP · CP where r is the

circumradius of ΔABC. (Refer to Definition 4.3.5.) Similarly, we have OQ2 – r2

= – AQ · BQ.



Since AP · CP = AQ · BQ, we obtain OP2 = OQ2, i.e., OP = OQ.

Note: It is easier to write down the expression for the power of a point
without referring to the diagram. Indeed, those irrelevant lines in the
diagram could be very confusing.

Chapter 5

5.1 Let BD, CE intersect at H, the orthocenter of ΔABC. By Example 3.4.1,
∠BAO = ∠CAH = 90° – ∠C. It is easy to see that B, C, D, E are concyclic.
Hence, ∠C = ∠AED. It follows that ∠BAO + ∠AED = 90°, i.e., AO ⊥ DE.

5.2 Connect BP, OP. It is easy to see that ΔPAB is a right angled isosceles
triangle where ∠APB = 90° and ∠PAB = ∠PBA = 45°.

In the right angled triangle ΔPBM, we have 

Since AM = PM, (1) gives AM2 = MH · BM, or 

It follows that ΔAHM ~ ΔBAM. Hence, ∠MHA = ∠MAB = 45° and ∠MAH =
∠MBA
On the other hand, since ∠BHP = ∠BOP = 90°, B, O, H, P are concyclic, which
implies ∠BHO = ∠BPO = 45° = ∠MHA.

Now we have ΔAHM ~ ΔBHO and hence,  or

AH · OH = MH · BH = PH2 by (2). This completes the proof.



Note: One sees the conclusion is essenƟally a property of the right
angled isosceles triangle ΔPAB where only medians and perpendicular lines
are introduced. Hence, one may solve it by brute force, i.e., calculaƟng PH,
AH and OH.

Let AO = BO = OP = 1. We have  NoƟce that ΔPBM is a right
angled triangle whose sides are of the raƟo  (Pythagoras’

Theorem). Hence, 

NoƟce that  we have

AH2 = AM2 + MH2 – 2AM · MHcos∠AMB by Cosine Rule, where 

Hence, 

Notice that OH is a median of ΔABH, where 

Hence,  

 It follows that 

5.3 Recall that  Since CD = CE, we have 

 and hence,  Since

∠ABI = ∠PBC, we must have ΔABI ~ ΔPBD.



Hence,  and we conclude that ΔABP ~ ΔIBD.

It follows that ∠APB = ∠IDB = 90°.

Note: One may also show that ∠API = ∠AEI = 90°. In fact, once we obtain 

 one immediately sees that A, I,

E, P are concyclic and hence the conclusion.

5.4 NoƟce that in the right angled triangle ΔBCR, 

Similarly, 

It follows that DX is the perpendicular bisector of QR. Similarly, EY, FZ are
the perpendicular bisectors of PR, PQ respecƟvely. Hence, DX, EY, FZ are
concurrent at the circumcenter of ΔPQR.

5.5 L e t AA' be a diameter of O. By Example 3.4.4, A'BHC is a
parallelogram and N is the midpoint of A'H. Notice that A',H, Q are collinear.
Let CC' be a diameter of O. Similarly, we have C', H, P collinear and M is
the midpoint of C' H.
By the IntersecƟng Chords Theorem, A'H · HQ = C'H · HP, which implies MH ·
HQ = NH · HP since A'H = 2MH and C'H = 2NH.
It follows that M, N, P, Q are concyclic.



Note: One may also noƟce that MN // A'C' (Midpoint Theorem) and
hence, A', C', Q, P concyclic implies M, N, Q, P are concyclic (Example 3.1.7).

5.6 NoƟce ΔABC is a right angled triangle. We have 

Similarly, 

It follows that 

5.7 Let C' be the reflecƟon of C about BD. Draw C'H ⊥ BC at H. One sees
that CP + PQ = C'P + PQ ≥ C'Q ≥ C'H. Refer to the left diagram below.

It is easy to see that CC' ⊥ BD and hence, ΔCC'H ~ ΔDBC.

We have  Refer to the right diagram above.



(1)

(2)

NoƟce that  Hence,  

 It follows that 

In conclusion, the smallest value of  where C'Q ⊥ BC at Q

and C'Q intersects BD at P.

5.8 Extend HM to D such that HM = DM. Clearly, BDCH is a parallelogram
where ∠DBH = 180° – ∠BHC = ∠A because H is the orthocenter. (1)
Let CE be a height. Notice that ∠APQ = 90° – ∠PHE = 90° – ∠CHQ = ∠CHM =
∠BDH. (2)

(1) and (2) imply that ΔAPQ ~ ΔBDH. Since ∠HBM = 90° – ∠C = ∠CAH, we

conclude that H and M are corresponding points, i.e.,  This

completes the proof.

Note:
One may also see that ΔAPH ~ ΔCHM and ΔAGH ~ ΔBHM.

Now  leads to the conclusion.

NoƟce that the diagram of this quesƟon is similar to Exercise 5.4.
However, the techniques used are enƟrely different. In fact, this
quesƟon is more closely related to Example 5.2.6. Can you see that
ΔAPQ and ΔBCH are related in a similar way as ΔABC and ΔEFO in that
example?

5.9 Refer to the diagram below. Since PB is tangent to O, we have ∠PBD
= ∠BAD. Since B, C, D, P are concyclic, we have ∠ACD = ∠BPD. It follows
that ΔACD ~ ΔBPD.



Hence, 

Since OA is the perpendicular bisector of PQ, we have AQ = AP = BP.

By (1),  Refer to the diagram below. NoƟce that ∠BAQ = ∠ADB

(because AQ is tangent to O). We conclude that ΔACQ ~ ΔDAB. Now
∠DAB = ∠ACQ and we must have AD // CQ.

5.10 Le t H be the orthocenter of ΔABC and AD extended intersect the
circumcircle of ΔABC at F. It is easy to see that DH = DF and ∠BFH = ∠BHF =
∠AHQ.

On the other hand, we have ∠QAH = ∠PBF (angles in the same arc). It
follows that ΔAHQ ~ ΔBFP. Refer to the leŌ diagram below. Since ∠CAF =

∠CBF, D and E are corresponding points and 



Draw QR // DE, intersecting AF at R. Refer to the right diagram above.

Now 

Since DH = DF, (1) and (2) imply PD = DR. By the Intercept Theorem, DE must
pass through the midpoint of PQ.

Note: This is not an easy problem. Recognizing similar triangles ΔAHQ,
ΔBFP and ΔBHR is the key step, even though ΔBHR is not drawn explicitly in
the proof. Indeed, one may see this problem as an extension of Example
3.4.3.

5.11 Since ∠A = 90°, one sees that BC is a diameter of Γ. Let DE intersect
PH at G. Let M be the midpoint of PE. Let PH extended intersect Γ at Q.
We have ∠PED = ∠D = ∠Q (angles in the same arc). It follows that ΔPGE ~
ΔPEQ.

Clearly, H is the midpoint of PQ. Since M is the midpoint of PE, we have

ΔPGM ~ ΔPEH. Now  i.e., PG = PM.

It follows that MG // EH, and hence, G is the midpoint of PH.

Note:



(1)

(2)

(3)

We introduced the midpoint M of PE instead of explicitly drawing a
perpendicular from the center of Γ to the chord PE. Nevertheless, the
motivation still comes from this technique.
One may also connect MH and see that MH // EQ. Since PE = PH, we have
ΔPMH ~ ΔPEQ and ΔPMH  ΔPGE (A.A.S.). Now EHGM is an isosceles
trapezium and the conclusion follows.
There is an alternaƟve soluƟon by the IntersecƟng Chords Theorem.
Refer to the diagram below. Draw the circumcircle of ΔDEH.
Since PD = PE = PH, P is the circumcenter of ΔDEH. It is easy to see that
PH = HQ = PR. Let PH = r, PG = a and GH = r – a.
By the Intersecting Chords Theorem, PG · GQ = DG · GE = GH · GR.

Hence, a(2r – a) = (r – a)(r + a), i.e., 2ra = r2.

It follows that  and G is the midpoint of PH.

5.12 By considering the isosceles triangle ΔCDQ, one sees that ∠CDQ =
∠DCQ = ∠CAD and hence, ∠CQD = 180° – 2 ∠CAD.

Draw Q with radius CQ. Since AB is a diameter, PD ⊥ AD and hence, 

 It follows that P lies on Q.



Hence, PQ = CQ and we have ∠CPQ = ∠PCQ.
Since AC ⊥ BC, we have ∠PCQ = 90° – ∠BCQ = 90° – ∠BAC. This implies
that ∠CPQ + ∠BAC = 90°, i.e., AB ⊥ PQ.
Since PD ⊥ AE, B must be the orthocenter of ΔAEP. Now BE ⊥ AC, which
implies B, C, E are collinear.

Note: One sees from the proof that PQ = CQ = DQ = EQ, i.e., Q is the
midpoint of PE. Indeed, one may find an alternaƟve soluƟon as follows.
Suppose the lines AD and BC intersect at E' where Q' is the midpoint of PE'.
Connect Q'C and Q'D. Refer to the diagram below.

Since ΔCPE' and ΔDE'P are right angled triangles sharing a common

hypotenuse, we have 

Now it suffices to show that Q'C and Q'D are tangent to O, or equivalently,
OC ⊥ Q'C.

Since AC ⊥ BC, it suffices to show ∠ACO = ∠BCQ'. NoƟce that B is the
orthocenter of ΔAPE', i.e., AB ⊥ PE'. We have ∠BCQ' = ∠CE'Q' = 90° –
∠APE' = ∠CAO = ∠ACO. This implies OC⊥Q'C and similarly, OD ⊥ Q'D.
Hence, Q' coincides with Q and we conclude that E' coincides with E. This
completes the proof because E' lies on BC.

5.13 Since I is the incenter of ΔABC, we know that DC = DI and EC = EI.
Hence, DE is the perpendicular bisector of CI. Let the line DE and ℓ1
intersect at F'.
It is easy to see that ΔEF'I  ΔEF'C (S.S.S.) and hence, ∠ECF' = ∠EIF'
Since IF'AB, we have ∠EIF' = ∠ABI = ∠CBI. It follows that ∠CBI = ∠ECF'
which implies CF' is tangent to O at C. In conclusion, F and F' coincide. This
completes the proof.



5.14 Draw DF ⊥ BC at F and EG ⊥ BC at G. Since BD bisects ∠ABC and
∠BAD = ∠BFD = 90°, we must have ΔABD  ΔFBD (A.A.S.). Hence, AB = BF
and AD = DF.
Similarly, AC = CG and AE = EG. We claim that FP = GP.

Let AP and DE intersect at X. By applying Pythagoras’ Theorem repeatedly,

we have FP2 = PD2 – DF2 = PD2 – AD2

= (PX2 + DX2) – (DX2 + AX2) = PX2 – AX2.  (1)

Similarly, GP2 = PE2 – EG2 = PE2 – AE2

= (PX2 + EX2) – (EX2 + AX2) = PX2 – AX2.  (2)

(1) and (2) imply that FP = GP.
Now AB – AC = BF – CG = (BP + FP) – (CP + GP) = BP – CP.

5.15 Since ∠ACD = ∠BCP, one sees that ∠PCD = ∠ACB = ∠CAD because
AD // BC. Since AB // CD, we have ∠PDC = ∠ABD = ∠AED (angles in the

same arc). It follows that ΔADE ~ ΔCPD and hence, 



Since CD = AB, we have 

Clearly, ∠BAE = ∠PDE (angles in the same arc).
We conclude that ΔABE ~ ΔDPE. It follows that ∠AEB = ∠DEP, or
equivalently, ∠AED = ∠BEP.
Note: We applied the technique of similar triangles sharing a common
vertex to show ΔABE ~ ΔDPE, where the “common” vertex is not E, but A and
D: although these are different points, the corresponding angles at the
vertices are the same due to the concyclicity.

5.16 Let A' be the point symmetric to A about O. Let the lines CA' and BD
intersect at E'. Since A'A is a diameter of O, we must have AC ⊥ CE'. Now
it suffices to show that P, O, E' are collinear.

Connect BC. NoƟce that ∠ABC = ∠A'CD because they correspond to equal
arcs (i.e.,  by symmetry).

Clearly, ∠CAB = ∠CDB. We must have ΔACB ~ ΔDE'C. Draw OM ⊥ AB at M
We see that M is the midpoint of AB. Connect CM, OE.' Since O is the
midpoint of CD, we have ΔACM ~ ΔDE'O.
It follows that ∠1 = ∠3. Connect OP. Since ∠OMP = ∠OCP = 90°, P, C, O, M
are concyclic and we have ∠1 = ∠2. Now ∠2 = ∠3, which implies P, O, E'
are collinear.

Note: One may also re-write the proof in a direct approach: upon drawing
OM ⊥ AB at M, we show that ΔACM ~ ΔDEO and hence, ΔACB ~ ΔDEC. Now
the angles extended by  on O are the same (where CE
intersects O at A'). Hence, A and A' are symmetric about O. We conclude
that AA' is a diameter of O and hence, AC ⊥ CE.

5.17 NoƟce that ∠DAE = ∠BAD – ∠BAE where ∠BAD = 180° – ∠C and



∠BAE = ∠BFC (because A, B, C, D and A, B, F, E are concyclic).
It follows that ∠DAE = 180° – ∠C – ∠BFC = ∠CBF. (1)
Refer to the left diagram below.

Since G is the circumcenter of ΔADE, we have ∠DGE = 2∠DAE.
Similarly, ∠CHF = 2∠CBF. Refer to the right diagram above.
Now (1) implies ∠DGE = ∠CHF and hence, the isosceles triangles ΔDEG and
ΔCFH are similar. In particular, DG // FH.

Consider ΔAPE.

Sine Rule gives  and 

Since sin ∠PDA = sin ∠ADE, we have 

By Sine Rule,  Now 

A similar argument applies in ΔBPC, which gives

Notice that ∠AEP = ∠PBF and ∠BCP = ∠PAD by concyclicity. We also have
∠DAE = ∠CBF by (1).

Now (2) and (3) implies that 

Since ΔDEG ~ ΔCFH, we have 

(4) and (5) give  and hence, ΔPDG ~ ΔPFH.

Now ∠DPG = ∠FPH and it follows that P, G, H are collinear.



Chapter 6

6.1 Draw AH ⊥ BC at H. Let OA and DE intersect at F. It is well-known
(Example 3.4.1) that ∠OAD = ∠CAH.

If B, C, E, D are concyclic, we must have ∠ADE = ∠C.

Now ∠ADE + ∠OAD = ∠C + ∠CAH = 90°, i.e., DE ⊥ OA.

On the other hand, if DE ⊥ OA, we have ∠ADE = 90° – ∠OAD = 90° – ∠CAH
= ∠C and hence, B, C, E, D are concyclic.

Note: Exercise 5.1 is a special case of this problem.

6.2 Let AM and BP intersect at D. It is easy to see that  and hence,

in the right angled triangle ΔABM, 

Apply Menelaus’ Theorem when ΔACM is intercepted by the line BP. We

have  It follows that 

Now  Hence, AB = 3.



Note: One may also draw PE ⊥ BC at E. It is easy to see that ΔABM ~ ΔBEP

and we have 

Since  we have CE = 1 and AB = 3.

6.3 Refer to the diagram below. It is easy to see that ΔABG ~ ΔEDG.

Hence, 

Similarly, ΔBCG ~ ΔFEG, which implies 

By (1) and (2), 

Since  It follows that 

6.4 In the right angled triangle ΔBCD,  because D is the

midpoint of BC. Since DE = DF, , which implies ∠BEC = 90°.



(1)

(2)

Since BE bisects ∠ABC, we have ΔABE  ΔCBE (A.A.S.), which implies AB =
BC and E is the midpoint of AC.

Hence, in the right angled triangle ΔACF, 

Since DE = EF, we have AB = BC = 2DE = 2EF = AC. This completes the proof.

6.5 Refer to the diagram below. Let AD, BE intersect at H, the orthocenter
of ΔABC. It is easy to see that A, B, D, E are concyclic.
Apply the IntersecƟng Chords Theorem repeatedly: PH · QH = AH · DH = BH ·
EH = MH · NH.
It follows that M, P, N, Q are concyclic.

Note:
One may notice that M, P, N, Q lie on a circle centered at C. In fact since
BC is the perpendicular bisector of MN, we have CM = CN and similarly,
CP = CQ. We claim that CM = CP.

Since BC is a diameter, ∠BMC = 90° and hence, CM2 = CD · BC (Example

2.3.1). Similarly, we have CP2 = CE · AC. By the Tangent Secant
Theorem, CD · BC = CE · AC. Hence, CM = CP and M, P, N, Q lie on the
circle centered at C with the radius CM.
One may also draw CF ⊥ AB. at F. Since AC, BC are diameters, F lies on
the circumcircles of ΔACD and ΔBCE. By the IntersecƟng Chords
Theorem, PH · QH = CH · FH = MH · NH and hence the conclusion.

6.6 Refer to the diagram below. Apply Sine Rule to ΔADX and ΔCDY.



We have  NoƟce that ∠1 = ∠4 and

∠2 + ∠3 = 180°, i.e., sin∠2 = sin∠3. It follows that 

We have  by the Angle Bisector Theorem.

Hence, , which implies AC // EH.

Similarly, FG // AC. 

We conclude that EH // FG. Similarly EG // BD // FH. It follows that EGFH is a
parallelogram.

6.7 Let the circumcircle of ΔDEF intersect BC at D, D', AC at E, E' and AB at F,
F'. NoƟce that the midpoints of BC and DD' coincide, i.e., D and D' are
symmetric about the midpoint of BC.

Let 



(1)

(2)

We have 

Similarly, 

We have 

Since BD · BD' = BF · BF' (Tangent Secant Theorem), we must have AB2 = BC2,
i.e., AB = AC.
Similarly, BC = AC and the conclusion follows.

6.8 Refer to the leŌ diagram below. Since OD = OE and OP bisects ∠DOE,
we must have PD = PE (because ΔOPD  ΔOPE).
Clearly, AD ≠ AE because ΔABC is non-isosceles. Since AP bisects ∠A, we
must have A, D, P, E concyclic (Example 3.1.11).
It follows that ∠AED = ∠APD.

Refer to the right diagram above. Let AP extended intersect BC at Q'. Since
B, C, D, E are concyclic, we must have ∠B = ∠AED = ∠APD.
Hence, B, D, P, Q' are concyclic.
Similarly, C, E, P, Q' are concyclic. It follows that the circumcircles of ΔBPD
and ΔCPE intersect at P and Q', i.e., Q and Q' coincide. This completes the
proof.

Note:
It is easy to see that BE, CD are the heights of ΔABC, but this is not
important when solving this problem.
Recognizing A, D, P, E concyclic is the key step. This is the conclusion of
Example 3.1.11, a commonly used fact.

6.9 Apply Menelaus’ Theorem to ΔAMD intersected by BP, ΔAMF
intersected by BC and ΔADF intersected by PN:



Multiplying (1), (2), (3) gives 

Since DE = DF, we have 

It follows that EM = FN and hence, DM = DN.

Note: MulƟplying (1), (2), (3) is a quick way to cancel out the terms. Of
course, one may also manipulate each equaƟon by moving the desired
terms (DE, DF, MD, ME, etc.) to one side and the rest to the other side. This
is a basic technique when applying Menelaus’ Theorem.



6.10 Let O2 and O3 intersect at P and H. We have PH ⊥ O2O3 and O2O3
// BC (Midpoint Theorem).

Hence, PH ⊥ BC, which implies A, P, H are collinear. By the Tangent Secant
Theorem, we have

AC1 · AC2 = AP · AH = AB1 · AB2.

Hence, B1, B2, C1, C2 are concyclic.

Let the perpendicular bisectors of BB1, CC1 intersect at O. NoƟce that OO2,
OO3 are also the perpendicular bisectors of AC, AB respectively.

Hence, O is the circumcenter of ΔABC, i.e., B1, B2, C1, C2 lie on O whose
radius is OB1.

A similar argument gives that A1, A2, B1, B2 also lie on O. It follows that
A1, A2, B1, B2, C1, C2 are concyclic on O.

6.11 Let BM and CN intersect at X. Since ∠C = ∠PAB, we have ΔABC ~
ΔPBA. Similarly, ΔABC ~ ΔQAC.

Hence, ∠1 = ∠2 = ∠BAC and we also have ∠BPM = ∠NQC.

Consider ΔBPM and ΔNQC. Since P is the midpoint of AM, we have 

  because ΔABC ~ ΔPBA.

Similarly, 

It follows that  and hence, ΔBPM ~ ΔNQC.



Now ∠3 = ∠N and we must have ∠4 = ∠BQN = ∠1 = ∠BAC. It follows that
A, B, X, C are concyclic.

6.12 Since BE // CF, we have ∠BFC = ∠EBF = ∠CAD (angles in the same
arc), which implies A, D, C, F are concyclic, say on O1.
Since M is the midpoint of BC, by the Tangent Secant Theorem, AM · DM =

BM2 = CM2, which implies BC is tangent to O1.
Since ΔBEG ~ ΔCFG, it follows that O and O1 are corresponding points.

It follows that ∠BGO = ∠CGO1 because they are corresponding angles in
ΔBEG and ΔCFG respectively. This implies G lies on the line OO1 Since OO1 is
the perpendicular bisector AD, we have AG = DG.

Note: One may also show G, O, O1 collinear via ΔOBE ~ ΔO1CF and hence, 

 Now ΔOBG ~ ΔO1CG and ∠BGO = ∠CGO1.

6.13 Recall that J2J3 // EF because both are perpendicular to AI (Exercise
1.5). Similarly, J1J2 // DE and J1J3 // DF. It follows that ΔDEF ~ ΔJ1J2J3.

Now 



Hence, QR // EF. NoƟce that AJ1 is the perpendicular bisector of EF and
hence, J1E = J1F. It follows that AJ1 is also the perpendicular bisector of QR.
Since I lies on AJ1, we must have QI = RI.
Similarly, PI = QI and the conclusion follows.

6.14 Refer to the leŌ diagram below. Extend AE to G such that BC = EG.
Since AB = BC + AE, we have AB = AG.

Now ∠ABG = ∠AGB = ∠CBG (because AE // BC), i.e., BG bisects ∠ABC. It is
also easy to see that BCGE is a parallelogram where M is the center.

We claim that A, B, D, G are coney clic. (1)

NoƟce that (1) would imply that ∠ADB = ∠AGB, which leads to the

conclusion because 

Refer to the right diagram above. It suffices to show that ∠BDG = 180° –
∠A, where 180° – ∠A = ∠ABC = ∠CDE. Hence, it suffices to show ∠BDG =
∠CDE, or ∠BDC = ∠EDG. (2)



Let D' be the reflecƟon of D about OM. Refer to the diagram below. Since
OD = OD', D' must lie on O whose radius is OD. NoƟce that O is exactly
the circumcircle of ΔBCD, i.e., B, C, D, D' are concyclic.

Now ∠BDC = ∠1. (3)

On the other hand, one sees that CDED' is a parallelogram because DD' and
CE bisect each other at M

It follows that CD' = DE' and CD' // DE. Now it is easy to see that ΔBCD' 
ΔGED (S.A.S.). We conclude that ∠EDG = ∠1. (4).

(3) and (4) imply (2), which completes the proof.
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