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Foreword
The material in this book was first written for students in New Zealand who were
preparing to compete for the six positions in New Zealand's International Mathematical
Olympiad (IMO) team. At that stage there was very little mathematical writing
available for students who were good at high school mathematics but not yet competent
to tackle IMO problems. The aim of the material here then was to give those students
sufficient background in areas of mathematics that are commonly the subject of IMO
questions so that they were ready for IMO standard work.

This book covers discrete mathematics, number theory and geometry with a final
chapter on some IMO problems.

So this book can provide a basis for the initial training of potential IMO students,
either with students in a group or for students by themselves. However, I take the
approach that solving problems is what mathematics is all about and my second aim is
to introduce the reader to what I believe is the essence of mathematics. In many
classrooms in many countries, mathematics is presented as a collection of techniques
that have to be learnt, often just to be reproduced in examinations. Here I try to present
the other, creative, side of the mathematical coin. This is a side that I believe to be far
more interesting and exciting. It is also the side that enables students to get some idea of
the way that research mathematicians approach their work.

So this book can be used to start students on the trail towards the IMO but its
broader aim is to start students on a trail to understanding what mathematics really is
and then possibly to taking that understanding and using it in later life, both inside
mathematics and outside it.

I would like to thank Irene Goodwin, Leanne Kirk, Lenette Grant, Lee Peng Yee and
Zhang Ji for all of their assistance in the preparation of this book.
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Chapter 1
Jugs and Stamps: How To Solve

Problems
1.1. Introduction
In this chapter I look at some number problems associated with jugs, consecutive
numbers and stamps. I extend and develop these problems in the way that a research
mathematician might. At the same time as this is being done, I develop skills of
problem solving and introduce some basic mathematical theory, especially about a basic
fact of relatively prime numbers.

Whether you are reading this book as a prelude to IMO training or out of interest and
curiosity, you should know from the start that mathematics is all about solving
problems. Hence the book concentrates on problem solving. Now a problem is only
something that, at first sight, you have no idea how to solve. This doesn't mean that a
problem is a problem for everyone. Indeed, after you have solved it, it isn't a problem
for you any more either. But what I am trying to do here is to both introduce you to
some new mathematics and at the same time show you how to tackle a problem that you
have no idea at first how to solve.

This book tackles areas of mathematics that are usually not covered in most regular
school syllabuses. Sometimes some background is required before getting started but
the goal is to show how mathematics is created and how mathematicians solve
problems. In the process I hope you, the reader, get a great deal of pleasure out of the
work involved in this book.

I have tried to design the material so that it can be worked through by individuals in
the privacy of their own brains. But mathematics, like other human pursuits is more fun
when engaged in by a group. So let me encourage you to rope in a friend or two to work
with you. Friends are also good for talking to about mathematics even if they know
nothing about the subject. It's amazing how answers to problems appear when you say
your problem out loud.

Now I expect the geniuses amongst you will be able to work through all this book
from cover to cover without a break. The mere mortals, however, will most likely read,
get stuck somewhere, put the book down (or throw it away) and hopefully go back to it
later. Sometimes you'll skim over a difficulty and go back later (maybe much later). But
I hope that you will all get some enjoyment out of solving the problems here.
1.2. A Drinking Problem
No problem solving can be done without a problem, so here is the first of many.
Problem 1. Given a 3 litre jug and a 5 litre jug can I measure exactly 7 litres of water?
Discussion. You've probably seen this question or one like it before but even if you
haven't you can most likely solve it very quickly. Being older and more senile than most
of you, bear with me while I slog through it.

I can't see how to get 7. So I'll doodle a while. Hmm. I can make 3, 6 or 9 litres just
using the 3 litre jug and 5, 10 or 15 litres with the 5 litre jug. It's obvious, from those
calculations that I'm going to have to use both jugs.



Well, it's also pretty clear that 7 ≠ 3a + 56 if I keep a and b positive or zero. So I
can't get 7 by just adding water from the two jugs in some combination. So what if I
pour water from one jug into another?

Let's fill up the 3 litre jug, then pour the water into the 5 litre jug. I can then fill up
the 3 litre jug and pour into the bigger jug again until it's full. That leaves 1 litre in the 3
litre jug. Now if I drink the 5 litres of water from the larger jug I could pour 1 litre of
water into some container.

So it's easy. Repeat the performance seven times and we've got a container with 7
litres of water!
Exercises
1. Drink 35 litres of water.
2. Find a more efficient way of producing 7 litres.

What does it mean by “more efficient”? Does it mean you'll have to drink less or
you'll use less water or what?

1.3. About Solving Problems
Now we've seen a problem and worked out a solution, however rough, let's look at the
whole business of problem solving. There is no way that at the first reading I can expect
you to grasp all the infinite subtleties of the following discussion. So read it a couple of
times and move on. But do come back to it from time to time. Hopefully you'll make
more sense of it all as time goes on.

Welcome to the Holton analysis of solving problems.
(a) First take one problem. Problem solving differs in only one or two respects to

mathematical research. The difference is simply that most problems are precisely
stated and there is a definite answer (which is known to someone else at the
outset). All the steps in between problem and solution are common to both
problem solving and research. The extra skill of a research mathematician is
learning to pose problems precisely. Of course he/she has more mathematical
techniques to hand too.

(b) Read and understand. It is often necessary to read a problem through several
times. You will probably initially need to read it through two or three times just
to get a feel for what's needed. Almost certainly you will need to remind yourself
of some details in mid solution. You will definitely need to read it again at the
end to make sure you have answered the problem that was actually posed and not
something similar that you invented along the way because you could solve the
something similar.

(c) Important words. What are the key words in a problem? This is often a difficult
question to answer, especially on the first reading. However, here is one useful
tip. Change a word or a phrase in the problem. If this changes the problem then
the word or phrase is important. Usually numbers are important. In the problem
of the last section, “jug” is only partially important. Clearly if “jug” was changed
to “vase” everywhere, the problem is essentially not changed. However “3” can't
be changed to “7” without affecting the problem.

Now you've come this far restate the problem in your own words.
(d) Panic! At this stage it's often totally unclear as to what to do next. So, doodle,

try some examples, think “have I seen a problem like this before?”. Don't be



afraid to think “I'll never solve this (expletives deleted) problem”. Hopefully
you'll get inspiration somewhere. Try another problem. Keep coming back to the
one you're stuck on and keep giving it another go. If, after a week, you're still
without inspiration, then talk to a friend. Even mothers (who may know nothing
about the problem) are marvellous sounding boards. Often the mere act of
explaining your difficulties produces an idea or two. However, if you've hit a real
toughie, then get in touch with your teacher — that's why they exist. Even then
don't ask for a solution. Explain your difficulty and ask for a hint.

(e) System. At the doodling stage and later, it's important to bring some system into
your work. Tables, charts, graphs, diagrams are all valuable tools. Never throw
any of this initial material away. Just as soon as you get rid of it you're bound to
want to use it.

Oh, and if you're using a diagram make sure it's a big one. Pokey little diagrams
are often worse than no diagram.

And also make sure your diagram covers all possibilities. Sometimes a diagram can
lead you to consider only part of a problem.

(f) Patterns. Among your doodles, tables and so forth look for patterns. The
exploitation of pattern is fundamental to mathematics and is one of its basic
powers.

(g) Guess. Yes, guess! Don't be afraid to guess at an answer. You'll have to check
your guess against the data of the problem or examples you've generated yourself
but guesses are the lifeblood of mathematics. OK so mathematicians call their
guesses “conjectures”. It may sound more sophisticated but it comes down to the
same thing in the long run. Mathematical research stumbles from one conjecture
(which may or may not be true) to the next.

(h) Mathematical technique. As you get deeper into the problem you'll know that
you want to use algebraic, trigonometric or whatever techniques. Use what
methods you have to. Don't be surprised though, if someone else solves the same
problem using some quite different area of mathematics.

(i) Explanations. Now you've solved the problem write out your solution. This very
act often exposes some case you hadn't considered or even a fundamental flaw.
When you're happy with your written solution, test it out on a friend. Does your
solution cover all their objections? If so, try it on your teacher. If not, rewrite it.

My research experience tells me that, at this point, you'll often find a much nicer,
shorter, more elegant solution. Somehow the more you work on a problem the more
you see through it. It also is a matter of professional pride to find a neat solution.
(j) Generalisation. So you may have solved the original problem but now and then

you may only have exposed the tip of the iceberg. There may be a much bigger
problem lurking around waiting to be solved. Solving big problems is more
satisfying than solving little ones. It's also potentially more useful. Have a crack
at some generalisations.

In conclusion though, problem solving is like football or chess or almost anything
worthwhile. Most of us start off with more or less talent but to be really good you have
to practice, practice, practice.
Exercise



3. Look at the steps (a) to (i) and see which of them we went through in the last section
with the 3 and 5 litre jugs.

1.4. Rethinking Drinking
How did you go with your 35 litre glug?

Apart from the drinking, there's the question of the unnecessary energy expended.
1=2 x 3 - 1 x 5.

Looking at this equation we can interpret it as “fill the 3 litre jug two times and
throw away one lot of 5 litres”. “fill” because 2 is positive and “throw away” because
—1 is negative.

So
7 = 14 x 3 — 7 x 5.

This means we have to fill the 3 litre jug 14 times and throw away 7 lots of 5 litres!
Surely there's a more efficient way? Stop and find one — if you haven't done so
already.

OK if you do things the opposite way it's more efficient. Take and fill the 5 litre jug
and pour the contents, as far as possible, into the 3 litre jug. Left in the 5 litre jug is a
measured 2 litres which you can put into your container. Now fill the 5 litre jug again
and add the contents to the container. This gives the 7 litres we wanted and means you
only have to drink 3 litres of water.

7 = 2 x 5 — 1 x 3.
With satisfaction you start to move off to another problem. But stop. We've started to

see what I was talking about in (i) in the last section. Here we've not just been satisfied
with finding a solution. We have been looking for a better solution. Have we found the
best solution? Think.

Remember 7 = 14 x 3 — 7 x 5.
Notice that 14 = 5 + 9 and 7 = 3 + 4. So

14 x 3 — 7 x 5 = (5 + 9) x 3 — (3 + 4) x 5 = 9 x 3 — 4 x 5.
Filling up the 3 litre jug 9 times is an improvement on our first effort but not as good

as our filling up the 5 litre jug twice.

It's becoming clear that we probably do have the best solution but it will take a little
work to prove it.

Let's follow up (j) for a minute. Why stop at 7 litres? Can we produce m litres in the
container for any positive integer m? That's too easy.

What if we had 3 and 7 litre jugs? Can we put m litres of water in our container?
What about 3 and 8? What about 3 and s? What about r and s?

Go on thinking. In the meantime here's a little result in number theory that you
should know.



Theorem 1. Let c and d be positive integers which have no common factors. Then there
exist integers a and b such that ac + bd = 1.

In our example with the water we had c =3 and d =5 and we found that a = 2 and b =
–1. But, of course, there are lots of other possible values for a and b, so given c and d, a
and b are not unique.
Exercises
4. (a) In Theorem 1, let c =3 and d =7. Find possible values for a and b. Can you find all

possible values for a and b?
(b) Repeat (a) with c =4 and d =5.

5. Given c and d, where (c, d) = 1 (c and d have no common factor), find all possible a
and b which satisfy the equation ac + bd = 1.

6. Given a 3 litre jug and a 5 litre jug what is the best possible way to measure 73 litres
into a container? (What do you mean by “best”? Minimum water wasted or
minimum number of uses of jugs?)

7. What is the best possible way to get 11 litres of water using only a 3 litre and a 7
litre jug?

8. Show that it is possible to measure any integral number of litres using only a 3 litre
and a 7 litre jug.

9. Repeat Exercises 7 and 8 using 4 litre and 13 litre jugs.
10. Is it true that given r and s litre jugs, m litres of water can be measured for any

positive integer m? (Assume r and s are both integers.) Can a best possible solution
be found for this problem?

1.5. Summing It Up
Problem 2. Is it possible to find a sequence of consecutive whole numbers which add
up to 1000? If so, is the sequence unique?
Discussion. So we've landed at step (a) again. We've got ourselves another problem.

Working on to (b), what the question asks is can we find numbers a, a+1, a+2 and so
on, up to say a+k, so that a +(a+1) + (a+2) + - ∠ -+(a+k) equals 1000? When we've
done that it wants to know if there's more than one set of consecutive numbers whose
sum is 1000.

Moving to step (c) we play “hunt the key words”. Well, this question has
“consecutive numbers”, “add” and “1000”. Changing any of these changes the problem.
In the follow-up question “unique” is important.

So I understand the problem. Help! I see no obvious way of tackling this at the
moment. The solution doesn't appear obvious. Hmm…

Let's see what we can do. Clearly 1000 is too large to handle. Let's get some insight
into things by trying for 10 instead.

Well I can do it with one consecutive number. Clearly 10 adds up to 10! But I doubt
that's what the question is all about. In fact, because it says “numbers” I think it really
rules out one consecutive number. So we'll work on two or more numbers.

Can we get 10 with two consecutive numbers? Can a + (a + 1) = 10? That would
mean that 2a + 1 = 10. Hence 2a = 9, so a = 9/2. But a was supposed to be a whole
number, so it can't be a fraction.

Hang on. One of a and a + 1 is even while the other is odd. Since the sum of an even
and an odd number is odd then we should have known that two consecutive numbers



couldn't possibly add up to 10, an even number. (Hmm. Ditto for 1000.)
So what about three numbers? a +(a +1) + (a + 2) = 10 gives 3a + 3 = 10…No

solutions folks.
Four numbers? a +(a +1) + (a + 2) + (a + 3) = 4a + 6 = 10. Ah, a = 1. Yes, 1, 2, 3, 4

do add up to 10.
Five numbers? a +(a +1) + (a + 2) + (a + 3) + (a + 4) = 10 gives…Yes, 0, 1, 2, 3, 4

add up to 10.
Six or more numbers clearly won't work. So we see that there are two answers for

10. Will the same thing happen for 1000?
Before you go on you might like to search for “whole numbers” on the web. You'll

find that some people accept 0 as a whole number but it doesn't seem to make much
sense in this problem. It would be nice not to have both 0+1 + 2 + 3 + 4 and 1 + 2 + 3 +
4. So let's not count 0 among the whole numbers in this book. This also has the virtue of
giving a unique set of consecutive whole numbers that add up to 10.
Exercise
11. Try Problem 2 with 1000 replaced by (a) 20; (b) 30; (c) 40; (d) 100.

Skipping to step (h), I've got the feeling that a little algebra might be useful. We
want to find all possible a and k such that

a + (a + 1) + (a + 2)+ +(a + k) = 1000.             (1)
Trial and error is a possibility. We could try k = 1 (two consecutive numbers)…Oh

no. We know that two consecutive numbers add up to an odd sum.
Sorry, we could try k = 2, then k = 3, and so on till we've exhausted all possibilities.

But,…I know how to add up the left side of equation (1).

So then has to be solved for a and k. Has that really made things any easier?

Wait a minute. Since k + 1 is a factor of the left-hand side of equation (2), it must be
a factor of the right-hand side. So k + 1 = 1, 2, 4, 5, 8,10,…Yuk! There seem to be an
awful lot of cases.

Of course k + 1 is the number of consecutive numbers. So we know that k + 1 isn't 1
or 2. I suppose that cuts things down a bit.
Exercise
12. Use equation (2) to try Problem 2 with 1000 replaced by

(a) 50; (b) 80; (c) 100; (d) 200.
See if there are ways of reducing the number of cases we need to try for k + 1.
Well, I'm not really sure that any of that helped. All we've seen is that some numbers

have unique consecutive sets and others have more than one.
But there do seem to be two reasons why we can't solve the 2a + k equation. Either

2a + k is odd and the thing we're equating it to is even or 2a + k is too big for the right
side of its equation. When do those cases occur for our original problem?

Now if k + 1 is even, then both k and 2a + k are odd. Does 2000 have any odd
factors? Apart from 1, only 5, 25 and 125. If 2a + k = 5, then k + 1 = 400. Clearly
there's no value for a there. If 2a + k = 25, then k + 1 = 80. Again no solution for a. If 2a



+ k = 125, then k + 1 = 16. Ah! Here a = 55. This means we get 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70.

But what if k + 1 is odd? Then k +1 = 5, 2a + 4 = 400 and we get 198, 199, 200, 201,
202 or k + 1 = 25, 2a + 24 = 80 and we get 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 or k + 1 = 125, 2a + 124 = 16 and we don't
get anything.

Ah, that's the key! If k + 1 is odd, then 2a + k is even, while if k + 1 is even, then 2a
+ k is odd. So we have to find the odd factors of 2000 and we also have to find the even
factor where the other factor is odd. Once we've worked out that arithmetic then it's all
downhill.
Exercises
13. Collect all the solutions to Problem 2.
14. Generalise. (Have a look at odd numbers. Also see if you can find which numbers

are the sum of a unique set of consecutive numbers. Are there any numbers that are
not the sum of any set of consecutive numbers?)

1.6. Licking a Stamp Problem
Problem 3. The Otohaihai Post Office is in a predicament. It has oodles of 3 c and 5 c
stamps but it has no other stamps at all. What amounts of postage can the Otohaihai
post office sell?
Discussion. Let's look at this problem in the light of the problem solving steps I
suggested in Section 1.3.

Well, yes, (a) we have a problem. So go to (b) and understand what the question is
asking. Isn't this the 3 litre and 5 litre jug problem in disguise?

Follow this idea up in (c). Does it really change the essential nature of Problem 2 if
we exchange pence for litres and stamps for jugs? Is there any mathematical difference
between stamps and jugs?

Somehow with jugs of water we could “take away”. With stamps we can only “add
on” or “stick on”. If we are trying to get 7  worth of postage we would need to be able
to solve

7 = 3a + 5b,
where neither a nor b was ever negative.

There is then, an essential, a mathematically essential, difference between jugs and
stamps. We could certainly pour out 7 litres. We certainly can't stick down 7 worth.

We may well have reached step (d). If so you may like to go kick a ball, turn on the
iPod, watch TV or make yourself a snack. When you've gathered strength move right
along to (e).

(Incidentally, this avoidance strategy is well known to mathematicians. We all
fervently believe that if we con our brains into thinking they're having a rest, then they
mysteriously churn out great new thoughts and theorems. Many of us have woken up in
the morning with a pr oblem solved.

It was probably the avoidance strategy of coffee drinking, coupled with the conned-
brain syndrome, which prompted Erdös — one of the most prolific mathematicians of
the 20th Centuryb — to define a mathematician as someone who turns coffee into
theorems.)



OK so back to (e). Rather than using a scattergun approach let's be systematic. It's
probably useful to draw up a table at this stage.

Copy and complete the table above. Take the amount of postage up to 25 .
Are there any patterns? We're up to (f) now. Well, of course we can get all multiples

of 3 and 5 but we can get a lot of other values too. Obviously 8, 13, 18, etc. can be
obtained.

Now to (g). From the data you've compiled what guesses can you make about the
amounts of postage you can produce with 3  and 5  stamps? If you're arithmetic is
correct you should have found that the last cross you have is at 7. From 8 onwards every
number is ticked. (If you didn't find that, then you'd better go back and see where you
went wrong.)

Do you agree with the following guess, or conjecture?
Conjecture 1. Every amount from 8 upwards can be obtained.

Of course, if you agree with the Conjecture, then you must justify your faith. If you
don't agree with it, then you have to find a number above 8 that can't be made from 3
and 5.
Exercises
15. If you believe in Conjecture 1, then go on to steps (h) and (i). If you think

Conjecture 1 is false, then you have to prove it's false and come up with a conjecture
of your own. From there you go on to steps (h) and (i) and possibly back to (g) again.

16. Find an equivalent conjecture to Conjecture 1 with

17. Repeat Exercise 16 with

18. Repeat Exercise 16 with

1.7. A Little Explanation
Conjecture 1 is certainly true. How did you prove it?



This is usually the hardest part of problem solving. The reason is not that it is
difficult to write out a proof. Sometimes proofs are easy. No, the reason that proof
writing is difficult is that it's not the fun part of problem solving. The fun part is solving
the problem. Seeing what the right answer is and “knowing” how you could prove it, is
somehow psychologically more interesting than writing out a careful answer.

But I say unto you, he that does not write out a proof has not necessarily solvethed
the problem. You only really know you're right when you've safely passed into the
haven of step (i).

We've procrastinated long enough. Let's get at it. Well we certainly can do 8,
9,10,11,12,…, 23, 24, 25. Can we do 26? You could work this out from scratch but I've
just seen a quicker way. Think a minute. You can get 26 from something you've already
produced.

Actually you can get 26 from either 21 or 23 by adding 5 or 3, respectively. And that
just about solves the 3 and 5 problem. Because surely 27, 28, 29, 30 and all the rest can
be got in exactly the same way from earlier amounts.

So in fact we only have to show that we can get 8 c, 9 c and 10 c After that all the
rest follow just by adding enough 3stamps. Conjecture 1 must be true then.
Exercise
19. (a) Write out a formal proof of Conjecture 1.

(b) Prove your corresponding conjectures for the amounts in Exercises 16, 17 and
18.

1.8. Tidying Up
Mathematicians like to produce their results with a flourish by calling them theorems.
These are just statements that can be proved to be true. We'll now present Conjecture 1
as a theorem.
Theorem 2. All numbers n ≥ 8 can be written in the form 3a + 5b, where a and b are
not negative.
Proof. First note that 8 = 3 + 5, 9 = 3 x 3 + 0x 5 and 10 = 3 x 0 + 2x 5. If n ≥ 8, then n
is either 8 + 3k, 9 + 3k or 10 + 3k for some value of k. Hence if n > 8 then either n =
3(k + 1) + 5, 3(k + 3) or 3k + 2 x 5. 

Well at this stage we are still not satisfied. A good mathematician would ask “is 8
best possible?” By that he would mean “is there a number smaller than 8 for which
Theorem 2 is true?” In other words, is there some c < 8 such that for all n ≥ c we can
express n in the form 3a + 5b, where a and b are not negative?

But in Table 1 that you completed in Section 1.6, the number 7 should have been
given a cross. So clearly there is no number less than 8 which does the job and 8 is best
possible.
Exercise
20. State and prove the corresponding theorems for your conjectures of Exercise 19(b).

In each case show that your results are best possible.
Of course some of you will have realised that we haven't yet completely solved

Problem 3, which, after all, asked us to find all amounts of postage that can be made
with 3 and 5 stamps. We'd better answer that now.

We are going to answer it in the form of a Corollary. A corollary is something which
follows directly from a result we have just proved. The result below is a simple



corollary of Theorem 2 because we can use Theorem 2 plus Table 1 to prove it.
Corollary 1. If n = 0,3,5,6 or any number greater than or equal to 8, then n = 3a + 5b,
where a and b are some non-negative numbers.
Proof. By Theorem 2, the corollary is true for n ≥ 8. By Table 1, the corollary is true for
n < 8. 

It may worry some of you that we included 0 in the list of the Corollary. I have
Machiavellian reasons for doing that. These will be revealed in due course.
Exercise
21. State and prove corollaries for all the theorems of Exercise 20.

1.9. Generalise
We've now built up quite a bit of information about 3and sccombinations (among other
things). For instance we know part of Table 2, where c indicates the best possible value
in the sense of Theorem 2. In other words, all n ≥ c can be obtained and n = c — 1
cannot be obtained.
Exercise
22. (a) Complete Table 2.

(b) Generalise. In other words, conjecture c if you only have 3 and sc stamps.
By now you will have realised that there are essentially two cases for the 3  and s

problem. In Exercise 16 you will have come across the problem of whether s is divisible
by 3 or not. Clearly if s is divisible by 3, then you can only ever get amounts which are
multiples of 3. Further you can get all multiples of 3. Let's consider what happens when
s = 12.

Suppose n = 3a + 12b, where a and b are not negative. If a = b = 0, then n = 0.
Otherwise 3a + 12b is divisible by 3 and so therefore is n. Further if b = 0, n = 3a.
Hence every multiple of 3 can be obtained.

We have thus proved the following lemma.
Lemma 1. If n = 3a + 12b, where a and b are not negative, then n must be a multiple of
3 and can be any multiple of 3.

The word “lemma” means “little result”. When it grows up it could become a
theorem. We usually call results lemmas if they are of no intrinsic value but together
with other results they do fit together to help prove a theorem.

Usually theorems are results which are important in themselves, like Pythagoras’
Theorem, for instance.
Exercise 23. Prove the following lemma.



Lemma 2. Let s be any multiple of 3. If n = 3a + sb, where a and b are not negative,
then n must be a multiple of 3 and can be any multiple of 3.

But we've strayed from Table 2. Suppose s is not a multiple of 3, what is c? In other
words what did you get as your answer to Exercise 22(b)? Can you prove it?
Conjecture 2. c = 2(s — 1).

For s = 5 we proved c = 8 (Theorem 2) by first showing we could get 8, 9 and 10.
After that we just added 3's. The same strategy will work for s = 7, 11 and so on
(provided s is not a multiple of 3). Can we do the same for s in general? If we can show
that we can get 2s — 2, 2s — 1 and 2s using 3's and s's, then we can add on enough 3's
and we can get any n.

Well one of this triumvirate of numbers is easy. Surely you don't want me to prove
that I can get 2s! So how do you get 2s — 1 and 2s — 2?

Think about s for a minute. When you divide s by 3 you either get a remainder of 1
or a remainder of 2. This means that you can write s either as 3t + 1 or as 3t + 2 where t
> 0. Let's have a look at the case s = 3t +1. Now

2s — 2 = 6t + 2 — 2 = 6t = 3(2t).
Certainly then we can get 2s — 2 in this case because 2s — 2 is just a multiple of 3.

So what about 2s — 1? After a bit of thought I'm sure you would have realised that
2s — 1 = s + (s — 1) = s + [(3t + 1) — 1] = s + 3t.

We can surely get s + 3t using just s's and 3's.
This only leaves the case s = 3t + 2.

Exercises
24. Prove the following theorem.

Theorem 3. Let s be any number not divisible by 3. All numbers n ≥ 2(s — 1) can be
written in the form n = 3a + sb, where a and b are not negative.

25. Is 2s — 2 best possible in Theorem 3?
26. Put Exercises 24 and 25 together along with the situation where s is a multiple of 3

to form a Theorem 4. Prove the theorem.
27. Repeat Exercise 26 for

28. All numbers n > c can be written in the form n = ra + sb, where r and s have no
factors in common and a and b are not negative.
What is the best possible value for c in terms of r and s? Prove it.
While we've been concentrating on the upper end of things, the “all n > c” part,

something interesting has slipped past us at the lower end. Have a look at Table 3.

Is there any pattern in all this? Are we able to say anything about those n < c for
which n = 3a + sb?



Exercises
29. (a) Conjecture some pattern in Table 3.

(b) Extend Table 3 by considering s = 11, 13, 14.
(c) Go back to (a). If your original conjecture looks good prove it. If your original

conjecture turned out to be wrong, try another guess.
30. Repeat Exercise 29 with r =4.

   Does the same conjecture hold for r =4 as for r =3? Try other values of r.
1.10. In Conclusion
I thought it might be useful to give a complete proof of the stamp problem. So here it is.
I expect that many of you will find this extremely tough. Have a look at it and then
forget it, but come back in a year's time and have another go.

You might like to try a “complete proof” of the consecutive number problem for
yourself. It's not quite as tough as the stamp problem.
Theorem A. Let r, s be positive integers with (r, s) = 1. Then there exist non-negative
integers a, b such that ar + bs = c for all c > (r — 1)(s — 1).
Proof. From Theorem 1 we know that a, ( exist such that ar + (3s = 1. Further, for any
integer n, r(a — ns) + s(( + nr) = 1. Hence we can choose n so that either one of the
brackets is positive and the other negative. So we may assume that α is positive and β is
negative.

Assume c ≥ (r — 1)(s — 1). Returning to αr + βs = 1 it is clear that acr + (cs = c and,
for any integer n, r(ca — ns) + s((c + nr) = c. We now choose n = n' so that (c + n'r is
the smallest positive (or zero) value to satisfy this last equation. Clearly 0 ≤ (c + n'r ≤ r
— 1 because if (c + n'r ≥ r then (c + (n' — 1)r is positive (or zero) and is less than (c +
n'r which was assumed smallest.

Hence r(ca — n's) = c — s((3c + n'r) ≥ c — s(r — 1) > (r — 1)(s — 1) — s(r — 1).
In other words, r(ca — n's) > —(r — 1). So ca — n's > 1/r — 1. But since ca — n's is
an integer, this last inequality proves that ca — n's > 0.

We thus take a = ca — n's and b = (c + n'r and the conclusion of the theorem
follows. ?
Remark B. In Theorem A, (r — 1)(s — 1) is best possible.

Suppose there exist a, b > 0 such that ar + bs = (r — 1)(s — 1) — 1. Then ar + bs =
rs — r — s. This implies (b + 1)s = r(s — a — 1).

But (r, s) = 1. Hence r is a factor of b +1 and s is a factor of s — a — 1. Since 0 ≤ s
— a —1 < s, then s — a— 1 = 0. However this means that b+1 = 0, so b = —1. But we
assumed that b ≥ 0. So we have a contradiction.
Theorem C. Let r and s be positive integers with (r, s) = 1. If x and y are both non-
negative integers less than (r — 1)(s — 1) whose sum is (r — 1) (s — 1) — 1, then
precisely one of x and y is expressible in the form ar + bs where a and b are both non-
negative.
Proof. From Theorem 1 and the argument in Theorem A we can find x1, x2, y1, y2
such that x = xir + X2s and y = yir + ys where 0 ≤ x2, y2 ≤ r — 1.

Now



Hence

So

Since (r, s) = 1, r must divide r — 1 — x2 — y2. But r — 1 — x2 — y2 ≥ 1 — r since
r — 1 > x2, y2 ≥ 0. Hence r — 1—x2 —y2 =0. This means xi +yi + 1 = 0. Hence one of xi
and yi is not negative. So one of x and y is expressible in the form ar + bs where a and b
are not both negative.

Suppose x and y are both expressible in this form. Then x = xir + x2s and y = yir + y2s
where xi, x2, yi, y2 ≥ 0. This implies that

with a = xi + yi ≥ 0 and b = x2 + y2 ≥ 0. But from the Remark B above we know that (r
— 1)(s — 1) — 1 is never expressible in the form ar + bs with a, b ≥ 0. Hence not both
x and y are expressible in this form. 
Corollary 2. Of the integers between 0 and (r — 1)(s — 1) — 1 inclusive, half are
expressible in the form ar + bs with a, b ≥ 0 and half are not.
Proof. This is an immediate consequence of Theorem C. 
1.11. Epilogue
This may have been your first foray into problem solving. If you worked hard and have
not looked at the solutions till you've had answers, then it will also probably have been
your first foray into mathematics.

The way we've meandered through this chapter is very roughly the way a
mathematician would tackle a research problem. As I said in (a) in Section 1.3 the only
difference between problem solving and research is that someone knows before you
start the precise question to ask and also knows the answer.

Actually though, if we had tried the stamp problem just over a hundred years ago we
would really have been doing research. One of the main theorems of this chapter was
proved by the mathematician Sylvester in the 19th Century.
1.12. Solutions
DON'T EVEN DARE PEEK AT THE SOLUTIONS TO AN EXERCISE UNTIL
YOU'VE GENUINELY TRIED TO SOLVE THE EXERCISE.
1. Glug, glug.
2. Fill up the 5 litre jug and pour 3 litres into the 3 litre jug. Drink this 3 litres and then

transfer the remaining 2 litres to the 3 litre jug. Fill the 5 litre jug. In the two jugs
you now have 7 litres.

Is this more efficient? Why?
3. All except (j). But that pleasure is to come.
4. (a) a = —2, b =1; a = 5, b = —2, etc.



In general a = 7s — 2 and b =1 — 3s for every integer s. Can you prove this?
(b) a = —1, b =1; a = 24, b = —19, etc.

In general a = 5s — 1 and b =1 — 4s for every integer s. Can you prove this?
5. Let a and (3 be such that ac + (3d =1. Then a = ds + a and b = (3 — cs. Now try to

prove it.
6. 73 = (5 + 3a) x 5 + (16 — 5a) x 3.

So we can measure out 73 litres if we use the 5 litre jug (5 +3a) times and the 3 litre
jug (16 — 5a) times. (Here “use” = “fill” if the number is positive and “empty” if
it's negative.)

(a) First let's minimise water wastage. This will be done if no water is wasted which
requires 5 + 3a ≥ 0 and 16 — 5a ≥ 0.

Hence we need a ≥ — 1 and a ≤ 3. We then have the following table.

So if we fill the 3 litre jug (16 — 5a) times and the 5 litre jug (5 + 3a) times for a =
—1, 0,1, 2, 3 and dump the contents in the container, we will produce 73 litres of
water.

Here then there are 5 best possible ways because we waste no water with any of
them.

(b) Minimising jug use is a little harder. There are three cases to consider.
(1) 5 + 3a and 16 — 5a are both positive;
(2) 5 + 3a > 0 and 16 — 5a < 0;
(3) 5 + 3a < 0 and 16 — 5a > 0.
(Clearly 5 + 3a and 16 — 5a cannot both be negative since 73 is positive. Also note

that neither 5 + 3a nor 16 — 5a can be zero since 73 is not divisible by 3 or 5.)
Case 1. 5 + 3a > 0,16 — 5a > 0.

We have seen that this means a = —1, 0, 1, 2, 3. For minimum jug usage a = 3.
(Here the jugs are used 15 times.)
Case 2. 5 + 3a > 0, 16 — 5a < 0.

Hence a ≥ — 1 and a ≥ 4. So a ≥ 4. We use the 5 litre jug at least 17 times and the 3
litre jug at least 4 times (emptying it). So here we need to use the jugs 21 times at least.
Case 3. 5 + 3a < 0, 16 — 5a > 0.

Hence a ≤ —2 and a ≤ 3. So a ≤ —2. We use the 5 litre jug at least once (emptying
it) and the 3 litre jug at least 26 times. This means at least 27 handlings of jugs.

By considering all three cases we see that 15 is our best answer.
73= 14 x 5 + 3.

7. 11 = (6 + 7a) x 3 + (— 1 — 3a) x 7.
Minimum waste: Since not both 6 + 7a and —1 — 3a can be positive there must be

wastage. It occurs when a = —1.
Minimum use: Treating the two cases (6 + 7a positive, —1 — 3a negative; 6 + 7a

negative, —1 — 3a positive) gives a = —1 again.



8. 1 = 7 — 2 x 3,
m = m x 7 — 2m x 3.
We can then fill the 7 litre jug m times and from this water fill and discard the jug

2m times. The residue is m litres.
9. (a) 11 = (6 + 13a) x 4+(—1 — 4a) x 13.

The best solution seems to come when a = 0.

10. If you think the answer is yes, try r = 2, s = 4 and m = 7.
However, let (r, s) = t. (This means that t is the highest factor common to both r

and s.)
Result 1. Let (r, s) = 1. Then m litres can be obtained from r and s.
Proof. Since (r, s) = 1, then by Theorem 1, there exist integers a and b such that ar +

bs = 1. Hence m = mar + mbs. ?
Result 2. Let (r, s) = t. Then there exist integers a and b such that t = ar + bs.
Proof. If (r, s) = t then there exist r' and s' such that tr' = r and ts' = s. Now since (r, s)

= t it follows that (r', s') = 1. Hence by Theorem 1 there exist integers a, b such
that

Result 3. Let (r, s) = t. Then m litres can be obtained from jugs of size r and s litres if
and only if m is a multiple of t.
Proof. Let m = m't. By Result 2

Suppose m does not have a factor of t and m = cr+ds. Since (r, s) = t then t divides
(cr + ds). Hence t divides m. But this contradicts the assumption that m does not have a
factor of t. So m = cr + ds. ?

As for a best possible solution, let's concentrate on minimum wastage. Now suppose
that m = ar + bs. Hence m = (a + ns)r + (b — nr)s.

If (a + ns) and (b — nr) can both be positive we waste no water. Otherwise we keep
adding (if a is negative) or subtracting (if a is positive) multiples of s until 0 > a + ns >
—s. So choose a = a + ns where 0 > a > —s.

Similarly we can operate on b — nr and choose (3 such that 0 > (3 = b — n'r > —r.
Hence m = (a + fs)r + (( + gr)s for some f and g. The minimum wastage of water is

then the minimum of ar or (3s.
11. (a) 2, 3, 4, 5, 6 (unique);

(b) 9, 10, 11 and 6, 7, 8, 9 and 4, 5, 6, 7, 8 (not unique);
(c) 6, 7, 8, 9, 10 (unique);
(d) 9, 10, 11, 12, 13, 14, 15, 16 and 18, 19, 20, 21, 22.

12. A table of values might help.



13. {198,199,…, 202}; {55, 56, 57,…, 70}; {28, 29, 30,…, 52}.
14. “Ay, there's the rub!” (Hamlet, Act III, Scene I).
15. I believe in Conjecture 1. (You will too by the time you've slaved your way through

this chapter.)
16. Every amount onward from (a) 12? (b) 20?

For (c) I've pulled a fast one. Clearly you can only get multiples of 3. For the
generalisation we'll talk about 3 and s c stamps. Well, if s isn't a multiple of 3,
then pretty clearly…

17. Every amount onwards for (a) 12? (b) 30?
For (c) we once again see that 4 and 6 have a common factor of 2. This probably

means you can get every even number from 4 upwards.
For the generalisation we'll talk about and s/ stamps. Well, if (4, s) = 1 (4 and s have

no factors in common), then pretty clearly…
18. (a) 30? (b) 48? (c) It's that old problem again (9, 33) = 3. Probably we can only get

multiples of 3 from 60 on. Did I say 60? Why?
19. (a) I'll do my bit in a minute. What does your proof look like? Did it
convince any of your friends or your teacher or your mum?

(b) For 16(a) and 16(b) what's the first run of three consecutive obtainable numbers.
It's all up the number line from there. For 16(c) wait till you see Lemma 1. For
17(a) and 17(b) look for the first string of four consecutive obtainable numbers.
For 17(c) notice that you can get 4 and 6. Now if you add 4 to each of these you
get 8 and 10. Hence you can get all even numbers from 4. (Obviously you can't
get any odd numbers.)

For 18(a) look for the first run of 6 and for 18(b), the first run of 7. For 18(c),…9 and
33 are cute, huh? Is it any help that 60, 63, 66 are the first run of multiples of 3?
(What has this problem got to do with 3c and 11 c?)

20. I'll just do 6 and 7c. The others follow a similar pattern.
Theorem. All numbers n ≥ 30 can be written in the form 6a + 7b, where a and b are not
negative. The number 30 is best possible.
Proof. 30 = 5 x 6, 31 = 4 x 6 + 7, 32 = 3 x 6 + 2 x 7, 33 = 2 x 6 + 3 x 7, 34 = 6 + 4 x 7,
35 = 5 x 7.

Any n ≥ 30 can be written as 30 + 6k, 31 + 6k, 32 + 6k, 33 + 6k, 34 + 6k or 35 + 6k
for some value of k. Hence any number greater than or equal to 30 can be written in the



required form.
Suppose 30 is not best possible. Then 29 = 6a + 7b, where a and b are not both
negative.

Hence 7b = 29 — 6a. But 7b ≥ 0, so 0 ≤ a ≤ 4. No matter which of these values of a
we take, 29 — 6a is not a multiple of 7. This means that 29 = 6a + 7b, where a and b are
not both negative. 
21. I'll just do 6c and 7c again.

Corollary (to the theorem in the solution to Exercise 20). If n =
0,6,7,12,13,14,18,19,20,21,24,25,26,27,28 or any number greater than or equal to
30, then n = 6a + 7b, where a and b are some non-negative numbers.

Proof. By the Theorem (of the solution to Exercise 20) the corollary is true for n ≥ 30.
An exhaustive check shows that the other values listed are the only ones possible. 

22. (a) 13 gives 24; 14 gives 26; 16 gives 30.
       (b) Ah now. It's on the tip of my tongue….

23. Proof. Clearly, by putting b = 0 we can get any multiple of 3 we want.
       If n = 3a + sb, where s = 3t, then n = 3(a + tb). Hence n must be a multiple of 3. 

24. Proof. We note that if 2s — 2, 2s — 1 and 2s can be written in the form 3a + sb,
then all numbers n > 2s — 2 can be obtained from these by adding an appropriate
multiple of 3.
Clearly 2s = 3 x 0 + s x 2. We now consider 2s — 2 and 2s — 1.
Case 1. s = 3t +1.
Now 2s — 2 = 3 x 2t and 2s — 1 = s + 3t. Both of these values can be obtained

using 3 and s  stamps.
Case 2. s = 3t + 2.
Now 2s — 2 = s + s — 2 = s + 3t and 2s — 1 = (6t + 4) — 1 = 3(2t +1). Again both

of these values can be obtained using 3 and sc stamps. Hence we can write all numbers
n > 2s — 2 in the required form. ?
25. Yes. We have already shown that for s = 5, 2s — 3 = 7 is not possible. However we

can show that 2s — 3 is never possible, no matter what the value of s. The following
is a corollary to Theorem 3.

Corollary. If s is not divisible by 3, then any number n > 2s — 2 can be written in the
form n = 3a + sb, where a and b are not negative. 2s — 2 is best possible.
Proof. The first part of the proof is precisely that of Theorem 3. Suppose 2s — 3 = 3a +
sb, where a and b are not negative. Then 2s = 3(a +1) + sb.
Therefore (2 — b)s = 3(a + 1).

But the left-hand side of the equation is divisible by 3 since 3 divides 3(a + 1), the
right-hand side of the equation. Since s is not a multiple of 3, then 2 — b is divisible by
3. But b ≥ 0 as is 3(a + 1). Hence 2 — b must be zero (there is no other number between
2 and zero which is divisible by 3).

If 2 — b = 0 then a +1 = 0. Hence a = —1. But this is a contradiction since a ≥ 0.
We cannot therefore obtain 2s — 3 in the form 3a + sb, where a and b are not

negative. Thus 2s — 2 is best possible. 
26. Theorem 4. (a) Let n be any number which can be written in the form 3a + sb where

a and b are not negative.
(i) If s is a 'multiple of 3, then n is any multiple of 3.



(ii) If s is not a multiple of 3, then n is any number greater than or equal to 2s — 2
Further 2s — 2 is best possible.
Proof. This follows immediately from Lemma 2 and the Corollary to Theorem 3. 

27. (a) If s is even then we can only get even numbers. Clearly we get all
even numbers.
If s is odd we get all numbers from s — 1 on. This is best possible.
(b) If s = 5t, then n is any multiple of 5. Otherwise we can get any n ≥ 4s — 4. This

is best possible. To prove this we (i) consider the cases s = 5t +1, 5t + 2, 5t + 3,
5t + 4 and (ii) note that if 4s — 5 = 5a + sb, then we get a contradiction.

(c) There are actually three things to consider here. If (4, s) = 1, then we get
everything from 3s — 3 on. This result is best possible.

If (4, s) = 4, then we get only multiples of 4.
However if (4, s) = 2, then we get all even numbers from s — 2 on. Perhaps this is

a little unexpected.
Look at it this way. Let s = 2r. Then we're searching for n of the form 4a + 2rb =

2(2a + rb). Now we know from (a) that 2a + rb gives us all the numbers from r — 1
on. Hence 2(2a + rb) must give all the even numbers from 2(r — 1) on. (Note that (r,
2) = 1 since s is not divisible by 4.) Finally notice that 2r — 2 = s — 2.
(d) Here (s, 6) = 1, 2, 3 or 6. For (s, 6) = 1 we get 5s — 5 as best possible and for (s,

6) = 6 we get only multiples of 6.
Using the argument of (c) we see that if (s, 6) = 2 we get everything even from s —

2 onwards (put s = 2r and use Theorem 4) and if (s, 6) = 3 we get every multiple of 3
from s — 3 on (put s = 3r and use (a)).

28. So what did you guess? How about (r — 1)(s — 1)?
If this is correct, the proof is not going to be as easy as it is for the various particular

values of r that we've considered so far. With a particular value of r we were able to
break the proof up into a number of cases. Then we dealt with each case separately. The
problem with dealing with r is that it is not fixed and we will have a lot of cases to
handle. After all r could be 1014!

One way of tackling this problem is to use Theorem 1. From that we know that a and
( exist such that 1 = ra + s(. (I'm only considering the case where (r, s) = 1 here.)
Obviously one of a, ( is negative. Now n = rna + sn(. We haven't quite got a = na, b =
n( with neither negative yet but try a little fiddling. If n = r(na) + s(n() then so does r(na
— s) + s(n( + r). So if ( was negative and a positive, we might be able to make n( “less
negative” by adding r. This will be at the expense of making na into na — s which is
“more negative”.

Of course this procedure can be continued.
n = r(na — s) + s(n(3 + r) = r(na — 2s) + s(n(3 + 2s).

It is possible that for n > (r — 1)(s — 1), that we can add enough r's to n( to make it
positive (or zero) and that subtracting s's from na doesn't change the multiple of r to a
negative number. If so you have your proof.

This idea, of course, is not new. We used it in the jug problem. (See the solution to
Exercise 10, for instance.)

When you've done that you only have to show that (r — 1)(s — 1) is best possible.
This particular exercise is not easy.



29. (a) Well, er…
(b) I'm sure you can do this.
(c) Are there as many ticks as crosses? Is there any elegant way of pairing ticked

numbers with crossed ones?
30. See Exercise 29.

Oh I suppose I should come clean. Take x and y so that x + y = (r — 1)(s — 1) —
1. The hard part now is to show that precisely one of x and y is a tick. Try it first for r
= 3 and then for some other particular values of r before trying it for general r.

aThis is the sum of an arithmetic progression. It's easy enough to deduce this
simplification when you notice that the average of the sum s = a + (a +1) + ∠∠∠ + (a
+ k) is both s/(k + 1) and 1/2[a + (a + k)].
bActually, Eröds is a sufficiently interesting person that you might like to look him up
on the web or read about him in “The Man Who Loved Only Numbers” by Paul
Hoffman. Why do some people have an Erdos number and why can't you have an Erdos
number of 1 but I do?



Chapter 2
Combinatorics I

2.1. Introduction
In this second chapter I want to look at some combinatorial problems. Along the way I
hope you'll be stunned and stimulated into mathematical activity and come to realise
that mathematics is not a complete body of knowledge sitting in a box somewhere, all
sewn up and tied with a neat bow. Rather I hope you will see it as an area that is
growing exponentially, daily; that it is something which is being created by humans. I
also hope that you will get some idea of the way that it is growing.

Don't worry if at first you can't do all of a group of exercises here. Try the earlier
questions. When you feel more confident with the various techniques, go on to the later
questions.

You should also not feel that you need to go through all of Section 2.3 before
Section 2.4. If counting appeals to you more than pigeons, then do Section 2.4 first (or
even half of Section 2.4 followed by some of Section 2.3 and back to Section 2.4 and so
on).

Good luck.
2.2. What is Combinatorics?
A good question. Well if you look in a dictionary you'll see it's…OK so maybe my
pocket dictionary is a little small. And maybe too if your dictionary at home is a few
years old you may not be able to find “combinatorics” there either.

Now of course it may just be that combinatorics is one of those words that isn't fit
for polite society. But hang on. Nobody seems to be shocked when I say it in public.
That can only mean that “combinatorics” is one of those secret words that can only be
spoken in the inner mathematical holy of holies. (Wherever that is.) So it must be in a
Mathematical dictionary somewhere. Surely it's on the web!

Let's see then. “Combinatorics investigates the different possibilities for the
arrangement of objects.” “Combinatorics is a branch of mathematics that studies
discrete objects.”

Well I'm not really sure that that helped any. So let me go to my own experience.
Combinatorics is the mathematics of counting,…without counting. Er, combinatorics is
playing with sets of objects,…when you're not doing set theory. Er, well, er,
combinatorics is the mathematics of structure,…when you're not doing geometry or
algebra or whatever that's not combinatorics.

I guess combinatorics is hard to define. Possibly this is because combinatorics is a
relatively new and growing area of mathematics. Although you can probably find
glimpses of it earlier, it's really only been around a couple of hundred years. Indeed the
bulk of what we know on the subject has only been known since the last half of the 20th
Century.

Mathematical Reviews is a journal that tries to publish abstracts of all the latest
mathematical results. The combinatorics' (or combinatorial theory) section of Maths
Review is one of the largest. There seems to be more research going on in this area than
in almost any other field of mathematics.



Now I must admit that this is partly because combinatorics is the waste paper basket
of mathematics. What I mean by that is that if its mathematics and you don't know what
to call it, then call it combinatorics. So here are some things that are combinatorics.

Latin squares are square arrays of numbers that have the property that no number
occurs more than once in any row or column. The arrays below are Latin squares.

Finding Latin squares and how they relate to one another is part of combinatorics.
They have important applications in designing experiments. And they are now
extremely popular in the form of the Sudoku puzzles. Here we have some very special,
partially filled 9×9 Latin squares, and the problem is to complete the Latin square by
putting the remaining entries in.
You might like to think about the conditions that are needed on a set of entries of a
Latin square so that the Latin square can be filled uniquely.

0-1 sequence (or binary sequences). These are just strings of zeros and ones. When
we require the sequences to have special properties relative to each other they give
binary codes. For instance, 1111, 1010, 1100, 1001 is a binary code. Using strings like
this with specified properties, we can measure the distance from here to the moon with
extreme accuracy and we can also protect international banking transactions. Obviously
(?!) 0-1 sequences are part of combinatorics.

Matchings. Suppose I have a list of jobs at a given factory and a list of people with
the jobs they can do. Then matching theory will tell me whether or not I can assign a
job to each person so that no two people do the same job and all jobs are taken.
Naturally the organisation of the sets involved in this task is part of combinatorics.

In this chapter I want to concentrate on two areas of combinatorics — basic counting
and the pigeonhole principle. I will only be able to scratch the surface of these two
areas of combinatorial theory so undoubtedly there will be another chapter on the topic
later, maybe in another book. There are a lot of books available on combinatorics these
days because many universities now give courses on this topic. If you would like to get
hold of more material we suggest, as a first look at the subject, that you consider R.
Brualdi "Introductory Combinatorics", Second Edition, North Holland, New York,
1992. But any book recommended for a first undergraduate course will be fine. You can
also look around the web for specific topics.
2.3. The Pigeonhole Principle
This is all very simple and obvious if you think about it. The famous principle simply
states “if there are n pigeonholes and n +1 pigeons to go into them, then at least one
pigeonhole must get 2 or more pigeons”. What could be simpler or more obvious?
Problem 1. You can use the pigeonhole principle to come up with some startlingly
trivial facts. For instance, to the nearest dollar, there are at least two wage earners in
your country who earn precisely the same amount.
Discussion. The easy way to see that is to observe there aren't too many people in the
country earning more than $200,000 a year. (If there are forget about them.) But there



must be more than 200,001 wage earners, earning less than $200,000. With the dollar
amounts as pigeonholes and the wage earners as pigeons, the pigeonhole principle tells
us that there are 2 wage earners at least, who earn the same amount of money in a year.

By the way, in Europe, the Pigeonhole Principle is often referred to as Dirichlet's
(box) Principle.
Exercises
1. Prove that in a group of 13 people at least two have their birthday in the same

month.
2. Prove that in a group of 32 people there are at least two whose birthdays are on the

same date in some month.
3. I know that among p people at least two were divorced on the same day of the week.

What is the smallest value of p that will guarantee this?
4. In Swooziland, bank notes each have a single digit preceded by three letters.

(i) How many notes do I need before I can be sure there are two of them whose
identification starts with the same letter?

(ii) Repeat (i) for notes whose identification starts with the same two letters.
5. Suppose, car registration plates have two letters and three numbers. Is it true that in

the car park on the opening day of the Olympics there were two cars with the same
three digit numbers on their plates?

6. Prove that any 5 points chosen within a square of side length 2, there are two whose
distance apart is at most . (Is this true for 4 points?)

7. (a) Prove that of any 5 points chosen within an equilateral triangle of side length 1,
there are two whose distance apart is at most .

(b) Prove that of any 10 points chosen within an equilateral triangle of side length 1,
there are two whose distance apart is at most .

(c) Determine an integer mn such that if mn points are chosen within an equilateral
triangle of side length 1, there are two whose distance apart is at most .

Now we can develop the idea of the pigeonhole principle further. If we have five
pigeons and two pigeonholes it should be clear that no matter how the pigeons go to
roost (or whatever pigeons do), then there must be one hole which has to hold at least
three pigeons. In more general terms:

Given n pigeonholes and mn + 1 pigeons there is one pigeonhole which contains at
least m + 1 pigeons.
This version of the pigeonhole principle contains the first version as a special case. As
such we say it is a generalisation of the first. Mathematicians are always trying to
generalise results. I'll point out generalisations of other results as they arise. We have
already thought about this idea in Chapter 1.
Problem 2. Students in a university lecture have black, brown, red, green, or blue and
white hair. There are 101 students in the lecture. Show there are at least 21 students
who have the same colour hair.
Discussion. The pigeonholes here are the hair colours. There are 5 of these. The
pigeons are the 101 students.

In this question then, n = 5 and mn + 1 = 101. So m + 1 = 21. By the more general
pigeonhole principle, there must be at least 21 students in the lecture who have the same



colour hair.
Exercises
8. Some 31 diplomats from Finland, Greece, Italy, Romania, New Zealand and

Singapore went out to dinner together after an afternoon session at the United
Nations. Prove that there was one country that was represented by at least 6
diplomats.

9. The heights of 27 students in a Geography class were measured to the nearest 5 cm.
There was a range of heights from 150cm to 180cm. There were at least t students
with one of these heights. What is the largest value of t you can guarantee?

10. Thirteen schools took part in an athletics competition at Murrayfield. There were
1514 student spectators. Show that there was one school that was cheered on by at
least 117 students.
One of the classic problems to use the pigeonhole principle is the party problem.

Problem 3. Prove that in a group of six people at a party there are at least three people
who mutually know each other or there are three who are mutual strangers.
Discussion. To start this off a diagram is useful. Let the six people be represented by
dots and draw a line between two people who know each other; draw a broken line
between people who don't know each other. So in Figure 2.1, a and b know each other,
a and d know each other, b and c know each other and so do c and d. Any other pair are
strangers. We assume too that if x knows y, then y knows x.

Figure 2.1.

Figure 2.2.
(In Figure 2.1 there are no three who are mutual acquaintances but a, c, e, among

others, are three mutual strangers.)
How do we show there are at least three mutual acquaintances or at least three

mutual strangers? Well, we have to show that in our dot, line and broken line diagram,
there is either a solid line triangle or a broken line triangle.

Consider person a in Figure 2.2. Potentially there are 5 lines that can be drawn from
a to the other dots. We apply the pigeonhole principle by taking two pigeonholes — one
hole for lines and one hole for broken lines. So one pigeonhole must contain at least
three pigeons. In other words, there must be at least three lines or at least three broken
lines coming from a.



Let us suppose without loss of generality that there are at least three solid lines out
of a. Further, without prejudicing our argument, we may as well suppose that we have
the situation of Figure 2.3. Here a is joined to (knows) b, c and d.

What can we say about b, c and d? If one pair from these three are friends, then join
them by a line. Say b and c know each other. From Figure 2.4 we see we've got our
solid triangle. And we have our solid triangle if any pair of b, c, d are friends.

Figure 2.3.

Figure 2.4.

Figure 2.5.
But what if none of b, c and d know each other? Then join them all by broken lines

and we have a broken triangle (see Figure 2.5).
So whatever happens we have a triangle of some kind. We have therefore proved

that of the six people at the party, there are either at least three mutual acquaintances or
at least three who have never met each other.
Exercises
11. Seventeen people correspond by mail with one another — each one with all the rest.

In their letters only three different topics are discussed. Each pair of correspondents
deals with only one of these topics. Prove that there are at least three people who
write to each other about the same topic. (International Mathematical Olympiad
1964.) (Is this still true if there are only 16 people corresponding?)

12. Show that the 6 (as in 6 people) in Problem 3 is best possible. In other words, show
that the property of three people knowing or not knowing each other, does not hold
for 5 people.
(See Chapter 1 for problems involving the idea of “best possible”.)

13. Show that among our six friendly party people there are (i) two groups of three who
mutually know each other, (ii) two groups of three who mutually don't know each



other or (iii) a group of three who do and a group of three who don't.
In the answer to Problem 3 we used the phrase “without loss of generality”. This is

one of the stock phrases of mathematical proofs. It means that when a certain symmetry
exists (as here between solid lines and broken lines) we can argue on the assumption
that one of them happens. This assumption does not alter the validity of the argument.

Why not? In the present case suppose we dropped the “without loss of generality”.
We could argue as we did, first assuming that there were at least three lines and we
would get the result we wanted. However, to complete the argument we would need to
consider the case when at least three broken lines came out of a. But the argument for
the broken line case is exactly the same as for the line case, except that we replace
“line” everywhere by “broken line” and “broken line” everywhere by “line”. (Check it
out to make sure.) To avoid this tedious repetition we use the phrase “without loss of
generality”.

One other thing, you should by now be realising that the hint to deciding that the
pigeonhole principle can be used is the words “show there are at least…” or “show
there exists some number among other numbers”.

Now try the following set of problems which all use a version of the pigeonhole
principle. The clue to these solutions is to decide how to put the problems together so
that you can sort out pigeons from pigeonholes. We are now into the harder type of
problem so the pigeonholes are not always going to be obvious.
Exercises
14. Show that given any 52 integers, there exist two of them whose sum, or else whose

difference, is divisible by 100. (Does this result hold for 51 integers?) If 100 is
replaced by 10, what should 52 be replaced by? Generalise the result as far as you
can.
(Hint: For the “52” problem first reduce the numbers to the set {0,1,2…,99}. Then
take your pigeonholes as 0, 50 and the pairs (1, 99), (2, 98) (49, 51). What good does
it do to know that at least two numbers are in one of these pigeonholes?)

15. (a) Prove that in any set of 27 different odd numbers all less than 100, there is a pair
of numbers whose sum is 102.

(b) How many sets of 26 such numbers can we choose such that no pair in any of
these sets gives a sum of 102? (American Mathematical Olympiad 1981.)

16. Show that given any 17 numbers it is possible to choose 5 whose sum is divisible by
5. Generalise this result.

17. Inside a cube of side 15 units there are 11,000 given points. Prove that there is a
sphere of unit radius within which there are at least 6 of the given points. (Unit radius
= radius one.) (British Mathematical Olympiad 1978.)

18. A chessmaster who has 11 weeks to prepare for a tournament, decides to play at least
one game every day, but in order not to tire himself he decides not to play more than
12 games in any 7 day period. Show that there exists a succession of days during
which he plays exactly 21 games. (Is there a sequence of days when he plays exactly
22 games?)

19. A student has 37 days to prepare for an exam. From past experience she knows that
she will require no more than 60 hours of study. She also wishes to study at least 1
hour per day. Show that no matter how she organises her study, there is a succession



of days during which she studies exactly 13 hours. (Assume she works for a whole
number of hours per day.) Can this problem be generalised?
We've now discovered that there are a few types of pigeonhole principle problems.

There are the easy, almost trivial examples such as Problem 1 and Exercise 1. Then
come the geometrical types of Exercises 6 and 7. “Sequence of days problems” like
Exercises 18 and 19 are another variant.

The “people” problems of Problem 3 and Exercise 11 are related to a variant of the
pigeonhole principle known as Ramsey Theory. Books have been written on this subject
although it only originated in 1930, when F.P. Ramsey proved a theorem that was
important for the foundation of logic.

Problems in this area usually deal with a number of people and “coloured links”
between them. For instance, in Problem 3 we could have linked two people with a red
line if they knew each other and a blue one if they didn't. Similarly in Exercise 11 we
could have linked two people in red if they corresponded on topic 1, blue if they
corresponded on topic 2 and white if they corresponded on topic 3. In each example we
want to know if there is a triangle in just one of the colours.

Looking at these problems in this way it's easily seen that Exercise 11 is an
extension of Problem 3. Clearly we can extend the problem to links in four colours.

Now n people stand in a field and hold ribbons coloured red, white, blue and green.
Each pair of people share precisely one ribbon between them. How big does n have to
be to ensure that there are three people linked by ribbons of only one colour?

Is it obvious that there is such an n? Before you panic, Ramsey's Theorem tells us
there is. Unfortunately it doesn't tell us how big n is.

If this topic appeals to you, you might be interested in reading Martin Gardner's
Mathematical Games section of the Scientific American, Volume 237, No. 5, November
1977. You might also look up “Ramsey Theory” on the web and see how complicated
and difficult the whole thing is.

The following two problems are quite difficult.
Exercises
20. A 4-clique is a set of four people who are all linked in the same colour. In an office

two people are either friendly or they hate each other. How big must the staff of the
office be in order for there to be either a friendly 4-clique or a hateful one?

21. Find the smallest n in the four colour ribbon problem.
Well, that was combinatorics. At least, it was one of the concepts of combinatorics.

And now here's another.
2.4. Counting without Counting
This section is a basic introduction to systematic counting. Before we know it we'll
have a link with the expansion of algebraic expressions.

The easiest way to learn to swim is to jump in the deep end.
Problem 4. How many positive integers with 5 digits can be made up using the digits 1,
2 and 3.
Discussion. Suppose we look for all the 2 digit numbers first then work up to 5. We can
make a list: 11, 12, 13, 21, 22, 23, 31, 32, 33. So there are 9.

The reason for this seems to be that there are three numbers that can go in the first
place. For every number in the first place there are three numbers that can go in the



second place. 3×3 = 9.
Right then, let's tackle 5 digits. There are 3 choices for the first place, 3 for the

second, 3 for the third, 3 for the fourth and 3 for the fifth. Altogether we've got 3 × 3 ×3
× 3 × 3 = 35 = 729.
Problem 5. How many positive integers with n digits can be made up using just the
digits 1, 2 and 3.
Discussion. 3×3 ×…×3, n times. So the answer is 3n.
Exercises
22. How many 10 digit numbers can be made using the digits 2, 3, 4, 5 and 6?
23. How many 6 digit numbers are there whose digits are all non-zero even numbers?
24. How many 7 digit numbers can be made up using just odd digits?
25. How many numbers between 1000 and 9999 have only even digits (including zero)?
26. The Morse code uses dots and dashes. Each letter of the alphabet is made up of at

most 4 of these signals (dots and/or dashes). How many different letters are possible
in Morse code?

27. (a) In the plane, coordinates are of the form (x, y). How many different points in the
plane can be found whose x- and y-coordinates come from the set {0, 1}.

(b) Repeat (a) for three dimensions where coordinates are of the form (x, y, z).
28. (a) Show there are four sets which can be made from the two elements a and b.

(b) Show that eight sets can be made from the three elements a, b and c.
(c) Why are the numerical answers to Exercise 27(a) and Exercise 28(a) the same?

Why is it likewise for Exercise 27(b) and Exercise 28(b)?
(d) Show that 2n sets can be made with n elements.
But what if we are restricted in the number of times we can use a number or letter?
Consider the following problem.

Problem 6. How many “words” (strings of letters, most of them not words in the
dictionary) can be made from the letters A, C, T if we use each letter only once?
Discussion. If you haven't met this type of problem before and have no strategy, then it
is best, first of all, to use trial and error. So, writing down all possible words
systematically gives

ACT;   ATC;   CAT;   CTA;   TAC;   TCA.
There are thus 6 words.

Alternatively we see that there are 3 possible choices for the first letter. Once the
first letter is chosen we have 2 choices for the second letter. Finally, there is only 1
possible choice for the last letter. We can therefore produce 3× 2×1 = 6 “words” from
the letters A, C, T.
Exercises
29. Using each letter only once, how many “words” can be made from the letters in the

word (i) BEAT; (ii) SLATE?
30. In how many ways can the letters in the word FLIGHT be arranged?
31. How many 6-letter words in which at least one letter appears more than once, can be

made from the letters in the word F, L, I, G, H, T? (You may use any letter as often as
you like.)
In general then, we can see that if we have n distinct letters, each used once, we can

produce



words.
For convenience we write n! (pronounced “n factorial”) for the expression

.
So we can rearrange the letters in the word FLIGHT in 6! (=720) ways.
Problem 7. In how many ways can the letters in the word DID be arranged?
Discussion. The two D's are a problem. Let's suppose for a start that they were
different. Call them D1 and D2. Then we'd have the 3! words

D1D2I;   D2 D1I;   D1ID2;   D2ID1;   ID1D2;   ID2D1
But since D1 and D2 are the same, D1D2I = D2D1I = DDI. The other words occur in
pairs too. Hence D1ID2 = D2ID1 = DID and ID1D2 = ID2D1 = IDD.

So the number of different words here is 3! ÷ 2 = 3. These are obviously, DDI, DID
and IDD.
Exercises
32. How many “words” can be made from the following words, where all the letters are

used?
(i) BOOT; (ii) TOOT; (iii) LULL; (iv) MISSSISSSIPPPI.

33. How many 7-digit numbers can be made using two 1's, three 2's and two 3's?
34. There are 12 runners in a cross-country race. There are 3 runners each from the

Hasty Harriers Club, the Runaway Racers Club, the Country Cross Club, and the
Achilles Athletic Club. In how many ways can the teams cross the finish line
(assuming no ties)?

Problem 8. How many “words” can be made up from r A's, s B' s and t C's?
Discussion. Let n = r + s + t. If we assume all the A's are different, and all the B's are
different and all the C's are different, then there are n! words. But the A's are not
distinct. So the n! words occur in groups of r! words which are in fact the same. There
are thus  words where the A's are not distinct.

Then again the B's are all the same. So the  words occur in groups of s! which are
the same. So there are  words.

Finally, the C's are not distinct so we just have  different words.
Exercises
35. How many rearrangements are there of the letters in the words

(i) ENGINEERING; (ii) MATHEMATICAL?
36. How many words can be formed from the letters

(i) AABBB; (ii) AAABBBB?
37. How many binary sequences (strings of 0's and 1's) of length 10, can be made using

four 0's and six 1's? (A binary sequence can start with zero.)
38. How many n-digit numbers can be made up using r1 1's, r2 2's, r3 3's and r4 4's,

where n = r1 + r2 + r3 + r4.
Problem 9. How many subsets of size 3 can be chosen from a set of size 6?
Discussion. When in doubt, write them out. Let the elements of the set be a, b, c, d, e, f.
Working systematically starting with the a's we get



The answer, assuming we haven't missed one, is 20. I think I did it correctly here but
what if I want the subsets of size 3 in a set of size 106? How can I be sure that I won't
miss any subsets then?

We've clearly got to find a systematic way to do the counting. There's a clue back at
Exercise 29 where we counted sets using 0's and 1's. In that example a 0 in the 6th
position say, indicated that that sixth element wasn't in the set. On the other hand a 1 in
the 3rd position showed that the 3rd element was in the set. So we can represent the
subsets of size 3 above using 0's and 1's as follows:

I've dropped the commas and brackets in the binary sets to make life easier but you
should realise that 101001 is the same as acf and 001101 is the same as cdf.

But we know how to count binary sequences of length 6 with three 0's and three 1's.
The answer is  = 20. Just what we got by trial and error.
Exercises
39. How many subsets of size 3 can be chosen from a set of size 7?
40. How many subsets of size 5 can be chosen from a set of size 9?
41. How many subsets of size 4 can be chosen from a set of size 10?
42. How many subsets of size r can be chosen from a set of size 8? Check your answer

for the specific values 1, 2, 5 for r.
Problem 10. How many subsets of size r can be chosen from a set of size n?
Discussion. This is just  Check it out using the values for n and r in Exercises
39-41. This turns out to be a useful number so we will write it as nCr. (You will see it
written as  and in even some other ways.) The C comes from the fact that nCr is
sometimes called the number of combinations of n things taken r at a time. This just
means the number of ways of choosing a subset of r things from a set of size n.
Exercises
43. Calculate (i) 5C3; (ii) 16C3; (iii) 999C998.
44. Show that nCr = nCn-r.
45. In how many ways can three different letters be chosen from the full alphabet?
46. In a particular trotting event, five horses line up at the barrier and four are in a line

behind them. In how many ways can the five front horses be chosen?
One more little wrinkle is needed. The question of 0!. Do we need it? Well, suppose

we want to calculate 5C5. Clearly the number of ways of choosing 5 objects from 5
objects is just 1. You just do it, you can only do it, in one way. So



For this equation to make sense we must have 0! = 1. So we make a special case for
0. By convention we agree that 0! = 1.
Exercises
47. Calculate

(i) 5C0; (ii) 16C0; (iii) kC0; (iv) kCk.
48. Simplify

(i) nC0; (ii) nC1; (iii) nC2.
49. Prove by direct calculation that 3C0 + 3C1 + 3C2 + 3C3 If we change all the 3's to 4's

does equality still hold? What expression with C's in, adds up to 24 then?
50. Prove the following by direct calculation:

Generalise the previous two results.
Make a concerted attempt at the above problems before continuing.
Surprisingly the last few problems were set with more than practice in mind. I am

leading you inexorably on to, fanfare stage left, Pascal's Triangle. Isn't that beautiful?

First, in case you are meeting this for the first time and can't see the pattern, to get a
new number simply add together the two numbers in the row directly above. For
instance,

Thus the next row of the triangle will be

Oh. I forgot to tell you to put 1's on the ends of each row before you start.
What has all this got to do with combinations? Go back to Exercise 50. When you

calculated 3C0 + 3C1 + 3C2 + 3C3 you should have got 1 + 3 + 3 + 1. These are exactly
the numbers, in order, of the 3rd row of Pascal's Triangle. (I'm cheating a little. The row
with just 1 in it I'm going to consider to be the zeroth row.)

Check out 5C0, 5C1, 5C2, 5C3, 5C4, 5C5 and you'll see that you get the numbers in the
5th row.

In general, the nth row is formed by the integers nC0, nC1, nC2,…, nCn_2, nCn_1, nCn,
in that order.

How can that be?
Lemma.a   n+1Cr = nCr +nCr—1
Proof.



Maybe that Lemma didn't help either. It was the generalisation I was looking for in
Exercise 51 though. Perhaps a diagram will cause the penny to drop.

This is just how Pascal's Triangle is constructed. The rth term in row n + 1 is the sum
of the two terms immediately above it. These are just nCr—1 and nCr.

Once we have 1, 1 (think of these as 1Co, 1C1) from row 1, and 1's on the left and
right of each row (think of these as nC0, nCn), the lemma tells us that all other entries in
the triangle are nCr's. The triangle could easily have been called the Combinations
Triangle.

Even this though would only make the triangle an interesting oddity if it were not for
the following.
Exercise
51. Expand the following in increasing powers of x.

(i)(1+ x)3; (ii)(1+ x)5; (iii)(1+ x)6.
Assuming you've done the problem you should now see that the coefficients of these

expansions are precisely the numbers in the corresponding row of Pascal's Triangle.

The 1, 4, 6, 4, 1 are just the entries in order, of the fourth row of the Triangle. Hence

(If you put x = 1 in this expression you should see why Exercise 49 works.)
This then should give us a quick way of expanding (1 + x)12. There's no need for us

to calculate Pascal's Triangle down to the 12th row (thank goodness!). By what we've
said

To finish this off, all we need to do is to calculate all the 12Cr terms.
Exercises
52. Using combination notation, then simplifying, expand

(i)(1+ x)6; (ii) (1 + x)10.



53. Find the coefficient of x15 in
(i)(1+ x)17; (ii) (1 + x)22.

54. What is the sum of the coefficients in the expansion of (1 + x)6?
55. Simplify nC0 + nC1 + nC2 +…+ nCn.

What has this got to do with the fact that there are 2n subsets of a set of size n?
An expression of the form (1 + x) n is called a binomial expression (bi = two, nom…

= numbers and 1 and x are two numbers). Thus the various coefficients of the powers of
x are called binomial coefficients. So the terms n Cr are given the collective name,
binomial coefficients.

It should be no surprise therefore that the next result is the Binomial Theorem. It
generalises what we have been saying about the expansions of binomial expressions.
Theorem (Binomial Theorem).

Proof.

If we can prove that the coefficient of xr is nCr for r = 0, 1,…, n we must be finished.
Now we get an xr term by taking x from r of the n brackets (1 + x). Further, this is

the only way to get an xr term. So there are as many xr terms as there are ways of
choosing r of the n brackets. This is simply nCr by the definition of nCr and our earlier
counting. Hence the coefficient of xr is nCr.  
Exercises
56. By replacing x by a suitable value, use the Binomial Theorem to expand the

following
(i) (1 + 2a)3; (ii)(1 - 3b)4; (iii) (1 + 4c)5.

57. Expand the following
(i) (x + y)3; (ii) (x + y)4; (iii) (x - y)5.
By generalising the last exercise we obtain an extension of the Binomial Theorem.

Theorem (Binomial Theorem Plus).

This can be proved in the same way as the Binomial Theorem was proved. It allows
us to expand any binomial expression to any positive integer power.
Exercise
58. Expand the following:

Armed with binomial coefficients we can launch into more serious counting. See
how we use binary sequences in another way.
Problem 11. The Origami Motor Company has just released two new model cars — the
Ki and the Wi. I want to buy 12 of the Origami vehicles for my sales people. How many
different choices do I have?



Discussion. Let's change this problem into a string of 0's and 1's. Here the zeros are just
place markers to keep the Kis and Wis apart. So we need just one 0. The 1's represent
cars. Each 1 before the 0 represents a Ki; each 1 after the 0 represents a Wi.

For instance 1111101111111 represents a purchase of 5 Kis and 7 Wis. Indeed every
string of twelve 1's and one 0 represents a possible purchase. On the other hand every
possible purchase can be represented by a string of twelve 1's and one 0. From what we
have seen earlier there are 13C12 possible binary sequences of this form.

So there are 13 possible choices of cars. (They are 0111111111111, 1011111111111,
1101111111111, 1110111111111, 1111011111111, 1111101111111, 1111110111111,
1111111011111, 1111111101111, 1111111110111, 1111111111011, 1111111111101,
1111111111110.)

If the Origami Motor Company had produced Kis, Wis and Wikis we would still
have had twelve 1's because that is the number of cars I'm going to buy. However we
would now need two 0's. In this case the 1's before the first 0 would count Kis, the 1's
between the two 0's would count Wis and the 1's after the second 0 would count Wikis.
There'd be 14C12 choices then.
Exercises
59. On Sunday, my local shop sells freshly baked white rolls, brown rolls, sesame seed

rolls and poppy seed rolls. In how many ways can I buy a dozen fresh rolls?
First express your answer as a single binomial coefficient.

60. Last week my wife won second prize in the lottery. She immediately ran downtown
to a dress shop that sold red dresses, white dresses, blue dresses, green dresses and
pink dresses. She bought twelve dresses. In how many ways could she have done
this?
First express your answer as a single binomial coefficient.

61. I have c colours of paint and g golf balls. How many ways can I colour the golf
balls? (Only one colour per ball please.)

62. How many solutions are there, in non-negative integers, of
(i) x + y + z = 8; (ii) x + y + z + w =18.
(Use 0,1 sequences.)
We conclude this section with a set of problems of a combinatorial nature that are

based on the ideas in this booklet. Some of them are very hard.
Exercises
63. How many distinct positive divisors does the number 73,950,800 = 24 · 51 · 75 · 11

have?
64. A fast food shop sells five different types of hamburgers. How many different

combinations of nineteen hamburgers can one buy from this shop?
65. How many selections of three numbers each can be made from the set {1,2…,99,

100} if no two consecutive numbers can be included?
66. Prove that nCr = n-1Cr-1 + n-2Cr-1 +…+r-1Cr-1.
67. Find the number of solutions satisfying the inequality

if x1, x2 and x3 are non-negative integers. For example, x1 = 5, x2 = 0 and x3 = 18 is a
solution.



68. By determining the constants a, b and c such that k3 =  for all
positive integers k ≥ 3, find an explicit formula for the sum of
the series 13 + 23 + 33 + + n3.
(Recall that (n

r) = nCr.)
69. (a) Express each of the following sums as a single binomial coefficient.

(b) Evaluate the sums

70. Is it possible to choose 1983 distinct positive integers, all less than or equal to
100,000, no three of which are consecutive terms of an arithmetic progression?
Justify your answer. (IMO 1983 No. 5.)

2.5. A Sigma Aside
Many of the expressions that have been written in the last section can be considerably
shortened by the use of sigma notation. It's a way of cutting out those three little dots
that have appeared from time to time in various expressions.

First of all Σ is the Greek upper case sigma (σ is the lower case sigma). Since s is for
sum and Σ is the Greek s, mathematicians use Σ as part of the notation for Summing
things.

Consider the expression 1 + 2 + 3 + 4. This can be written as 
What the Σ notation means is, start with i =1, then add what you get with i = 2, then

add what you get with i = 3, then add what you get with i = 4. You stop at 4 since that is
the largest value of i on the Σ.

In this way you should see that  and  = 3 + 4 + 5 + 6. On
the other hand, something like  avoids the three little dots, for 

What is  then? Simply 12 + 22 + 32 + 42. The point is that you substitute each
i value from 1 (at the bottom of the Σ) up to 4 (at the top of the Σ) in the expression i2
and add them all together.
Exercises
71. Write the following sums out in full. Well, include three little dots (ellipses) if you

have to!

72. Write the following sums using Σ notation.



73. Express each of the following as sums.

74. State the Binomial Theorem (p. 45) using sigma (summation) notation.
The sigma notation will be useful on many occasions in the future. Practice it and

use it when you can.
2.6. Solutions
1. The pigeonholes are the 12 months of the year. The pigeons are the 13 birthdays. By

the pigeonhole principle there must be at least 2 birthdays in the same month.
2. The pigeonholes are the dates 1,2,…,31. The pigeons are the 32 people. There must

be one pigeonhole that gets at least 2 people.
3. We need p ≥ 8, otherwise we could get at most one pigeon (a divorcee) assigned to

each pigeonhole (day of the week).
4. (i) 27 (because there are 26 letters in the alphabet);

(ii) 26 x 26 + 1 = 677.
5. Yes, if there were at least 1001 cars in the car park. (I have assumed XY 000 is a

legal registration.)
6. Divide the 2 by 2 square into four unit (sidelength 1) squares. The squares are the

pigeonholes; the points are the pigeons. Hence by the pigeonhole principle there is
one unit square which contains at least 2 points. In a square, the maximum distance
apart that 2 points can be, occurs when they are on opposite corners. So in a unit
square any 2 points are at most  apart. Hence of the 5 points there are 2 whose
distance apart is at most .
   Given only 4 points, they can be at the corners of the large square and so any pair
are at least a distance 2 apart. Hence the “ ” statement does not hold for 4 points.

7. (a) Divide the equilateral triangle up into 4 equal equilateral triangles of sidelength
1/2. By the pigeonhole principle there are at least 2 of the chosen 5 points in one
of the smaller equilateral triangles. Two such points are at most 1/2 apart.

(b) Divide the large triangle into 9 smaller equilateral triangles of sidelength 1/3. Of
the 10 points at least 2 are in a smaller triangle and are thus at most 1/3 apart.



(c) There are n2 equilateral triangles of sidelength 1/n that can be placed in the
larger triangle. Hence mn = n2 + 1.
(The n2 can be calculated by area considerations or even by adding 1 + 3 + 5+…
+ 2n - 1.)

8. If the countries represent pigeonholes, n = 6. Since there are 31 = 6 x 5+1 pigeons,
one pigeonhole contains at least 5 + 1 = 6 pigeons.

9. The possible heights are 150, 155, 160, 165, 170, 175, 180. Hence there are 7
pigeonholes. Since 27 = 3 x 7 + 6, there were at least 3 + 1 = 4 pigeons in one of the
pigeonholes. Hence the maximum value of t is 4. (Five of the remaining pigeonholes
could be occupied by 4 and the other one by 3. Clearly we can't force a 5.)

10. 1514 = 116 x 13 + 6. One school had at least 116 + 1 = 117 supporters.
11. Take one of the 17 people at random. Colour the edges joining 2 people by red, blue

or green depending on which topic they are corresponding. Now there are 16 edges
from the chosen person to the others. By the pigeonhole principle at least one of the
colours is used 6 times on these edges. Suppose, without loss of generality, this
colour is red. Let these 6 red edges be joined to a, b, c, d, e, f. If any pair of a, b, c, d,
e, f is joined in red we are done. Hence only 2 colours are used between a, b, c, d, e,
f. We are thus in the party problem situation where we know that there is at least one
monochromatic triangle.

12. There is no monochromatic triangle for this party of 5.

13. We know by the Discussion of Problem 3 that we have at least one triangle. Without
loss of generality suppose it is solid and joins a, b, c. By the argument of Figures
2.3–2.5, if two of ad, ae and af are solid or ad, ae, af are all broken, then another
triangle is forced. Call this argument A. Without loss of generality, this leaves ad
solid and ae, af broken.

We get another triangle involving d unless bd and cd are both broken. But then one
of de, df is broken and we apply argument A to get a solid triangle, or both de and df
are solid and argument A again gives another triangle.

14. Since we are dealing with divisibility by 100, we can, without loss of generality,
assume our 52 numbers are chosen from 0,1, 2,…, 99. Any extra multiplies of 100
can be discarded. How can the sums of pairs add to 100? We could have



(The numbers are listed this way so that you can see the pattern.) Take as our 51
pigeonholes the numbers 0, 50 and the pairs (1, 99), (2, 98),…, (49, 51). So by the
pigeonhole principle if we choose 52 distinct numbers we are forced to choose 2
from some pair (i, 100 — i) or two from 0 or two from 50. These latter two pairs
obviously add to a multiple of 100. If we have i and 100 — i, then the same thing
happens. The only possibilities remaining are that we chose i and i or 100 — i and
100 — i. In both these cases the difference is divisible by 100. The case of 51. Now
51 is an extremal case. If we choose the 51 numbers 0,1, 2,…, 49, 50, there is no
pair whose sum or difference is 100. 100 replaced by 10. The question now is, for
what (smallest) n integers is it true that any pair have sum or difference divisible by
10?
     Looks like 7. Is 6 extremal? (The proof is along the same lines as for 100.)
     For 10” it is i x 10” + 2. Can you see where this came from?

15. (a) Line up the odd numbers to give sums of 102 where possible. So we get 1, (3,
99), (5, 97),…, (49, 53), 51. There are 24 pairs and the two numbers 1 and 51.
By the pigeonhole principle if we choose 27 different odd numbers we are
forced to pick a pair (i, 102 - i) for some odd i. (Why don't we have two of the
form i or 100 - i here?)

(b) To pick 26 so that no pair adds to 102 we must choose 1, 51 and one number
from each pair (i, 102 - i) for i = 3, 5, 7,…, 49. There are 2 choices for each of 24
pairs so there are 224 choices.

16. Any number has a remainder of 0, 1, 2, 3, 4 when divided by 5. If among the 17
chosen numbers there are 5 whose remainders are 0, 1, 2, 3 and 4, then their sum has
remainder 0 + 1 + 2 + 3 + 4. Hence their sum is divisible by 5.
   Suppose then that among the 17 numbers only 4 of the remainders are possible. By
the pigeonhole principle one of these remainders must occur at least 5 times. Choose
5 numbers with the same remainder and their sum is divisible by 5.
   Is there more than one generalization here?

17. First find the dimensions of the largest cube that will fit inside a sphere of radius
one. Such a cube, of side a, will have its main diagonal of length 2, since this is a
diameter of the sphere. Hence 3a2 = 4 by Pythagoras' Theorem (applied twice). The

volume of such a cube is  and there are  such cubes in the larger cube.
On average  points lie in each small cube. But  Hence
there is a small cube which contains at least 6 points. It follows that there is a sphere
of unit radius which contains at least 6 points.

18. If ai is the number of games played up to and including the ith day, then a1 < a2 < a3
<…< a77. (We have 77 distinct numbers here.) Now consider a1, a2, a3,…, a77, a1 +
21, a2 + 21,…, a77 + 21. This is a total of 154 numbers, the largest of which is a77 +
21.
   Now return to the chessmaster. In any 77 days he plays at most 12 x 11 = 132
games. Hence a77 ≤ 132 and so a77 + 21 ≤ 153.



   By the pigeonhole principle, with 154 numbers between 1 and 153 at least two
must be the same. Hence for some i and some j we must have ai = aj + 21. So ai - aj
=21. There is therefore a string of days from day j + 1 to day i when 21 games are
played.
The case for 22. Repeating the argument we have ai, a2,…, a77, ai + 22, a2 + 22,…,
a77 + 22. Further a77 ≤ 132, so a77 + 22 ≤ 154. We have 154 numbers confined
between 1 and 154. If two are equal we are done. Otherwise every number between 1
and 154 occurs.
   Hence a1 = 1. But then a1 + 22 = 23. Because of the ordering of the numbers, a2 =2,
a3 = 3, a4 =4,…, a22 = 22. So he plays 22 games in the first 22 days.
Generalise. For what m is it true that there is a sequence of days in which he plays
precisely m games?
   There must be a limit to m surely? Can m be as high as 77?
   Try replacing 11 weeks by w weeks. Then try replacing 12 games per 7 day period
by g games.
(This most general form has been worked out by R. Hemminger and B.D. McKay,
Integer sequences with proscribed differences and bounded growth, Discrete
Mathematics, 55, 1985, 255-265.)

19. Repeat the argument of Exercise 18. Suppose she studies ai hours up to and
including the ith day. Then a1 < a2 <…< a37. We are also told that a37 ≤ 60, so a37 +
13 ≤ 73.
   By the pigeonhole principle two of the 74 numbers a1, a2,…, a37, a1 + 13, a2 + 13,
…, a37 + 13 are equal. Hence the result follows.

20. There must be at least 18 people, however, this is far from being easy.
21. Suppose there were only three coloured ribbons. How large would n have to be to

ensure a triangle in one of the colours?
   One way to do this would be to force a situation where six people were holding two
colours, because we know this forces a monochromatic triangle. This could be done
if one person was forced to be joined to six people by one colour, say red. You see in
that case, if a pair of the six were joined by a red ribbon, then we'd have a red
triangle. If not, the six people shared white and blue ribbons which forces a red or a
white triangle.
   The pigeonhole principle then tells us that we need 3 x 5 + 1 = 16 ribbons coming
from one person. Hence n would need to be 17.
   A graph on p. 45 of Capobianco and Molluzzo shows that 16 isn't quite big enough
to have monochromatic triangles. So 17 is the smallest number here.
   Now go back to the original problem. We have four colours. How big is n in order
to guarantee a monochromatic triangle? If we use the same approach as in the three
colour case we get n ≤ 66. The difficulty is showing that 65 people can't necessarily
force a triangle in one colour. Can you do it?

22. 510.
23. There are four non-zero even digits. Hence we can produce 46 of the required

numbers.



24. 57.
25. 4 x 53 (the first digit can be chosen from 2, 4, 6, 8, the rest from 0, 2, 4, 6, 8).
26. 24 + 23 + 22 + 2 = 30. (…--,.-…-,---…,---- are not used. Digits and punctuation use

five or six signals.)
27. (a) 22 = 4; (b) 8.
28. (a) Ø, {a}, {b}, {ab};

(b) Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c};
(c) 00 → Ø (neither a nor b used), 10 → {a} (a used, b not used, 01 → {b} (a not

used, b used), 11 → {a, b} (both used) (b) 000 → Ø, 100 → {a}, 010 → {b}, etc.
(d) There are 2n (binary) sequences of 0's and 1's — a 0 in the ith place means

element i is not in the subset corresponding to that sequence, a 1 in the ith place
means element i is in.

29. (i) 4 x 3 x 2 x 1 = 24; (ii) 120.
30. 720.
31. There are 66 possible words using the letters F, L, I, G, H, T. Of these 720 use each

letter only once. Hence 66 - 720 = 45,936 have some letter appearing more than once.
(If this worries you try F, L then F, L, I, etc. until you see the pattern.)

32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 26C3 = 2600.
46. 9C5 = 126.
47. (i) 1; (ii) 1; (iii) 1; (iv) 1.
48. 
49. LHS = 1 + 3 + 3 + 1 = 8 = 23 = RHS.

No, because 4C0 + 4C1 + 4C2 + 4C3 = 15 ≠ 24.
However, 4C0 + 4C1 + 4C2 + 4C3 + 4C4 does equal 24. (What's going on here?)

50. (i) LHS = 4 = 3 + 1 = RHS; (ii) LHS = 120 = 84 + 36 = RHS. Generalisation: n+1Cr
= nCr + nCr-1.

   (For a proof see the Lemma on p. 43.)
51. (i) 1 + 3x + 3x2 + x3;

(ii) 1 + 5x + 10x2 + 10x3 + 5x4 + x5;



(iii) 1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6.
52.

53. (i) 17C15 = 136; (ii) 22C15 = 170544.
54. 26. (Just let x = 1.)
55. 2n. This is precisely the number of subsets of a set of size n. You can count these sets

other than by using binary sequences. After all, there are nC0 subsets with 0 elements,
nC1 subsets with 1 element,…, and nCn subsets with n elements.

56.

57.

58.

59. 15 C3 = 455.
60. 16C4 = 1820.

61. 
62. (i) Here 1011101111 means x =1, y = 3 and z = 4. If we consider a sequence of eight

1's and two 0's, each sequence corresponds to a solution of x + y + z = 8 (and
vice-versa). The number of solutions is 10C2 = 45;

(ii) 21C3 = 1330.
63. The general strategy with all problems is this “if you can't do them, try doing an

easier one”. So, what about the divisors of 72 = 23 · 32? List them. We get 1(= 2030),
2, 22, 23, 3, 2 · 3, 22 · 3, 23 · 3, 32, 2 · 32, 22 · 32, 23 · 32. That makes 12. They are all
of the form 2a3b where a = 0,1, 2, 3 and b = 0,1, 2. Four choices for a and 3 for b
gives 4 x 3 = 12. So for 24 · 52 · 75 · 11 we should have 5 x 3 x 6 x 2 = 180 divisors.

64. This is a binary sequence problem like Exercise 59. So we get 23C4 = 8855.
65. Suppose we just count all the ways of taking three numbers from the set. This is

simply A = 100C3.
   But then we've counted all the choices 1,2, n for n = 3, 4,…, 100 and 2, 3, m for m
= 4, 5,…, 100 and so on. Combine i and i +1 into one. There are 99 ways of choosing
two numbers from the set {1,2,…, i - 1, ai, i + 2,…, 99,100} where ai is the combined



element i, i + 1. So there are 99 ways of choosing three numbers, two of which are i
and i + 1. Now there are 99 possible values of i, so there are B = 99 x 99 ways of
choosing three numbers which contain i and i + 1.
   Now A — B almost counts the selections of three numbers with no two consecutive
numbers included. Unfortunately the B count discards 2, 3, 4 twice — once with i = 2
(2, 3, 4) and once with i = 3 (2, 3, 4). In fact, all triples of consecutive numbers are
counted twice except 1, 2, 3 and 98, 99, 100. So let C = 96, the number of triples 2, 3,
4; 3, 4, 5;…; 97, 98, 99. Then A - B + C counts what we're after.
   The required number of selections is 161700 - 9801 + 96 = 151995.

66. By the Lemma on p. 43,

Eventually this gives

But rCr = 1 = r - 1Cr - 1 and the result follows.
(This result is best proved by the principle of mathematical induction — see
Chapter 6.)

67. We get 2C2 + 3C2 + 4C2 +…+ 30C2 by looking at each equation x1 + x2 + x3 = i for i =
0,1, 2,…, 30. By Exercise 66, this is 31C3 = 4495.

68.

See Chapter 6 for an alternative proof.
69. (a) (i) Using the lemma that came before the Binomial Theorem we get



   After cancelling and noting that  we get 
(ii) The coefficient of xk in 

   Now (1 + x)n+m = (1 + x)n (1 + x)m. To get an xk term from the right-hand side
of this last equation, take xs in (1 + x)n and xk-s in (1 + x)m.
   The two respective coefficients are  and  Multiplying gives  As
we vary s from 0 to k we pick up all sk terms on the right-hand side. Hence

(b) (i) Use the technique of (a)(ii). Consider (1-x2)n = (1-x)n(1+x)n. Now the
coefficient of xn on the left is 0 if n is odd and  if n is even. On the right we
get

But  so the coefficient is

Hence the expression of the exercise is 0 if n is odd and  if n is even.
(ii) The trick here is to notice that

Putting x =1 then x = -1 into this equation gives

Subtracting we find that

70. We construct a set T containing even more than 1983 integers, all less than 105 such
that no three are in arithmetic progression, that is, no three satisfy x + z = 2y.
   The set T consists of all positive integers whose base 3 representations have at most
11 digits, each of which is either 0 or 1 (i.e., no 2's). There are 211 - 1 > 1983 of them,
and the largest is

Now suppose x + z = 2y for some x, y, z  T. The number 2y, for any y  T, consists
only of the digits 0 and 2. Hence x and z must match digit for digit, and it follows
that x = z = y. Hence T contains no arithmetic progression of length 3, and the
desired selection is possible.



71.

72.

73. (i) See Exercise 69(a)(i). (Note that anything can be used to sum with.
   Here we've chosen k; before we've used i.);

(ii) See Exercise 69(a)(ii); (iii) See Exercise 69(b)(i);
(iv) See Exercise 69(b)(ii); (v) See Exercise 66;
((vi) 

74. For all natural numbers 
aA lemma is a baby theorem. It's a little result not big enough to be a theorem. When it
grows to adolescence it might be called a proposition.



Chapter 3
Graph Theory

3.1. Introduction
This excursion into the realms of dot-to-dots aims to give you an introduction to the fast
growing world of graph theory. Although Euler kicked things off in 1736 when he
tackled the Königsberg Bridge problem, the bulk of research work has been done in the
last 50 years or so.

Perhaps the reason for the growth in graph theory is the fact that dots and lines
provide simple models for a variety of situations. It is also of some interest to computer
scientists. These two facts alone would have got graph theoretical research moving.
However, it turns out that there are a host of interesting pure mathematical problems
hidden among the dots and lines. Consequently pure mathematicians have taken to
graphs like ducks to water.
3.2. Königsberg
In the pleasant summer days of the early 1730's, it was the fashion among the gentry of
Königsberg to take Sunday strolls around the bridges of their fair city. (See Figure 3.1;
this can be found at http://www-groups.dcs.st-
and.ac.uk/~history/Miscellaneous/Konigsberg.html.) They observed after much trial
and error that it did not seem to be possible to start at any point in the city and
promenade in such a way that they crossed every bridge once and only once.

It took a killjoy mathematician to spoil their fun and tell them that, try how they
may, there was no way. Königsberg's bridges were such that it was just not possible to
walk across each one once and only once. The mathematician was Leonard Euler
(pronounced Oiler) and he published his results in 1736.

Figure 3.1. The bridges of Konigsberg as they were in 1736.
Euler accomplished his coup by a basic piece of mathematical modelling. What is

the essence of the problem? Did the street layout of old Konigsberg matter? Was it
important that the bridges were bridges or could they have been planks in rice paddies
in China?

If you haven't seen the problem before have a go at it now.
Exercises
1. Show that Euler was right.

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/Konigsberg.html.


2. For the city with bridges as shown in Figure 3.2 show that it is possible to walk
around so that each bridge is crossed once and only once.

Figure 3.2

Figure 3.3
Euler reasoned that it didn't matter very much what shape the various land forms

were. The only things that were important were (i) that there was land and (ii) that the
various bits of land were joined. So he represented the land by dots and joined two dots
by a line for every bridge between two corresponding pieces of land. This led him to the
picture in Figure 3.3.

Now Euler had to decide if he could pass around his dot and line model of
Königsberg, using each line once and only once. So at least the problem had been
whittled down to size. If by no other means, he could now go ahead by trial and error.
Provided he covered all cases he would come to the conclusion that either there was a
suitable route across all the bridges or there wasn't.
Exercises
3. By systematic use of the lines in Figure 3.3, exhaust all possibilities and show that

there is no suitable path.
4. Convert Figure 3.2 to a dot and line model. Is there a suitable path round this model?

If so, how many ways are there of getting round using each bridge once and only
once?
But Euler was made of sterner stuff. Possibly he did use some system originally to

prove that there was no route which used each bridge precisely once. However, he soon
discovered that he could generalise the Königsberg situation so that no matter how the
dots were joined by lines he could tell you whether or not an “each bridge precisely
once” tour of the city was on. Let's call such a tour an Euler tour.
Exercises
5. Using the models from Figures 3.1 and 3.2, try to come up with some condition on

the number of lines at each dot that will tell you when an Euler tour is possible.
(Remember that you have to almost always go in and then out of a dot during an
Euler tour.)

6. Show that drawing figures (such as those below) so that the pen does not have to
leave the paper is equivalent to finding an Euler tour. Hence decide which figures
can be drawn without the pen leaving the paper and draw those for which this is
possible.



Have a look at Euler's original paper. (It is translated for you into English in the July
1953 edition of the Scientific American. This is reproduced in “Mathematics in the
Modern World”, Readings from the Scientific American, Freeman and Co., San
Francisco, 1968 and in “Graph Theory 1736-1936”, by N. Biggs, E.K. Lloyd and R.J.
Wilson, Oxford University Press, Oxford, 1976.) It's at this stage that he seems to
wander a bit before he comes up with the following conclusion.
 
Theorem 1 (Euler). A dot and line model contains an Euler tour if and only if
(1) all the dots have an even number of lines attached to them, or
(2) all but two of the dots have an even number of lines and the Euler tour starts and

finishes at the dots attached to an odd number of lines.
If you think about it, it soon becomes clear that if an Euler tour exists then any dot

except possibly the first and the last, has to have an even number of lines associated
with it. Clearly you have to go into the dot and out again. That uses up two bridges at
that dot. Keep going back to that dot from time to time and each time you'll use two
more. If you don't have an even number of bridges you eventually get stuck at a dot.

If the dot you start from is “even”, then you first go out and use one line. Every time
after that you use two lines. That's an odd number used, so you have to end up at the
original dot to complete the Euler tour and every dot is “even”. So we've explained the
reason for condition (1) of the theorem.
Exercises
7. Argue that if the first dot of an Euler tour is odd, then all the others are even, except

the very last dot. This gives condition (2) of the theorem.
8. But Euler's Theorem says “If and only if”. In other words, if conditions (1) or (2)

hold, then the model has an Euler tour. Have a go at proving this.
Euler's Theorem was published in 1736 in Commentarii Academiae Scientiarum

Imperialis Petropolitanae. This is a mathematical journal. Mathematicians send their
new results to journals. If the editor of the journal thinks the result is of sufficient merit,
then it is published. This is how new theorems and techniques are made available to all
mathematicians. In 1736, with the solution of the Königsberg bridge problem, Euler
published the very first result in Graph Theory.

At this point you might like to go onto the web and do some searching about the city
of Königsberg. It has a fascinating history especially as far as bridges are concerned.
Many of the original bridges were destroyed in World War II or demolished later (look



it up on the web) so at various times Euler would have found a tour for the gentry of the
fair city of Königsberg.
3.3. So What is a Graph?
A graph is just a thing with dots and lines. But let's be a bit more formal about this. Let
G be a graph. Then G consists of a set of vertices VG and a set of edges EG, which join
vertices of VG. Unlike Euler, we will insist that any two vertices in a graph have at
most one edge between them.
Exercises
9. Draw up the table shown below.

Complete the table.

Figure 3.5.
So how many graphs are there with one vertex? The only difficulty here is in

deciding whether a single vertex can have an edge drawn from itself to itself as in
Figure 3.4.

Such an edge is called a loop. In the graphs we are talking about at the moment we
will not allow loops. You should therefore have found that there is only one graph with
one vertex. He's a very lonely fellow.

So how did you go with two vertices? How many graphs have two vertices? Well
there must be at least one — take two lonely fellows and put them together. Are there
any more? If you look at Figure 3.5 you will see two candidates. But are they the same?
One has a plain, straight old edge. The other has a fairly fancy, up market, curly edge.
Now if we are going to take looks into account in this game we're going to find
ourselves with an infinite collection of graphs on two vertices — there'll be one for
every fancy edge you can dream up.

Let us then decide that the graphs of Figure 3.5 are the same. They consist of two
vertices and one edge between the vertices. Such a pair of graphs that are essentially the
same, we shall call isomorphic (of the same form).

Now there is no reason why there should not be two or more edges joining a pair of
vertices. When that happens we say that there is a multiple edge between the vertices.
We have seen multiple edges already. Euler used them. However we will not let our



graphs have multiple edges. Having saidthat, occasionally it is useful to include
multiple edges and loops too. The only place this is done in this chapter is in Exercise
72, p. 92. There are therefore only 2 possible graphs, in our sense, with 2 vertices.

Have a go at the three vertex graphs. How many non-isomorphic (different) graphs
are there on three vertices?

Clearly there is one graph consisting of three lonely vertices. The next decision to be
made is, are the graphs of Figure 3.6 isomorphic or not? When you've made up your
mind there, move on to the graphs with 2 edges and then 3 edges.

After all that hard work you should have just 4 graphs. All the graphs of Figure 3.6
are isomorphic. By suitable movements in the plane, you can put the vertices of (a) on
top of those of (b). In so doing, the one edge of (a) can be made to sit on the single edge
of (b). And, of course, you can do the same for (c).

By now some of you will have seen a pattern. The number of graphs is 1 (for 1
vertex), 2 (for 2) and 4 (for 3). It's obvious that we'll get 8 (for 4). Or is it?

Now it may have occurred to some of the more precocious amongst you that Figure
3.7 actually contains 11 non-isomorphic graphs. This is indeed so. So unfortunately the
pattern has broken down.

Figure 3.6.

Figure 3.7.

Figure 3.8.
But I can see that many of you have found more than 11 non-isomorphic graphs. I'm

sorry to say you only think you have. If you check things out carefully you will find
some of your extra graphs are isomorphic to some of those in Figure 3.7. For instance
the graphs of Figure 3.8 are isomorphic.

And the number of different graphs on n vertices is not 2n-1. The actual count of the
number of graphs on n vertices is, in fact, quite difficult. It relies on an advanced
method of counting called Pólya enumeration. We won't bother with it here.
Exercises
10. How many graphs are there on 5 vertices?
11. How many of the graphs on 4 or fewer vertices have Euler tours?

Let's have a look at another idea now. The degree of a vertex v, written as deg v, is
simply the number of edges the vertex is incident with; the number of lines going into



the dot, if you like. The degrees of the vertices of the graph of Figure 3.9 are shown in
circles.

This definition opens up a number of possibilities. Explore the ideas of the following
exercises.
Exercises
12. For each graph you have drawn on up to 5 vertices add the degrees of all the

vertices. What do you notice about the number you get for each graph? In what way
is it associated with the graph? Can you formulate a general result?

Figure 3.9
13. (a) Are there any graphs with 5 vertices which have vertices of degrees 1, 2, 3, 4

and 5?
(b) Are there any graphs with 6 vertices which have vertices of degree 0, 1, 2, 3, 4

and 5?
(c) Are there graphs, all of whose vertices have different degrees?

14. We say that a graph is regular if every vertex has the same degree. It is regular of
degree r if every vertex has degree r.
(a) Find all the regular graphs on up to 5 vertices.
(b) How many regular graphs of degree 0 are there on n vertices?
(c) How many regular graphs of degree 1 are there on n vertices?
(d) How many regular graphs of degree 2 are there on n vertices?
(e) Do there exist graphs which are regular of degree 3 on n vertices for all values of

n?
(f) Do there exist graphs which are regular of degree 4 on n vertices for all values of

n?
(g) Show that there are graphs which are regular of degree r for all positive integers

r.
If we go back to the ideas of Exercise 12 we find the following result.

 
Theorem 2. 

But first we had better explain the notation. “deg v” is easy, we know that is short for
the degree of the vertex v. And |EG| just means the size of the set EG, that is the number
of edges of G. So what is ?

In Section 2.5 we introduced the sigma or summation notation. Here we're using Σ to
sum again. This time, however, we're summing over a set, rather than over consecutive
numbers.

Recall from Chapter 2 that Σ4
i=1 i = 1 + 2 + 3 + 4. Suppose now we put A = {1, 2, 3,

4}. Then Σi∈A i is equivalent to Σ4
i=1 i. In the former case we sum over all members of



A. That's obviously the same as summing from 1 to 4. So if VG = {v1, v2,…, vn}, Σv∈VG
deg v means deg v1 + deg v2 +…+ deg vn.

Now let's go back to where we were. I wanted to prove a theorem.
 
Theorem 2. In any graph G, Σv∈VG deg v = 2|EG|.
Proof. deg v counts the number of edges incident with the vertex v. As we go round all
the vertices of VG adding up the degrees, we count all the edges of G. However we
count them each twice, for if e = uv ∈ EG then we count e once in deg u and once in
deg v. Hence

This simple result has a surprising number of uses. For a start we have this corollary.
(A corollary to a theorem is a result which follows as a direct result of the theorem.)
 
Corollary. In any graph G, there are an even number of vertices of odd degree.
Proof. Let's divide VG into two sets — the vertices of odd degree, X, and the vertices of
even degree Y. Then

Since 2|EG| and Σv∈Y deg v are both even, then so is Σv∈X deg v. In this last sum,
however, each term deg v, is odd. The only way the sum of odd numbers can be even, is
if there are an even number of them.

Hence the corollary follows.

Exercises
15. (a) Show that in a cubic graph (a graph which is regular of degree 3), the number of

vertices is even and the number of edges is divisible by 3.
(b) Generalise this result to all graphs which are regular of odd degree, r.
(c) If G is a regular graph of degree r and |EG| is even, what can be said about r or

G or both?

16. (a) The graph G above is cubic and |A| = |B| Is |A| even, odd or can it be either? (The
blob for A and B represents an arbitrary collection of vertices and edges.)

(b) The graph H is regular of degree 4. Describe H completely. (If you are finding
this difficult, first find the smallest graph which looks like H.)

17. (a) What is the smallest graph (i.e., has the fewest vertices) which is regular of
degree 2?

(b) What is the smallest cubic graph?
(c) What is the smallest graph which is regular of degree 4?



(d) What is the smallest graph which is regular of degree 6?
18. The smallest graph which is regular of degree n – 1 has n vertices. In this graph

every vertex is joined to every other vertex. This graph is known as the complete
graph on n vertices and is denoted by Kn. Find |EKn|.
Now find |EKn| using another approach in which your answer is expressed as a

Binomial Coefficient (see Chapter 2).
19. A bipartite graph G = (X, Y) is one in which VG = X U Y, where X and Y are disjoint

(have no elements in common), and every edge of G has one end in X and the other
in Y.
(a) Find all the bipartite graphs on 4 and fewer vertices.
(b) Find all the regular bipartite graphs on 6 and fewer vertices.
(c) If G is a regular bipartite graph of degree r > 1, what can be said about |X| and

|Y|?
(d) What is the smallest regular bipartite graph of degree 2?
(e) What is the smallest regular bipartite graph of degree 3?
(f) What does the smallest regular bipartite graph of degree r look like?

20. A bipartite graph G = (X, Y) is called a complete bipartite graph if every vertex of X
is joined to every vertex of Y. If |X| = m and |Y| = n, we denote G by Km, n.
(a) Show that in Km, n, every vertex of Y is joined to every vertex of X.
(b) Use the notation Km, n to describe the graphs of Exercise 19(d), (e), (f).
(c) Find |EKm, n|.
(d) Find {deg v : v ∈ VKm, n}.
(e) For what values of m, n and t are Km, n and Kt isomorphic?

3.4. Ramseya

Remember the problem in Chapter 2 that went, “Show that at a party of 6 people, there
are 3 who are mutual acquaintances or that there are 3 who have never met each other”?
That problem is exactly the same as Exercise 21(a).
Exercises
21. (a) Colour all the edges of K6 either red or blue. Show that there must be a red

triangle or a blue triangle.
(b) Show that the edges of K5 can be coloured red or blue so that there is no

monochromatic triangle.
(c) Colour the edges of K17 either red or white or blue. Show that there must be a

monochromatic triangle.
(d) Is (c) possible if we replace K17 by K16

22. Colour the edges of Km, n either red or blue. For what values of m and n do there
exist monochromatic triangles?

23. We can think of K2,2 as being a “square”.
(a) Arbitrarily colour the edges of K3,3 red or blue. Must K3,3 contain a

monochromatic square?
(b) Arbitrarily colour the edges of Kn, n red or blue. Find the smallest value of n for

which Kn, n contains a monochromatic square.



Does this bring back fond memories of Chapter 2? One way of expressing what
Ramsey did is the following.
 
Theorem 3 (Ramsey). Arbitrarily colour the edges of Kn with any one of r different
colours. Let m be some fixed integer. Then for n sufficiently large, Kn contains a
monochromatic Km.

In the case r = 2 and m = 3 we know by the 6 people party problem that “n
sufficiently large” means just “n ≥ 6”. Every party with at least 6 people contains 3 who
know each other or 3 who don't.

In the case of r = 3 and m = 3 we know that n has to be at least 17. So here “n
sufficiently large” means “n ≥ 17”.

However, in general, Ramsey gave us no clue as to how big “n sufficiently large” is.
Indeed Ramsey Theory is a very difficult area of graph theory to work in because it is
very difficult to find precise values of n for even small values of r and m.

Paul Erdös (who I have talked about before) and George Szekeres have proved the
following result. The upper bound here though seems to be gross. For most known
values of “n sufficiently large” the Erdös–Szekeres bound is a long way away from the
actual value.
 
Theorem 4 (Erdös-Szekeres). Arbitrarily colour the edges of Kn, red or blue. If Kn
contains a monochromatic Km then n ≤ 2m-2Cm-1.

To finish this section have a go at the following problems. They do not necessarily
have anything to do with Ramsey Theory.
Exercises
24. At a party people shake hands as they are introduced. Not everybody necessarily

shakes hands with everyone else, of course.
(a) Show that there have to be two people who shake hands the same number of

times.
(b) Show that the number of people who have shaken hands an odd number of times

is even.
25. “There should be three roads on this map”, the traveller complained. “I know there's

one road from Ashville to Blogsville, another from Blogsville to Crudville and
another from Crudville to Ashville.”
  “Well they're not all marked in”, his wife replied.
   Draw a sketch of each of the possible maps that could have been printed of the
three towns. How many such maps are there?
   If Dampville is a fourth town and there is still at most one road between each pair
of towns, what is the maximum number of possible roads and how many possible
maps could the inefficient publishers make (assuming they were still in business)?
   Suppose now there are n towns and at most one road between any pair of them.
What is the maximum number of possible roads? How many possible maps could the
printers make? How many possible maps are there with r roads printed in?

26. My wife and I recently attended a party at which there were four other married
couples. Various handshakes took place. No one shook hands with himself (or



herself) or with his (or her) spouse and no one shook hands with the same person
more than once.
After all the handshakes were over I asked each person, including my wife, how

many hands he (or she) had shaken. To my surprise each gave a different answer. How
many hands did my wife shake?
3.5. Euler Tours (Revisited)
Euler started all this off in 1736 by solving the question of when can you go round a
graph and use every edge once and only once. The result is surprisingly easy to state.
 
Theorem 5 (Euler). A graph G has an Euler tour if and only if (1) every vertex has
even degree or (2) precisely two vertices have odd degree.
 
Exercise
27. Perhaps Euler's Theorem as stated above is surprisingly easy to state because it is

wrong. What is wrong with it?
Give an example of a graph that satisfies (1) but does not have an Euler tour.
Give an example of a graph that satisfies (2) but does not have an Euler tour.
Actually Euler's Theorem is “almost” right. How can it be fixed?
The problem, of course, is with graphs which have two or more “bits”. There's no

way we can find an Euler tour, which after all is a walk around a graph, if we have to be
air-lifted from one part of the graph to another. That's tantamount to taking our pencil
off the paper. So when does a graph have two or more “bits”?

We'll say a graph G is connected if it is possible to get from any vertex of G to any
other vertex of G, simply by using edges of G.

In this way the graph in Figure 3.10(a) is connected but that in Figure 3.10(b) isn't.
In the latter graph, for instance, there in no way of getting from u to v using only edges
of the graph.

We can fix up our problem with Euler's Theorem by inserting the word “connected”.
We'll also distinguish between the two types of “tour” by calling the one that ends in a
different place from where it started, a “trail”.
 
Theorem 6 (Euler). (1) A connected graph has an Euler tour if and only if every vertex
is of even degree.
(2) A connected graph has an Euler trail if and only if precisely two vertices are of odd
degree.

Figure 3.10.
Exercises
28. Find all connected graphs on 5 or fewer vertices. Which of them have Euler tours

and which have Euler trails?



29. Show that conditions (1) and (2) of Euler's Theorem can be replaced by “at most two
vertices of G have odd degree”.

3.6. Knight's Tours
Is it possible to move a knight around a chessboard so that it lands on every square once
and only once? Do chessboards have knight's tours or trails?

First let's recall what a knight is and how it moves. As you can see in Figure 3.11 a
knight moves two squares in a straight line and then one square at right angles to this
line. For a knight in the middle of a board there are 8 possible moves.

Figure 3.11.
There seems at first sight to be some sort of link between knight's tours/trails and

Euler tours/trails. The same sorts of ideas seem to be involved. So let's try to make a
graph out of the chessboard. Suppose the squares are vertices. Let's join two vertices if
a knight can move from one to the other. Call this the knight's graph of the board. But
knights and Euler are actually a little different. For the knight we don't have to use
every possible edge of the knight's graph. We only have to be able to get him to every
vertex.

This is almost totally unintelligible so let's do an example. Take the 3 × 3
chessboard. What is the knight's graph of the 3 × 3 board? We've shown it in Figure
3.12(b). Figure 3.12(a) shows how we've numbered the squares to produce the knight's
graph of Figure 3.12(c).

So the knight's graph of a 3 × 3 board is the union of a cycle on 8 vertices and an
isolated vertex.
Exercises
30. Does a knight have a tour on a 3 × 3 board?
31. Draw the knight's graph of a 4 × 4 and 5 × 5 board.

Do either of these boards have a knight's tour? (One does, one doesn't.)
32. Can you find knight's tours on 6 × 6, 7 × 7 and 8 × 8 boards?
33. Try writing a computer program which will test knight's tours for any n × n board.

Does every n × n board have a knight's tour for n ≥ 5?
34. If all that is getting too hard, then try rectangular boards instead of square ones.

(a) Show that a 3 × 4 board has a knight's tour while a 3 × 5 board doesn't.
(b) For what n does a 3 × n board have a knight's tour?



Figure 3.12.

Figure 3.13.
(c) Show that a 4 × 5 board has a knight's tour.
(d) Does every 4 × n board, for n ≥ 5, have a knight's tour?
We can impose one further restriction on our knight's tour. Make it start and stop at

the same place. (Just like the Euler tour.)
Say that a knight's graph of an m × n board has a knight's cycle if it has a knight's

tour where the two ends are a knight's move apart or, equivalently, where you can begin
and end on the same vertex. In Figure 3.13, a knight's cycle is shown on a 6 × 6 board.
Exercises
35. Investigate the possibility of a knight's cycle on 4 × 4, 5 × 5, 6 × 6, 7 × 7 and 8 × 8

boards.
For which n do n × n boards have knight's cycles?

36. (a) Which 3 × n boards have knight's cycles?
(b) Which 4 × n boards have knight's cycles?
You should have found that so far, no board with an odd number of squares has a

knight's cycle. Why is this so? Or rather, is this always so?
There's one thing about knight's moves that we haven't exploited yet. Have another

look at Figure 3.11. There the knight is sitting on a white square. All its moves land it
on black squares. The reverse is also true. A knight on a black square can only move to
a white square.

So actually knight's graphs are bipartite graphs (see Exercise 19). We can divide
their vertex set into two sets — one, W say, corresponding to the white vertices and the
other, B say, corresponding to the black vertices. In a knight's graph, there are no edges
joining any two vertices of W or any two vertices of B. There are only edges which join
some vertex of W to some vertex of B.
 
Exercise
37. (a) Suppose mn is odd. Show that an m × n board does not have a knight's cycle.

(b) Suppose mn is even. Is it true that an m × n board has a knight's cycle?
Clearly there is a lot more that we could do on knight's tours and cycles. Do it. What

results do you get? Can you find all of those results somewhere on the web?
3.7. Hamilton



A biography of Sir William Rowan Hamilton appears on the MacTutor site
(http://www-history.mcs.st-and.ac.uk/). He was born in Dublin in 1805 and made
significant contributions to applied mathematics and noncommutative algebra. Most of
his life was spent as Astronomer Royal of Ireland.

When it comes to graph theory he is best known for Hamiltonian paths and cycles.
However, if you look into the literature carefully, you will see that we should probably
be talking about “Kirkman cycles” after the Rev T. Kirkman who seems to have played
with these objects first. You will also find a lot that is of historical interest in the
MacTutor site, so I recommend that you log in to it.

Now we've been talking about knight's graphs. But we don't have to stop there with
just graphs based on chessboards. Take any old graph and ask if it is possible to move
around it so that each vertex is used once and only once, not getting back where you
started. If it is, we say that the graph has a Hamiltonian path. Such a graph is shown in
Figure 3.14.

The sequence of consecutively adjacent vertices 1, 2, 3, 4, 5, 6, 7, 8, 9 gives us the
Hamiltonian path.

Figure 3.14.
Graphs with a Hamiltonian path whose ends are adjacent have Hamiltonian cycles.

The graph of Figure 3.14 does not have a Hamiltonian cycle but it would have if there
was an edge between 1 and 9.
Exercises
38. Which of the graphs of Exercise 28 have Hamiltonian paths and which have

Hamiltonian cycles?
39. (a) For what n does Kn have a Hamiltonian cycle?

(b) For what values of m and n does Km, n have a Hamiltonian cycle? (Remember
knights.)

40. Prove that a Hamiltonian graph is connected. (A graph with a Hamiltonian cycle is
said to be Hamiltonian.)

41. What is the smallest connected graphs on 10 vertices which is not Hamiltonian?
(Here “smallest” is in terms of edges.)

42. Are all connected regular graphs of degree 2 Hamiltonian?
43. Are all connected regular graphs of degree 3 Hamiltonian?
44. So who was Kirkman anyway?

It's pretty obvious (see Exercise 39) that complete graphs have Hamiltonian cycles.
Let's have a look at K5 for a minute and see what happens to it (Figure 3.15) when we
remove a Hamiltonian cycle.

After removing the cycle 1, 2, 3, 4, 5, 1 from K5 we are left with the cycle 1, 3, 5, 2,
4, 1. Does this work for every complete graph?
Exercises
45. (a) Remove a Hamiltonian cycle from each of K4, K6, K7, K8, K9. Are the resulting

graphs Hamiltonian?

http://www-history.mcs.st-and.ac.uk/


(b) For which n is it true that Kn with a Hamiltonian cycle removed is Hamiltonian?

Figure 3.15.
(c) Let Gm = (Km – Hm). By this I mean Km with a Hamiltonian cycle Hm removed.

From (b) we know that for some m at least, Gm is itself Hamiltonian. Now form
G'm = Gm – H'm. In other words subtract a Hamiltonian cycle from G.
For what m is G'm Hamiltonian?

46. For what n is it true that Kn is an edge disjoint union of Hamiltonian cycles? In other
words, for what n can you start with Kn and consecutively subtract Hamiltonian
cycles till you have no edges left?
  (As always in this sort of problem you have to first conjecture what the right answer
is and then you have to prove that your conjecture is true.)

47. So what about the other complete graphs, the ones which aren't a union of their
Hamiltonian cycles. What do you get left with when you remove the Hamiltonian
cycles from the last graph in the sequence Gm, G'm, etc.?
(a) What do you have left when you remove as many disjoint Hamiltonian cycles as

you can from K4 and K6?
(b) Conjecture a result for the values of n for which Kn is not the union of disjoint

Hamiltonian cycles. (What do you have left when you remove as many disjoint
Hamiltonian cycles as you can?)

(c) Prove your conjecture. (Or disprove it and then make a better conjecture.)
48. Are there similar results for Hamiltonian paths?

(a) Are there two Hamiltonian paths in K4 which have no edges in common? Is K4
the disjoint union of two Hamiltonian paths?

(b) Repeat (a) using K5, K6, K7, K8, K9.
49. Repeat Exercise 46 with the word “cycle” replaced by “path”.
50. Repeat Exercise 47 with the word “cycle” replaced by “path”.
3.8. Trees
At one end of the graph extremes on n vertices are the complete graphs. These have the
maximum number of edges possible for a graph on n vertices. At the other end of the
scale, are graphs with no edges. These are just collections of vertices — the graphs
which are regular of degree zero.
Exercise
51. Somewhere between Kn and graphs of degree 0 are the connected graphs on n

vertices.
(a) What are the smallest connected graphs (with fewest edges) on 3 vertices?



Figure 3.16.
(b) What are the smallest connected graphs on 4, 5 and 6 vertices?
(c) How many edges are there in the graphs you found in (a) and (b)?
(d) Conjecture a relation between the number of vertices and edges in smallest

connected graphs.
(e) Prove your conjecture or go back to (d).
Connected graphs on n vertices which have the smallest possible number of edges

are called trees. This is because they look like trees (see Figure 3.16). Admittedly pretty
bare trees but with a bit of imagination you can see branches and roots.
3.9. Planarity
Printed circuits are fundamental to today's electronics industry. In simplified form,
printed circuits can be thought of as graphs. The points of a printed circuit are the
vertices of the graph and two points with current carrying copper between them are
joined by an edge in the graph.

Now printed circuits have a very important property — no two of the joins cross. If
they did, then current wouldn't flow as it was supposed to. The printed circuit would
fail.

The graphs we get from printed circuits therefore, also have the property that no two
edges cross. Such graphs are called planar graphs because they can be drawn in the
plane so that no two edges cross.
Exercises
52. Show that all graphs on four or fewer vertices are planar.
53. Which graphs on 5 and 6 vertices are not planar?
54. An artist is having trouble constructing a wall hanging. The concept is to use six

different pieces of material of varying lengths that are to be sewn to backing material
at each end. The artist wants to limit the number of places where the material is sewn
to the backing material to four. No two ends of each piece of material are to be sewn
to the same place. Can she do this without any of the pieces of material overlapping?

55. The artist's next project is to use ten pieces of material and five sewing points. Can
she do this without any of the pieces of material overlapping?

56. Now the artist wants to suspend nine pieces of cloth between two rods. Three pieces
of cloth must meet at three different points on each rod. Must two pieces of cloth
overlap?
(Ask an older person what this has to do with gas, electricity and water.)

57. (a) Which complete bipartite graphs are planar?
(b) Which complete graphs are planar?



(c) Which trees are planar?
There's a sense in which there are only two non-planar graphs, despite the fact that

you should have discovered an infinite collection of non-planar graphs in Exercise 57.
We'll call a graph H, a homomorphism (or homomorphic form) of another graph G if

we get H from G by adding vertices of degree 2 arbitrarily on various edges of G. From
the example of Figure 3.17 it looks as if H has caught the measles.

Obviously there are an infinite number of homomorphic forms of any graph because
we can add as many spots (vertices of degree 2) as we like.

One other idea is needed before we can reveal all about non-planar graphs. A graph
S is a subgraph of G if we get the S from G by removing some edges and some vertices.
Figure 3.18 gives subgraphs S1, S2, S3 of the graph G.

Figure 3.17.

Figure 3.18.
Exercises
58. Draw five homomorphic forms of K4.
59. Draw all subgraphs of K4.
60. Show that if the number of vertices of G is less than or equal to n, then G is a

subgraph of Kn.
Which graphs are subgraphs of Km, n?
The following theorem due to Kasimir Kuratowski, a Polish mathematician, says that

K5 and K3,3 are the only (in some sense) non-planar graphs.
 
Theorem 7 (Kuratowski). G is non-planar if and only if it contains a subgraph which
is a homomorphic form of K5 or K3,3.
 

So if we want to check to see whether a graph is planar or not, all we have to do is to
check to see whether it has a measly form of K5 or K3,3.

Is the graph J of Figure 3.19, planar or not?
If you delete the edges joining 1 and 2, 2 and 3, 4 and 5 and 5 and 6, you get K3,3. So

J contains a subgraph which is a homomorphism of K3,3 and hence is non-planar.

Figure 3.19.



But J also contains a subgraph which is a measly form of K5. To see this delete the
vertex 3 and the edges 23, 34, 35, 36. The graph we have left would be K5 except that
there is no edge between 4 and 6. So add back the edges 34 and 36. The graph we've got
now is a homomorphism of K5 with the vertex 3 being the only “measle”.
Exercises
61. Use Kuratowski's Theorem to find all the connected graphs on 6, 7, 8 and 9 vertices

which are non-planar.
62. Is the graph of Figure 3.20 planar or not?
63. Find at least six regular graphs on 10 vertices which are non-planar.
64. Who was Kuratowski and who named K5 and K3,3 after him?

As well as having vertices and edges, planar graphs have faces. Look at the planar
graph in Figure 3.21(a). This graph has four faces. These are the regions enclosed by
the edges of the graph. No face has an edge cutting across it.

Notice that we call the region which is “outside” all the edges of the graph a face too
(this is F1 in Figure 3.21(a)). This is because we can turn the graph inside out if we like
and make F1 an interior face of the same graph. We show this way of looking at things
in Figure 3.21(b). In this drawing of the graph of Figure 3.21(a), F3 has become the
outside face.

Figure 3.20.

Figure 3.21.
Exercises
65. Show that the faces F2 and F4 can also be drawn as the outside faces of the graph of

Figure 3.21(a).
66. Draw K4 as a planar graph. How many faces does it have?
67. Do a thorough investigation of all the connected planar graphs on 5 or fewer

vertices. For each graph find an equation linking v, e and f, where v is the number of
vertices, e the number of edges and f the number of faces of each graph. Show that
there is one such equation which holds for all these graphs.
(At this point it is well worth reading Imre Lakatos (1976). Proofs and Refutations.
Cambridge: Cambridge University Press. You may sympathise with some of the
discussion.)

3.10. The Four Colour Theorem



As part of everybody's mathematical culture they should know about the Four Colour
Theorem. I've put together a quick run through the ideas here and show how to prove
the Five Colour Theorem. Any of you who get keen on the topic should follow this up
further by looking on the web or browsing in a library.

The proof of the Four Colour Theorem turned out in the end to be very similar in
nature to that of the Five Colour Theorem — it took longer to prove because there were
more difficult cases and a new idea was needed.

What are these theorems all about? Well in 1852, a student, Francis Guthrie, who
should have been doing his Geography homework, started colouring in the counties of
England. To his surprise he discovered that he only needed four colours to colour the
counties so that no two counties with a common boundary had different colours.

It turns out that this result holds not just for the counties of England but for any
collection of regions that anyone can ever dream up. So if you divide the plane up into
any number of regions, if you then colour in all the regions so that no two regions with
a common boundary have the same colour, then you only need four colours to complete
the job. (If the regions only have a single point in common, then they don't have to have
different colours.) This result is known as the Four Colour Theorem and it took over125
years from the time it was posed to its solution in 1976 by Appel and Haken, two
mathematicians who were working at the University of Illinois in the USA.

I'll give a quick proof here of the Five Colour Theorem. As I said earlier this proof
shows the main ideas used in the proof of the Four Colour Theorem. The main steps
involved are as follows. First we simplify the sort of maps involved. Then we change
the map/region colouring problem into a graph/vertex colouring problem. Thirdly we
show that a few configurations must always occur in these graphs. Finally we work on
these configurations to get the result.
 
Five Colour Theorem. The regions of a planar map can always be coloured with five
or fewer colours so that no two regions with a common boundary have the same colour.
 
Proof. Step 1. We can first of all assume that only three regions meet at any one point.
To see this look at the situation of Figure 3.22.

In A we have five regions meeting at the point P. Replace P by a region to give B of
Figure 3.22. It is now true that if we can five-colour the regions of B, we can do the
same for A.

(Check this out. When you've done that, you'll know that we have shown that we
only have to prove the Five Colour Theorem for maps where precisely three regions
meet at a point.)
Step 2. We now make a graph from the map as follows. Put one vertex in every region
of the map. Join two vertices if the regions they are in have a common boundary. (See
Figure 3.23.) Note that the outside region gets a vertex too.

The graph we've got is called the dual graph of the map.
We now note two things. First, colouring the faces of the map so that no two faces

with a common boundary have the same colour, has a graph equivalent. That equivalent
is colouring the vertices so that no two adjacent vertices have the same colour. Our aim
then, will be to try to colour the vertices of the dual graph in five (or fewer) colours so



that no two adjacent vertices have the same colour. (Check this out for some small
maps.)

Figure 3.22.

Figure 3.23.
The second thing we notice is that each face of the dual graph is a triangle. This is

because each face of the dual graph encloses the point where three regions meet.
(Satisfy yourself that this is OK.)

So each map produced after Step 1 gives a planar graph whose faces are triangles.
Call such graphs triangulations.

If you think about it (and you should) the reverse is true. Every triangulation gives
rise to a map of the type discussed in Step 1. (That is, exactly three regions come
together at a point.)

As a result of the above discussion we now only need to prove that we can colour the
vertices of triangulations with five or fewer colours so that no two adjacent vertices
have the same colour.
Step 3. Here we are going to show that any triangulation has a vertex of degree 2, or
degree 3, or degree 4, or degree 5.

To do this we work from Euler's formula v — e + f = 2. (Remember this came about
as a result of the work in Exercise 67.) As a first step, let di be the number of vertices of
degree i. Since every vertex is on at least one triangular face in a triangulation, then d1
= 0. (Think about it. There are no vertices of degree 1.)

We now find expressions for v, e and f in terms of the di. Finding v is
straightforward. We have v = d2 + d3 +…= Σi≥2 di. Now by Theorem 2, p. 69, £v∈VG
deg v = 2e. But we can arrange degrees into groups with the same value. So

Now there are d2 lots of 2 in the “2” bracket, since d2 is the number of vertices of
degree 2. Similarly there are d3 lots of 3 in the “3” bracket, d4 lots of 4 in the “4”
bracket and so on. Hence

To pick up f we recall that all the faces of a triangulation are triangles. Count the
edges around each triangle. This gives a tally of 3f because each of the f triangles has
three edges. But in this count every edge has been counted twice — because every edge



is on two triangles. This means that 3f = 2e. Since we already knew that 2e = Σi≥2 idi,
we now have 3f = Σi≥2 idi idi. Putting all this into Euler's formula we get

Now we're in business. The right-hand side of this last equation is positive. In fact since
i ≥ 6, the right-hand side of this equation is at least 12. Hence 4d2 + 3d3 + 2d4 + d5 ≥ 12,
which means that at least one of d2, d3, d4, d5 is strictly positive.

We conclude that every triangulation has either d2 > 0, d3 > 0, d4 > 0 or d5 > 0. This
means that every triangulation contains a vertex of degree 2 or 3 or 4 or 5.
Step 4. The smallest triangulation is a triangle. That is a graph on three vertices each of
whose vertices are of degree 2. The vertices of these are obviously colourable in five or
fewer colours.

Now suppose we systematically have worked through all the triangulations on 3, 4,
5, and so on vertices and found them to be five-colourable. So now we've got to the
graphs on n vertices and we're testing them.

From Step 3 we know that a triangulation T on n vertices has a vertex of degree 2, 3,
4, or 5.

If the triangulation T has more than three vertices and a vertex of degree 2, then part
of it is as shown in Figure 3.24(a). Removing v, the edges incident with it and one of
the edges u1, u2 we obtain the triangulation T'. As this has fewer vertices than T, T' can
be coloured in five or fewer colours. Assign the colours that are assigned to the vertices
of T' to the same vertices of T. Since ui, u2 take two colours, there is a colour that can be
given to v to extend the five-colouring of T' to a five-colouring of T.

Figure 3.24.



Suppose then that T has a vertex of degree 3 but no vertex of degree 2. We show this
situation in the first part of Figure 3.24(b). If we remove v and the edges joining it to u1,
u2, u3 in T we get a triangulation T'. This triangulation is on n — 1 vertices and we
know that this is five-colourable. Colour the vertices of T as they were in T'. At worst
u1, u2, u3 take up 3 of these colours. So we can put a different fourth colour on the
vertex v to give a five-colouring of T.

So now suppose T has no vertex of degree 2 or 3 but it does have a vertex v of
degree 4. In Figure 3.24(c) we remove v from T and add the dotted edge u1u3 to make T'
a triangulation. But T' is on n — 1 vertices and is five-colourable. If we colour T in the
same way that T' is coloured, we find that u1, u2, u3, u4 take up at most four of the five
colours. Hence there is a free fifth colour for v. We can therefore five-colour T.

At this stage we've coped with all triangulations on n vertices which have a vertex of
degree 2, 3 or 4. The remaining triangulations must have a vertex v of degree 5 by Step
3. Remove v from T and add edges u1 u4, u2 u4 to give the triangulation T' indicated in
Figure 3.24(d).

If we are lucky, when we colour T' in five colours and repeat this colouring on T,
only four colours will be used on the vertices u1, u2, u3, u4, u5. This leaves a fifth colour
spare for v and gives a five-colouring of T.

But what happens if all five colours are used on u1, u2, u3, u4, u5 First we cry a lot.
Wait though. Suppose vertex ui is coloured in colour ci (i = 1, 2, 3, 4, 5). Just think
about the bits of T' that are coloured in c1 and c3.

One of two things now happens, either u1 is not connected to u3 by a path
alternatively coloured c1 and c3, or u1 is connected to u3 by a path alternatively coloured
c1 and c3.

In the former case (Figure 3.25(a)) change c1 for c3 and c3 for c1 on the vertices
connected to u3 in the part of T' coloured c1 and c3. We've now neatly cut down the
number of colours used on u1, u2, u3, u4 to four. This gives us the free fifth colour to use
on v. We've five-coloured T!

But the bad news is that there might be a path from u1 to u3 alternatively coloured c1
and c3. In this case if we swap c1 and c3 we only swap c1 for c3 on u1 and c3 for c1 on
u3. Thus there's been no gain.

In this case look at Figure 3.25(b) and especially at the part of T coloured with c2
and c4. There can't be a c2 to c4 path going from u2 to u4. If there were it would have to
cut the c1 — c3 path going from u1 to u3. This cut couldn't be at a vertex (the vertex
would have to be simultaneously coloured c1 or c3 and c2 or c4). This cut couldn't be an
edge (T is planar). So there can't be a c2 – c4 path going from u2 to u4.



Figure 3.25.
Ah! Now we're in business. Since there is no c2 – c4 path from u2 to u4, interchange

the colours c2 and c4 starting at vertex u4. This has the effect of reducing the number of
colours used on the vertices u1, u2, u3, u4 to four and we slap the fifth colour on v to
complete the five-colouring of T.

Note that this argument for the degree 5 case first appeared in the false proof of the
Four Colour Theorem by Kempe in 1879. As a result the argument is called the Kempe
Chain argument. It can sometimes be used to help solve other colouring problems.
Exercises
68. Why can't exactly the same proof be used to prove the Four Colour Theorem?
69. Appel and Haken's proof of the Four Colour Theorem was essentially the same as

that of the Five Colour Theorem. They first showed that some configuration had to
be present in every triangulation (see Step 3 above). They then showed how to four-
colour a triangulation on n vertices assuming it could be done for those on n – 1 (see
Step 4) but they had to make heavy use of a computer at this stage.
(a) How many configurations did Appel and Haken use in their proof? (We used

four in the Five Colour Theorem proof.)
(b) How many hours of computer time did Appel and Haken require?
(c) Why have people been concerned about Appel and Haken's proof?

(You will need to consult the web or a book to be able to answer these
questions.)

3.11. Some Additional Problems
We pose the following harder graph problems with no hints or apologies. Exercises
70. In a group of nine people, one person knows two of the others, two people each

know four others, four each know five others, and the remaining two each know six
others. Show that there are three people who all know one another.

71. A certain bridge club has a special rule to the effect that four members may play
together only if no two of them have previously partnered one another. At one
meeting fourteen members, each of whom has previously partnered five others, turn
up. Three games are played, and then proceedings come to a halt because of the club
rule. Just as the members are preparing to leave, a new member, unknown to any of
them, arrives. Show that at least one more game can now be played.

72. “Instant Insanity” is a game consisting of four cubes whose faces are coloured as
shown below. (B is for Blue; G for Green; R for Red and Y for Yellow.)



The aim of the game is to build a tower by putting the cubes one on top of another so
that the four resulting faces (each four times the side of one of the cubes) is a
different colour. Solve this problem using graph theory. (You will need to use
loops and multiple edges.)

73. Each of 36 line segments joining 9 distinct points on a circle is coloured either red or
blue. Suppose that each triangle determined by 3 of the 9 points contains at least one
red side. Prove that there are four points such that the 6 segments connecting them
are all red.

74. There are n couples at a party.
(a) In how many ways can they combine in pairs for dancing?
(b) In how many ways can they dance if no husband and wife dance together?
(c) What has this to do with derangements? (You may have to find out what

derangements are.)
75. Those of you with an Australian bent might like to know that a squatter decided to

leave his land to his five sons when he died. But since his sons had all become
swagmen, he insisted that the land would go to four local troopers unless the sons
were able to divide it into five regions in such a way that
(i) each pair of regions had a section of boundary fence in common, and
(ii) each region consisted of a simple, connected, piece of land.

Who got the squatter's land when he died?
The planetoid Doughnut is roughly Earthshape except that, being a doughnut, it has

a large hole through its centre. The landlady of Doughnut decided to leave her land,
which consisted of all the surface of the planetoid, to her five daughters after her death.
She imposed the same conditions on her land ((i) and (ii) above) as had the squatter,
except that if the conditions were not fulfilled, the land was to become the property of
her four favourite Martian tenants.

Who inherited the planetoid when the landlady died?
(By way of explanation, a squatter is a farmer who may not necessarily have
acquired his farm legally, a swagman is a tramp and a trooper is a policeman. The
reference here is the song “Waltzing Matilda”.)

76. Let n be a positive integer and let A1, A2 ,…, A2n+1 be subsets of set B. Suppose that
(a) each Ai has exactly 2n elements,
(b) each Ai ∩ Aj (1 ≤ i ≤ j ≤ 2n + 1) contains exactly one element, and
(c) every element of B belongs to at least two of the Ai.

For which values of n can one assign to every element of B one of the numbers 0 and
1 in such a way that each Aj has 0 assigned to exactly n of its elements? (IMO,
1988.)

3.12. Solutions
1. This can be done by systematic trial and error.



This can be done in more than one way. However you will always have to start and
finish on islands A and B. Why?

3. This is really what you did in Exercise 1.

I think there might be as many as 486 different ways of doing this. Can anybody
prove me right (or wrong)?

5. Is it possible to find an Euler tour if there are more than 2 dots with an odd number
of lines?
   Is it possible to find a dot and line model with only one dot with an odd number of
lines?

6. If dots are placed where more than 2 lines meet then we're back to the dot and line
model. If this has an Euler tour then the figures can be drawn without taking the pen
off the paper, and vice-versa.
   (1), (3) and (4) can be done. (2) has three places where an odd number of lines
meet.

7. If the first dot is odd, then after you have left it the first time, every time you come
back to it you must go out again. Hence you always use an odd number of its lines.
As you go through other dots you must always go in and out except the last dot.
Hence all dots, except the first and last are even.

8. We've proved so far that if an Euler tour exists, then (1) or (2) holds. Now we have
to prove that if (1) or (2) hold, then there is an Euler tour. A proof can be found in
most basic graph theory books.

9. Read the discussion after Exercise 9 in the text. This should confirm your results.
10. 34.
11. 7.
12. The number is even. So it is always 2t. What does t equal in each case?
13. (a) No. If a graph has n vertices it can have no vertex of degree bigger than n - 1.

(b) No. Suppose a graph has n vertices and one vertex v has degree n — 1. Then
every other vertex is joined to v. So every other vertex has degree at least one.

(c) No. Suppose G has n vertices. If they all have different degrees, then by (a) the
degrees are 0,1,…, n - 1. But by (b), G cannot have a vertex of degree n - 1 as
well as a vertex of degree 0.



(b) 1.
(c) 1 if n is even, 0 otherwise.
(d) Now that's a tough one! It's not just one. (On eight vertices there are 2 graphs

which are regular of degree 2.) Try to develop a formula.
    If you know anything about partitions of numbers, the answer is the number of
partitions of a number in which every part is at least 3. (You can find out above
these by looking on the web.)

(e) No. It's certainly not possible for n < 4. But even for n ≥ 4, there is a restriction
on n. What is it?

(f) Yes, provided n ≥ 5. To prove this, construct one on 5, then 6, then 7, then 8 and
9 vertices. Now use the fact that any number greater than 9 can be written as 5t +
u, where u = 5, 6, 7, 8 or 9.

(g) Take r + 1 vertices and join them all up.
15. (a) By the Corollary there must be an even number of vertices of degree 3. Since

there are only degree 3 vertices, |VG| must be even.
   Now 2|EG| = Σv∈VG deg v = 3|VG|. Since the right-hand side is divisible by 3,
then so is the left-hand side. Hence |EG| is divisible by 3.

(b) Once again |VG| is even, by the Corollary. By the Theorem 2|EG| = r|VG|. Since
r is odd, r divides |EG|.

(c) r is odd and |VG| is divisible by 4, or r is even.
Note. You can now answer the second question I asked in the solution of Exercise 5.
In 14(e), it is now clear that n is even.

16. (a) Remove e from G. This leaves one vertex in A (and B) of degree 2 while the rest
are of degree 3. By the Corollary there must be an even number of vertices of
degree 3. Hence |A| is odd. (Similarly |B| is odd.) It is easy to construct graphs
like this with |A| and |B| odd.

(b) Remove the edge e. Then A is a graph with some vertices of degree 4 and one
vertex of degree 3. But one is odd, so A, and hence H, does not exist.

17. By Exercise 18 you will see that the answers are (a) K3; (b) K4; (c) K5; (d) K7.

18. By Theorem 2, 2|EKn| = (n – 1)|VKn| = (n – 1)n. Hence |EKn| = 
  Alternatively, for each pair of vertices there is one and only one edge. Hence |EKn|



is the number of ways of choosing 2 vertices from n. This is just nC2 (by Chapter 2).

(Note that nC2 = )

There are no others.
(Which of the following are true?
 (i) All graphs which are regular of degree 0 are bipartite.
 (ii) All regular graphs of degree 1 are bipartite.
 (iii) All regular graphs of degree 2 are bipartite.

(iv) There are no bipartite graphs which are regular of degree 4.)
(c) If G is regular of degree r and bipartite, then there must be r|X| edges from X to

Y and r|Y| edges from Y to X. These are the same edges so |X| = |Y|.
(d) The “square” on 4 vertices.
(e) The graph on 6 vertices in (b).
(f) By (c), |X| = |Y|. For a vertex in X to have degree r, |Y| ≥ r. If |X| = |Y| = r and

every vertex of X is joined to every vertex of Y, then we have the required graph,
Kr, r.

20. (a) This is probably obvious given that every vertex of X is joined to every vertex of
Y.

(b) Exercise 19(d) K2,2 (e) K3,3 (f) Kr, r.
(c) For all x ∈ X, deg x = |Y|. Hence |EKm, n| = |X||Y|.
(d) For m ≠ n the set is {|X|, |Y|} = {m, n}. For m = n, the set is {|X|} = {m}.
(e) Let G = Kt = Km, n. Since G = Kt any two vertices in G are adjacent. Since G =

Km, n then these two vertices are in different sets X, Y. Hence |X| = |Y| = 1 and t =
2, m = n = 1.



21. (a) The argument is in Chapter 2.
(b) See Chapter 2, p. 50, or use Figure 3.14 with the solid lines red and the dotted

ones blue.
(c) See Chapter 2, p. 50, Solution to Exercise 11.
(d) No. Guess where you'll find the answer?

22. Km, n has no triangles monochromatic or otherwise. In fact Km, n contains no
pentagon either. Why not? Generalise.

23. (a) No. It's not too hard to colour K3,3 so that there are no monochromatic squares.
(b) K4,4 may not have a monochromatic square. (See the graph below.)

But it can be shown that K5,5 does, no matter how the edges are coloured.
24. (a) See Exercise 13(c).

(b) By Corollary p. 70.
25. There are 8 possible maps.

  With 4 towns there are 64 possible maps.
  With n towns there are  possible roads, this is the number of ways of
choosing 2 towns from the n towns on the map.
  Any particular road is either marked or not marked. There are therefore 2
possibilities for each road. The total number of possible maps is therefore 2 × 2 ×…×
2, where there are  twos. Hence we have  possible maps.
We have to choose r roads from the  roads available. Hence there are Cr

such maps. This is exactly , where 
26. Since there are 10 people and no person shakes hands with their spouse or

themselves, the maximum number of shakes for any person is 8.
  I observed that everyone else had shaken hands a different number of times.
Therefore the number of handshakes is

8,7,6,5,4,3,2,1,0, h,
where h is the number of times I shook hands.
Spouses don't shake hands. So the 8 shakes and 0 shakes must belong to spouses. If

we could remove this couple and their handshakes from the party we'd have a
party with

6,5,4,3,2,1,0, h – 1
number of handshakes.

  Spouses don't shake hands. So the 6 shakes and 0 shakes must belong to spouses.
If we could remove this couple and their handshakes from the party we'd have a
party with

4,3,2,1,0, h - 2
number of handshakes.

  Repeating the argument reduces the party to
2,1,0, h-3



number of handshakes. But here the “2” must have shaken with the “1” and the “h -
3”. Hence h - 3 = 1 or h = 4.
  But the 2 and 0 must be spouses so my wife is the “1” here. Following this back
to the original party shows that my wife shook 4 hands (as did I).

For the graph G, there is no Euler tour. Likewise for H. We clearly must have a graph
which is all connected together.

29. Suppose at most two vertices have odd degree. Then by the Corollary, the graph has
either 0 or 2 vertices of odd degree. These are precisely cases (1) and (2) of Euler's
Theorem.

30. No. If the knight starts at square 5 it can't get to any other square. If the knight starts
at any other square it can't get to 5.

The knight's graph of the 4 × 4 board is shown above to the left. A knight at b and d
can only move to a and c, so one of b and d must be an end of the tour. (Similar
restrictions apply at p and n, so one of p and n is the other end of the tour.) If the
knight leaves the square a, b, c, d from a, by symmetry we can assume it goes to l.
Since the edges cf and ag cannot now be used, a knight at g has to go to e and h,
as does the knight when it gets to f. This gives a small cycle in the knight's tour
which is not possible.



    A similar argument applies if the knight leaves the square a, b, c, d from c.
    One knight's tour of the 5 × 5 board is shown above right. Is this the only possible

tour of the 5 × 5 board?
32. Yes (if you try hard enough).
33. The program will vary depending on your machine and the language used. Can you

prove there is a knight's tour for every n × n board with n ≥ 5? (Rewrite the program
to find all possible knight's tours.)

34. (a) The 3 × 4 board is just trial and error.
  (Use the 3 × 4 knight's tour to show there is a 3 × 7 knight's tour. Use
symmetry.)

From the 3 × 5 board we see that part of the knight's graph is the graph S and part is
T .

As the graph is not connected there can be no knight's tour.
(b) n = 4 and n ≥ 7. For n = 6, there are two disconnected parts of the knight's graph

which looks like S.
  These are shown below.

Hence there is no knight's tour on a 3 × 6 board.
We can use symmetry on the 3 × 4 board to get a 3 × 7 tour. For n > 7, a proof that 3

× n is possible, needs some thought.
(c) Straightforward.
(d) 4 × 6 is O.K. Using the pattern shown in the diagram, the dotted lines show how

the knight's tour can be extended to a 4 × 9 board.
  In this same way we can do a 4 × 12 board and so on.

This argument shows that 4 × 3m boards have knight's tours. What about the other 4
× n boards?

(Flushed with all this success try 5 × n and so on. This could make a nice project.)
35. By Exercise 31 there is no knight's tour of a 4 × 4 board so there can be no knight's

cycle.
If there is a knight's cycle of a 5 × 5 board then when the knight gets in to a corner

square it can come out in only one way. However these moves all join up to give a



cycle 1, 8, 5, 14, 25, 18, 21, 12, 1. Hence if a knight starts on one of these squares it
can never leave them. If it starts at any other square it can never get to square 1.

A 6 × 6 knight's cycle is shown in Figure 3.13. Is this the only one?
You can't find a knight's cycle on a 7 × 7 board.
There are lots of knight's cycles on an 8 × 8 board.
So what is your conjecture for a 9 × 9 board, and then for an n × n board?
Why can you never get a knight's cycle on a board with n odd?
Can you find a general method of construction for n even?

36. (a) No knight's tour means no knight's cycle, so n ≠ 3, 5, 6, immediately. For n = 4,
the cycle 1, 7, 9, 2, 8, 10, 1 is forced. Hence there is no knight's cycle for n = 4.

Ah, now, 3 × n, for n odd is not possible for the same reason that odd × odd boards
don't have knight's cycles. That's cut it down a bit.

What about n = 8 then? This does not have a knight's cycle. Is there a knight's
cycle on any 3 × n board for n ≥ 10 and even?
(b) There is no 4 × n board with a knight's cycle. (See R. Honsberger, Mathematical

Gems, MAA, Providence, 1973, p. 145 or try the web.)
37. (a) For mn odd we have a different number of black and white squares, so clearly

there is no knight's cycle.
(b) Try m = 4.

38. For |VG| = n > 1, K1,n is the only graph which has neither a Hamiltonian path nor a
Hamiltonian cycle except for three graphs on 5 vertices.

39. (a) For all n ≥ 3.
(b) For all m = n ≥ 2.

40. We can go from any u to any v via the Hamiltonian cycle.
41. There are many such graphs. The simplest is obtained by joining 1 to 2 to 3 to 4 to 5

to 6 to 7 to 8 to 9 to 10.
42. Yes.
43. No. See Figure 3.21, p. 84. This graph is frequently referred to as the Petersen graph.
44. You can find him on the web. Try MacTutor.
45. (a) Yes, except for K4.

(b) For all n ≥ 5. This requires a little work though.
(c) For all n ≥ 6.

46. Is it possible for n even? So prove it's true for n odd.
47. (a) 2 distinct edges and 3 distinct edges, respectively.

(b) A set of distinct edges.
(c) Aye, there's the rub!

48. (a) Yes.
(b) Yes for K6 and K8. No for the others.

49. This time it's even n that works.
50. When you remove Hamiltonian paths from Kn for n odd, you get…distinct edges?

How many?
51. (a) K1, 2.

(b)  and longer lists for 5 and 6.



(c) Two in (a); three for the four-vertex graphs; four for the five-vertex graphs; five
for the six-vertex graphs.

(d) |EG| = |VG| - 1.
(e) Mathematical Induction is useful right here. (See Chapter 6.)

52. Just check them all out.
53. K5, K6, K33 and every subgraph of K6 where you can “see” a K5 or a K3,3.
54. There is a planar drawing of K4. So the answer is yes.
55. No. K5 is not planar.
56. Yes. K3,3 is not planar.
57. (a) Assume m ≤ n, then Kmn for m = 1, 2 and any n.

(b) Kn for 1 ≤ n ≤ 4.
(c) All trees are planar.

58. I leave this to your imagination.
59. This is the same as all graphs on four vertices.
60. Obvious? Let G = (X, Y) be a bipartite graph with |X| ≤ m and |Y| ≤ n. Then G is a

subgraph of Km, n.
61. There are quite a few. Start with K5 and K3,3 and add vertices till the required

number is found. Then add edges at will. (How can you be sure not to get two
isomorphic graphs this way?)

62. Non-planar. You should be able to find a measly form of K33 by deleting a few
edges.

63. There are plenty to choose from. One way to go is to successively add sets of 5
edges to the graph of Figure 3.20.

64. Kuratowski you can find on the web but maybe not the fact that Frank Harary was
the inventor of the notation K5 and K3,3 in honour of K.K.

66. 4 faces.
67. v - e + f = 2.
68. Things go well till you get to the vertex of degree 5. Around this vertex at least one

colour must be repeated. There is no guarantee that Kempe chain arguments will get
rid of any particular colour.

69. See the web or a library with graph theory books.
70. Think of the 9 people as vertices of a graph and join those who know each other. Let

u be a vertex with degree 6 and let u be adjacent to u for i = 1, 2, 3, 4, 5, 6. If v and w
are the remaining vertices we know that one of the u has degree at least five. Hence
ui knows uj for some j and we have our triangle (or three people who all know one
another).

71. This problem relies on a theorem by the Hungarian mathematician Turán which says
that if G contains no K3, then |EG| ≤ |EBv|, where v = |VG| and Bv is a bipartite graph



in which each part has as close to v/2 vertices as possible. It turns out that 
, where  (the integral part of 1/2n).

In the problem let G be the graph whose vertices are the people in the club and
whose edges represent people who have not yet partnered each other. If this graph
has no triangle, then when the new member arrives no game is possible.

Show that G contains 50 edges while the corresponding Bv contains only 49.
Hence G contains a triangle by Turán's theorem.

72. First produce a graph for each of the cubes. The vertices of the graph are the four
colours and two vertices are adjacent if the corresponding colours are on opposite
faces. These graphs are shown below.

Now put these graphs together to form the graph H below.

Now each solution of the puzzle has two faces of each colour on each of the two
pairs of opposite sides of the tower of cubes, so the required solution is found by
finding two edge-disjoint subgraphs H1 and H2 of H which are (i) regular of
degree 2 and (ii) contain precisely one edge of each numbered cube. The graphs
H1 and H2 then represent the colours appearing in the front and back and left and
right side of the tower. The solution can be read off from these subgraphs.

73. If one point is joined to 4 points x1, x2, x3, x4 by blue lines, then since there are no
“blue” triangles, all the 6 lines x1x2, x1x3, x1x4, x2x3, x2x4, x3x4 are red and the
question is solved.

Assume then that each point is joined to at least 5 other points by red lines. There
cannot be exactly 5 red lines at each point since  is not an integer.

Therefore some point b is joined to 6 other points by lines which are all red, say
by1, by2, by3, by4, by5, by6. At least 3 of the 5 lines y1y2, y1y3, y1y4, y1y5, y1y6 have
the same colour. Let these be y1y2, y1y3, y1y4. If this colour is blue, then b, y2, y3, y4
are four points with all 6 lines red.

If y1y2, y1y3, y1y4 are all red, then because one side at least of the triangle y2 y3 y4
is red, we can assume y2y3 is red. Then b, y1, y2, y3 are four points with all 6 lines red.



74. (a) In Kn,n how many sets of n edges can be chosen so that no two edges in the set
have a common end vertex?

Starting at any vertex we have a choice of n edges. The next vertex yields a
possible n – 1 further edges, and so on. Hence we have n! pairings.
(b) Label the vertices of the two parts of Kn, n{1,2,…, n} and {1', 2',…, n'}, where i

is married to i'. Then we want the number of assignments i to j' so that j' ≠ i' for
any i.

(c) The number produced in (b) is the number of ways a postman can deliver n
letters to n houses so that no house gets a letter addressed to it. This can be done
in  ways. (This is known as the number of derangements
of n things.)

75. For the squatter's sons produce the graph with the regions as vertices and two
vertices adjacent if the regions have a common boundary. The graph is K5 which is
non-planar. So condition (i) and (ii) cannot both be fulfilled. Lucky troopers.

K5 may be non-planar but it can be drawn on a doughnut (with a hole) so that no
two edges cross. The daughters get the planetoid.

76. Draw a graph G with vertices Ai such that two vertices are adjacent if the
corresponding sets Ai and Aj have an element in common.

Suppose a1 ∈ B and a1 is also in more than two of the A1. Then since deg Ai = 2n,
Ai must contain one element a2 which is not in Aj for any j ≠ i. But this contradicts
(c). Hence every element of B belongs to precisely two of the Ai.

Clearly G = K2n+1. This is the disjoint union of n Hamiltonian cycles. If n is even,
assign 0 to half of these Hamiltonian cycles and 1 to the other half. This gives the
required assigned to elements of B by giving 0 to the elements defining the edges in
the “0” Hamiltonian cycle.

If n is odd, and the assignment were possible, then consider the subgraph of G
formed by the edges labelled 0. This graph has an odd number of vertices all of
degree n, which is itself odd. No such graph exists.

Hence n must be even.
aYou might find this article of some interest: http://www-groups.dcs.st-
and.ac.uk/~history/Biographies/Ramsey.html.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Ramsey.html.


Chapter 4
Number Theory 1

4.1. What is It?
Number Theory is about the theory of numbers. And the numbers we will talk about
here are largely the natural numbers. N = {1, 2, 3, 4,…}. Any results which have
anything to do with N are results in Number Theory. In this chapter we mainly look at
four aspects of number: divisibility; the Euclidean Algorithm; Fermat's Little Theorem;
and Arithmetic Progressions. However, Number Theory does cover more than this as
we shall see in a later book.

To give some idea of the sort of problems that arise, the rest of this section will be
devoted to problems about numbers that I think you might be able to manage without
too much help. Have a go anyway and see how far you get.
Exercises
1. Each asterisk represents a digit. What are the two numbers being multiplied together

in the following?

2. In the following addition each letter stands for a different digit. Find the digits
corresponding to each letter, given that there are no zeros.

3. The number 739ABC is divisible by 7, 8 and 9. What values can A, B, C take?
4. Now M = AB4 and N = 4AB. Further, N is as much bigger than 400 as M is smaller

than 400. What is the number M?
5. (a) Find the five digit numbers whose digits are reversed on multiplying by 4.

(b) Find all five digit numbers whose digits are reversed on multiplying by 9.
(c) Find all five digit numbers whose digits are reversed on multiplying by 8.

6. Let n be a five digit number and let m be the four digit number formed from n by

deleting the middle digit. Find all  for which is an integer.
7. Find all positive integers with first digit 6 such that the integer formed by deleting

this 6 is  of the original integer.
8. An absent-minded bank teller switched the dollars and cents when he cashed a

cheque for me. After buying a 5 stamp I discovered I had twice as much left as the
original cheque. How much did I write the cheque out for?

9. Find the unique solution to the following long division.



10. In the division below all the 2's are shown. Find the other missing digits.

11. A lone goose met a flock of geese flying in the opposite direction. He cried “Hello
100 geese!”

The leader of the flock replied “We aren't 100. If you take twice our number and
add half our number and add a quarter of our number and finally add you. Then we
are 100.”

How many geese in the flock?
12. Again each letter stands for a different digit in the following addition.

13. Find all integer solutions of 2x2 + 2xy + y2 = 25.
14. Prove that 121 is a square no matter what base it is written in.
15. What is the largest prime factor of one million minus one?
16. Find all integer solutions of (x2 — 3x + 1)X+1 = 1.
17. How many integers satisfy the equation 
18. Let N = 1234567891011…998999 be the natural number found by

writing the integers 1,2,3 999 in order. What is the 1988th digit from the left?
19. Prove that given any six consecutive numbers there is one which has no factor in

common with any of the others.
20. What two digit number is twice the product of its digits?
4.2. Divisibility by Small Numbers
One of the main problems in number theory is to find out what numbers are divisible by
what. This is not as easy as it sounds. There is an important type of code that depends
on the fact that finding the factors of large numbers is computationally hard. Let's find
out the easy tests for divisibility by small numbers.

On a first run through this section, the proofs are not important. What you do need to
know though is how to test a number to see if it is divisible by 2, 3,4, 5,…



Divisibility by 2. This of course is easy. If a number is even it's divisible by two and
vice-versa. To see whether a number is divisible by two or not just check that its last
digit is even.

Given any two consecutive numbers it's clear that precisely one of them must be
even.
Divisibility by 3. It always surprises me that if I add up all the digits of a number and if
the sum is divisible by 3, then the original number is divisible by 3.

Have a look at this. Now 327 = 3 x 109, so clearly 327 is divisible by 3. But 3 + 2 +
7= 12 which is itself divisible by 3.

Similarly
246150 = 3 x 82050 and 2 + 4 + 6+1 + 5 + 0=18 = 3 x 6.

Why is this so? Well it's quite simple really — when you know how.
Suppose we have a number anan-1an-2 ∠ ∠ ∠ a1a0. For instance, if the number was

246150, then a0 = 0, a1 = 5, a2 = 1, a3 =6, a4 = 4 and a5 = 2. We can write 246150 as 2
x 105 + 4 x 104 + 6 x 103 + 1 x 102 + 5 x 10 + 0. In the same way N = anan-1an-2…a1a0
can be written as an x 10n + an-1 x 10n-1 +…+ a1 x 10 + a0.

Now notice that 10 = 3 x 3 + 1, 102 = 3 x 33 + 1, 103 = 3 x 333+1 and so on. In fact
every power of 10 can be written as 3 times a string of 3's plus 1. Check it for yourself.
Actually every power of 10 is of the form 3ki + 1, where ki is a string of i 3's.

So

Now I can't be bothered to write out the exact multiple of 3 because it isn't important, so
I've just written “some number”. This means that

246150 is divisible by 3 if and only if 2 + 4 + 6+1 + 5 + 0 is.
In general then, we have

Clearly then since 3K is divisible by 3, N is divisible by 3 if an + an-1 +…+ a1 + a0 is
divisible by 3 and vice-versa. Since an + an-1 +… + a1 + a0 is just the sum of the digits
of N then we have just proved a theorem.
Theorem 1. N is divisible by 3 if and only if the sum of its digits is divisible by 3.

Before you try your hand at this test to see which numbers are divisible by 3, I just
want to take a moment to explain the mystic “if and only if” in Theorem 1.

When you see a statement “a if and only if b” it means “if a is true then b is true and
if b is true then a is true”. For instance, a2 = 25 if and only if a = ±5. Clearly if a2 = 25
then a = ±5 and if a = ±5 then a2 = 25.

A problem which asks you to prove “c if and only if d” requires you to show first
that if c is true then so is d and second that if d is true then so is c. So you've got two



things to prove.
Now go back to the discussion just before Theorem 1, and first suppose N is

divisible by 3. Since N = 3K + (an + an-i +…+ ai + a0), then the string in brackets has to
be divisible by 3. Hence “if N is divisible by 3 then so is an + an-i +…+ ai + ao”. On the
other hand if an + an-i +…+ ai + ao is divisible by 3 then so is 3K + (an + an-i +…+ ai +
a0). As a result N is divisible by 3. Then we have “if an + an-i +…+ ai + a0 is divisible
by 3 then so is N”.

Now try some problems.
Exercises
21. Which of the following numbers are divisible by 3?

(i) 123456789; (ii) 555333111; (iii) 76543211234567.
22. Which of the following numbers are divisible by 6?

(i) 134567892; (ii) 433452254; (iii) 433254456.
23. Write down a test for numbers which are divisible by 6.
24. A number is said to be “fattened” if an arbitrary number of zeros is inserted. For

instance 20300412090 is a fattened form of 234129.
Let M be a fattened form of N. Which of the following are true?

(i) M is divisible by 2 if and only if N is. (Remember there are two things to show
here. (1) If M is divisible by 2 then N is. (2) If N is divisible by 2 then M is.)

(ii) M is divisible by 3 if and only if N is.
(iii) M is divisible by 6 if and only if N is.

25. Can we go further than Theorem 1? What can you say about the remainder we get on
dividing N by 3?

Divisibility by 4. This isn't quite as easy as 2. After all, although 34 ends in a number
divisible by 4, it is not itself divisible by 4. But then neither is 134, 1034 or any other
number with 3, 4 as the last two digits. On the other hand, anything ending in 32 is
divisible by 4.

The point here is that 102, 103, 104 and so on are all divisible by 4. Hence so are all
multiples and sums of multiples of 100. For divisibility by 4, the crucial point is the last
two digits. If they are divisible by 4 then so is the complete number and vice-versa.
Theorem 2. N is divisible by 4 if and only if the last two digits of N taken as a 2-digit
number is divisible by 4.
Proof. Let N = an10n + an-110n-1 +…+ a2102 + a110 + a0. Then N = 4K + a110 + a0,
since 10r = (4 x 25)r = 4(4r-1 x 25r). So if N is divisible by 4, then so is a110 + a0, the
last “two digit number of N”. And if the last two digits of N together as a number are
divisible by 4, then a1 10 + a0 is divisible by 4. Hence 4K + a1 10 + a0 is divisible by
4, which means that N is. ?
Exercises
26. Which of the following numbers is divisible by 4?

(i) 1437640856; (ii) 433452254; (iii) 134567896.
27. Let M be a fattened form of N and let N be divisible by 4. For which M is it true that

M is divisible by 4?
If N is divisible by 12, what restrictions must be placed on M so that it too is

divisible by 12?



28. N is a 4-digit number comprised of the digits 1, 2, 3, 4, 5 used at most once each.
How many such numbers are there which are multiples of 12?

29. Is it true that the remainder on dividing N by 4 is the same as the remainder on
dividing the last two digits of N (taken as a 2-digit number) by 4?

Divisibility by 5. This is a cinch. Numbers which are divisible by 5 end in 0 or 5. End
of story.
Divisibility by 8. This is a little harder than 4 but goes along the same lines. The first
thing to observe is that 1000 is divisible by 8. Hence so is every multiple of 1000.
Consequently we only have to worry about the last three digits.
Theorem 3. N is divisible by 8 if and only if the last three digits of N taken as a 3-digit
number is divisible by 8.
Exercises
30. Whof the following integers are divisible by 15?

(i) 47243535; (ii) 9871200; (iii) 7892305.
31. Which of the numbers in Exercise 26 is divisible by 8?

32. For what n is  divisible by 5? (Recall from Chapter 2 that  =1'! = 1! +
2! +…+ n!. Also recall that n! = n(n — 1)(n — 2)…3 . 2 . 1.)

33. Let M be a fattened form of N. If N is divisible by 5 is M divisible by 5?
34. Prove Theorem 3.
35. What do I want to know about remainders here?
Divisibility by 9. Think back to 3. Now 10 = 9 + 1, 100 = 99 + 1, 1000 = 999 + 1 and
so on. Every power of 10 is one more than a multiple of 9. And the multiple of 9 is 9
times a string of 1's. So 10n = 9kn + 1, where kn is a string of n ones. Let N = anan-i…
aia0. Then

Hence the following theorem.
Theorem 4. The remainder on dividing N by 9 is r if and only if the remainder on
dividing the sum of its digits by 9 is r.

Don't worry if you found the proof before the theorem hard. The important thing is
to make sure you know how to test a number to see if it has 9 as a factor.
Divisibility by 10. Make my day!
Exercises
36. Which of the numbers of Exercise 22 is divisible by 9?
37. Let M be a fattened form of N. Which of the following statements is true? For those

which are, prove them, for those which ain't, give a counterexample.
(a) M is divisible by 9 if and only if N is. (Remember there are two things to be

shown.)
(b) M is divisible by 10 if and only if N is.
(c) M is divisible by 18 if and only if N is.
(d) M is divisible by 30 if and only if N is.

38. Let N = a6796. If N is divisible by 72, find a and b.



39. (a) Divisibility by 11. See if you can come up with your own theorem here.
Look for a simple test for divisibility by 11 and prove that it always works.

(b) Divisibility by 7 is somewhat harder. There is no rule as simple as the ones
we've produced for other numbers but you should manage something here.

Divisibility by 7. There is a very nice algoritha which will help you to decide whether
or not a number is divisible by 7. The algorithm works by taking a number N and
reducing it to a smaller number M in such a way that N is divisible by 7 if and only if M
is divisible by 7.

You should be able to use the algorithm given as Theorem 5, to write a program to
determine whether or not a given input is divisible by 7 or not.
Theorem 5. Let N = anan-1… a1a0 and let M = (anan-1… a2a1) — 2 x a0. Then N is
divisible by 7 if and only if M is divisible by 7.

Before I prove the theorem let me show you how it works.
Let N = 31759. Then M = 3175 — 18 = 3157.
Keep repeating this process.

315 — 14 = 301
30 — 2 = 28

But 28 is a multiple of 7. Theorem 5 then claims that 301 is too, as is 3157 and finally
31759.

Now let's see why the theorem works.
Proof of Theorem 5. Let L = anan-1… a2a1. Then N = 10L + a0 and M = L — 2a0.

We first show that if N is divisible by 7 then so is M.
If N is divisible by 7, then so is 2N = 20L + 2a0. Obviously 21L + 7a0 is a multiple

of 7 so (21L + 7a0) — (20L + 2a0) = L + 5a0 is also a multiple of 7. But then so is (L +
5a0) — 7a0 = M.

Now we go the other way and show that if M is divisible by 7, then so is N.
If L — 2a0 is divisible by 7, then so is 10(L — 2a0) = 10L — 20a0. Clearly 21oo is a

multiple of 7, so 10L — 20oq + 21oq = N is too. ?
Exercises
40. Which of the following numbers is divisible by 7? (Use the test developed above.)

     (i) 231; (ii) 1988; (iii) 4965;
(iv) 31756; (v) 1234567; (vi) 471625;
(vii) 12030403.

41. Which of the following is divisible by 11? (Use the test developed in Exercise 39(a).
Look at the solution if you need to.)
(i) 231; (ii) 1212398; (iii) 8282395.

42. Notice that 1001 = 7 x 11 x 13. We can use this to get a quick test for divisibility by
7. Now 31759 = 31 x 1000 + 759 = 31 x 1001 — 31 + 759. This means that 31759 is
divisible by 7 if and only if —31 + 759 is. Now 759 — 31 = 728 = 7 x 104. Hence
31759 is divisible by 7.
(a) Use the above test to do Exercise 40 again. ((vii) is made easier if you do the

following 12030403 = 12 x 106 + 030 x 103 + 403 = (12 x 1001000 — 12000) +
(30 x 1001 — 30) + 403 = (12 x 1001000 + 30 x 1001) — (12 x 1001 — 12) +



(—30 + 403) = (12 x 1001000 + 18 x 1001) + (12 — 30 + 403). The original
number if divisible by 7 if 12 — 30 + 403 is).

(b) Discover a “block of 3 digits” method for testing divisibility by 7.
(c) Discover a “block of 3 digits” method for testing divisibility by 11. Use this test

on the numbers in Exercise 41.
(d) Which of the following numbers are divisible by 13?

      (i) 123456; (ii) 123456789; (iii) 1123456789.
4.3. Common Factors
If we are given a number, one of its important properties is its factors. We can start to
find small factors by the methods of Section 4.3. However, if we are given two numbers
we often want to know what factors they have in common or more especially what is
the largest common factor that they have. This number is known as the highest common
factor (h.c.f.) or greatest common divisor (g.c.d.).

Naturally one way to find the h.c.f. of two numbers is to find all their factors and
then compare the two sets of factors. Fortunately there is a quicker way.

First let's observe the division algorithm. This is just another step by step procedure.
It's very simple actually and something you've known for a long time. For instance, you
know that 31 = 4 x 7 + 3.
The Division Algorithm. If we divide a number n by a smaller number q, then we can
express n in the form n = aq + r, where r is the remainder and 0 ≤ r q.

All this means of course is that when you divide a number n by a number you can
organise things to get a remainder which is less than q. When we divided 31 by 7 we
got a remainder of 3 which is less than 7.

It also means that you can express any number in terms of a multiple of another
number plus a remainder. So, for instance, if q = 3, any number n can be written as 3a,
3a +1 or 3a + 2, because the remainder r is such that 0≤ r 3.

This way of writing numbers in terms of other numbers can be useful. Exercise
43. Find a and r for the following values of n and q.

(i) n = 25, q = 7; (ii) n = 87, q =11; (iii) n =149, q = 21.
Having mastered the simple division algorithm we extend it to the Euclidean

Algorithm which does the job we set out to do — find what the g.c.d. of two given
numbers is.
Example 1. Find the g.c.d. of 22 and 6. We do this by applying the division algorithm
several times.

Each time we use the “q” of the previous step as the “n” of this step and the “r” of the
previous step as the “q” of this set. As this forces the next “q” to be smaller than the
previous “q”, the remainder must get smaller. Finally one of them is zero. Then the last
non-zero remainder turns out to be the required g.c.d.

In this example, then, the g.c.d. is 2. This is easily checked by finding all the factors
of 22 and 6 and comparing them.



Example 2. Suppose we want to find the highest common factor of 125 and 90. The
first step of the Euclidean Algorithm is

125 = 90 + 35.
(Assume that g is the highest common factor. Then g divides 125 and 90, so it must
divide their difference. So g divides 35.)

The second step is
90 = 2 x 35 + 20.

(Since g divides 90 and 35, it divides 90 and 2 x 35. Hence g divides 20.)
The third step is

35 = 20+ 15.
(Consequently g divides 15.)

Then the fourth step is
20 =15 + 5.

(So g now divides 5.)
The last step is

15 = 3 x 5 + 0
The algorithm has stopped (as it always must since the remainder continually
decreases). The last positive remainder is 5, so the highest common factor of 125 and
90 is 5.

At this stage we haven't proved that 5 is the highest common factor of 125 and 90.
We have only proved that the highest common factor of 125 and 90 is also a factor of 5.
So g divides 5.

But we can work back the other way. From the last step 5 divides 15. From the
fourth step, 5 divides 15 and 5 x (the terms on the right-hand side), so 5 divides 20.
Repeating the argument at the third step we must have 5 dividing 35. Continuing to the
second step gives 5 divides 90. The argument applied to the first step gives 5 divides
125.

We thus have 5 is a factor of both 90 and 125. It must therefore be true that 5 is a
factor of g because g is the highest factor that divides 90 and 125.

Since 5 divides g and g divides 5, then g = 5.
This is the reasoning on which the Euclidean Algorithm is based. The argument

given above can be applied in general to prove that the last nonzero remainder is the
highest common factor of the original two numbers.

We use the notation (m, n) to denote the g.c.d (h.c.f.) of m and n. Hence (22, 6) = 2
and (125, 90) = 5.
Exercises
44. Use the Euclidean Algorithm to find the highest common factors of the following

pairs of numbers.
    (i) 21, 15; (ii) 28, 12;

(iii) 630, 132; (iv) 597, 330; (v) 1988, 236; (vi) 1987, 235.
45. Using the Division Algorithm repeatedly we get



Prove that
(a) for some s, rs+2 = 0, and
(b) if rs+2 = 0, then rs+i is the g.c.d. of m and n.
But the Euclidean Algorithm can be used to do more than this. We can actually find

integers a and b such thatam + bn = g ,
where g = (m, n) the g.c.d. of m and n.
Example 3. Find a and b such that 22a + 6b = 2.

From Example 1 we know that

Hence a = —1 and b = 4.
Example 4. Find a and b such that 125a + 90b = 5.

From Example 2 we know that

Hence a = —5 and b = 7.
Exercises
46. Use the Euclidean Algorithm to find a and b which satisfy xa + yb = g , where g =

(x, y) the g.c.d. of x and y .
    (i) x =15, y = 21; (ii) x = 12, y = 28;

(iii) x = 132, y = 630; (iv) x = 139, y = 72.
47. Note that 2 = 5 x 22 — 18 x 6. This means that there is not a unique value for a and

b in the equation 2 = 22a + 6b.
Find all a and b such that 2 = 22a + 6b.

48. Find all a and b such that 5 = 125a + 90b.
It turns out that the following theorem can be proved. It's actually a generalisation of

Theorem 1 of Chapter 1.
Theorem 6. Let m and n be given integers with g = (m, n).

(a) There exist integers a and b such that am + bn = g.
(b) If g divides 7 then the complete solutions of mx + ny = γ are given by

(c) If Y is not divisible by g, then mx + ny = 7 has no integer solution.



Example 5. Find all solutions of 22x + 6y = 70. Now here m = 22, n = 6 and γ = 70. We
know from Example 1 that g = (22, 6) = 2. So because 2 divides 70, the equation does
have solutions.

From Example 3, we know that —22 + 4 x 6 = 2, so a = —1 and b = 4. Using
Theorem 6(b), we see that all solutions of 22x + 6y = 2 are given by

In other words x = –30 + 3α and y = 140 –11α.
(Check: 22(—35 + 3a) + 6(140 — 11a) = —770 + 840 = 70.) Exercise

49. Find all solutions (if any exist) to the following equations (i) 10x + 35y =110; (ii)
24x + 63y = 99; (iii) 121x + 25y = 210; (iv) 68x + 17y =100.
Equations such as those in Exercise 49 are called Diophantine Equations after the

Greek Mathematician Diophantus (see the web for more). They arise in a number of
situations. When they relate to practical problems it is useful to note that x and y may
need to be restricted to being positive, or at least non-negative.
Exercises
50. John collected an even number of insects in a jar — some were beetles, some were

spiders. He counted 54 legs in all. How many spiders did he have?
51. A woman spent $29.60 buying drinks for a party. The largest bottle of Poke cost

$1.70 while L&C cost $1.10. How many bottles of each did she buy?
52. An absent-minded bank teller switched the dollars and cents when he cashed a

cheque for Mr Brown, giving him dollars instead of cents, and cents instead of
dollars. After buying a 35 cent newspaper, Brown discovered that he had left exactly
twice as much as his original cheque. What was the amount of the cheque? (No, you
haven't seen this precise problem before. Use Diophantine equations to solve it.)
(What reasonable amounts — other than 5 cent and 35 cents — can replace the cost
of the newspaper to make this a sensible problem?)

53. A man goes to a stream with a 9litre container and a 16litre container. What should
he do to get precisely 1 litre of water in the 16 litre container? (See Chapter 1.)

54. Prove that the fraction (21n + 4)/(4n + 3) is irreducible for every natural number n.
(In other words show that no matter what value n has, 21n + 4 and 14n + 3 never

have a common factor.)
But Diophantine equations don't have to be linear, that is, they don't have to be such

that the variables are only to the power one as in αx + βy = γ. There may be quadratic
(power 2) terms.
Example 6. Show that x2 — y2 = 2 has no integer solutions.

An answer to this relies solely on the factorisation x2 — y2 = (x — y) ∠ (x + y).
Since x and y have to be integers we require either x — y = 2 and x +y = 1or x — y = 1
and x +y = 2 or the equivalent equations with —1 and —2. Solving the first equations

gives x = , y = —  and solving the second equations gives x = y = (Solving the
equations with —1 and —2 gives fractional answers too.) Hence x2 — y2 = 2 has no
integer solutions.
Exercises
55. (a) Show that the equation x2 — y2 = 74 has no integral solutions.



(b) Is it true that x2 — y2 = 2r has no integer solutions for any natural number r?
(c) For what r does x2 — y 2 = 2r have no integral solutions?

56. Find all solutions of x2 — y2 = 27.
57. For what integral values of x and y is x2 — y2 divisible by 4?
58. Without using mechanical or electronic aids, decide whether 1122962 — 798962 =

13! (n! is defined in Exercise 32, p. 114.)
Actually x2 — y2 = (x — y)(x + y) is the first of a series of similar factorizations. It

turns out that

and

Check these by multiplying out the right-hand sides of the equations.
In fact x — y is always a factor of xn — yn .
(One day you might find this useful for differentiating xn from first principles.)

Factorisation 1. For all natural numbers n,
xn — yn = (x — y)(xn-1 + xn-2y + xn-3y2 +…+ xyn-2 + yn-1).

Exercises
59. (a) Show that 12 — 22 + 32 — 42 = —(1 + 2 + 3 + 4).

(b) Show that 12 — 22 + 32 — 42 + 52 = (1 + 2 + 3 + 4 + 5).
(c) Generalise the results of (a) and (b).

60. Prove that for all positive integers n, N = 1n + 8n — 3n — 6n is divisible by 10.
For what n is N divisible by 20? Is N ever divisible by 40?

61. Prove that, for any positive integer n, 1492n — 1770n — 1863n + 2141n is divisible
by 1946.

Make up similar problems where the answer (here 1946) is the current year.
62. (a) Show that 4n3 + 6n2 + 4n + 1 is composite for all natural numbers n.

(b) Is 5n4 + 10n3 + 10n2 + 5n +1 always composite?
(c) What about 6n5 + 15n4 + 20n3 + 15n2 + 6n +1?
(d) Generalise.

63. What numbers divide n3 — n + 24 for all values of n? Prove it.
Actually if n is odd we can factorise xn + yn too. For instance,

x3 + y3 = (x + y)(x2 — xy + y2),
and

x5 + y5 = (x + y)(x4 — x3 y + x2 y2 — xy 3 + y4).
Check these out by multiplying out the brackets and collecting like items.
In general we have the next result.

Factorisation 2. For all odd natural numbers n,

Exercises
64. (a) Show that M = 72n+1 + 152n+1 is divisible by 22 for all n e N U {0}.

(b) For what n is M divisible by 44?



(c) For what n is M divisible by 66?
65. (a) Repeat Exercise 64 with M replaced by L = 62n+1 + 162n+1.

(b) If T = a2n+1 + b2n+1 is such that a + b = 22, for what a, b and n is T divisible by
66?

66. Prove that 52n+1 + 112n+1 + 172n+1 is divisible by 33 for every natural number n.
4.4. Fermat's Little Theorem
Fermat's (Big) Theorem finally is. In 1622, or thereabouts, Fermat made a name for
himself by scribbling in a book. The librarian was not amused. Essentially he said that
he could prove that, for no n > 2, did xn + yn = zn have integral solutions for x, y, z. He
compounded his felony with the mathematicians by adding that the margin wasn't big
enough to give the proof!

Suffice to say that most people believe he didn't have a proof. This is largely because
it took until 1995 before a proof was found and the mathematics that was used in the
proof hadn't been invented in 1622. It took a tours de force by Andrew Wiles, an
Englishman working in the States, to produce the proof and settle other interesting, but
not obviously related, problems. (For more details on the historical and mathematical
aspects of this see Hilton, Holton and Pedersen, “Mathematical Vistas”, Springer-
Verlag, 2002 or http://cgd.best.vwh.net/home/flt/flt01.htm or MacTutor.)

So what about Fermat's Little Theorem?
Fermat's Little Theorem. If p is a prime and 1 ≤ a p, then ap has remainder a when
divided by p.
Example 7.

(a) Let p = 5 and a = 2. Now 25 = 32 = 6 x 5 + 2.
(b) Let p = 7 and a = 3. Now 37 = 2187 = 312 x 7 + 3.

Example 8. Find the smallest value of n for which 2n — 1 is divisible by 41. (The
following proof should be skipped the first time you read this chapter. This is because
the method of proof is “Proof by Contradiction”. I don't explain this method until
Chapter 6. However the important thing which follows from this Exercise is Remark 1.
Make sure you know and understand this remark.)

Now by Fermat's L.T., 241 has a remainder of 2 when divided by 41 since 41 is a
prime. Hence 241 = 41a + 2. Clearly a is even, so 240 = 41b +1, where 2b = a. Hence 240

— 1 is divisible by 41.
But is there a smaller value of n than 40?
Suppose c is the smallest number such that 2c — 1 is divisible by 41. Now 40 = tc +

r for r c by the Division Algorithm in Section 4.3.
Now 2c = 41d + 1, so 2tc = (41d +1) must be of the form 41 f + 1 — just apply the

Binomial Theorem (see Chapter 2). But 240 = 41g + 1, so let 2r = 41h + s.
Hence

Hence s = 1.
However this says that 2r — 1 is divisible by 41. Since r c , this contradicts the

assumption that c was the smallest number such that 2c — 1 is divisible by 41. Hence r
= 0 and c divides 40.

http://www.cgd.best.vwh.net/home/flt/flt01.htm


So c must be 1, 2, 4, 5, 8, 10, 20 or 40. Checking, we see that

You do the rest. 220 — 1 is divisible by 41 and so 20 is the smallest number n for which
2n — 1 is divisible by 41. This is a lot of work for only a small gain but it seems to be
the only way to get there.
Remark 1. Fermat's L.T. guarantees that 2p-1 — 1 is divisible by p for p a prime.
However, it is always possible that some divisor c of p — 1 also has the property that 2c

— 1 is divisible by p.
Exercises
67. Show that 1241+2241+3241+4241 is divisible by 5 but 1240+2240+3240+4240 isn't.
68. For what n is £4

=1 i n divisible by 5?
69. Find the smallest possible integer n such that 2n — 1 is divisible by 47.

Actually in this area of Number Theory we can make life a lot easier for ourselves if
we use some better notation. Hence we introduce the concept of congruences.

We write a = b (mod c) (pronounced “a congruent to b modulo c”) to mean that a
and b have the same remainder when we divide by c. For example, 7 = 3 (mod 4) and 8
= 2 (mod 6).

The notation is used because when we are dealing with remainders modulo c we can
often get away with doing much less arithmetic.
Example 9. What are the remainders when 19882 and 19892 are divided by 4?

Well we could go straight to our calculator and find 19882 then get the remainder.
But 1988 = 4.497 and so 19882 = 42 . 4972. Obviously the remainder is zero.

Another way of writing this is 1988 ≡ 0 (mod 4), so 19882 ≡ 1988 . 0 ≡ 0 (mod 4).
Now 1989 ≡ 1 (mod 4). Hence 19892 ≡ 1989 1 ≡ 1989 ≡ 1 (mod 4). So 19892 has a

remainder of 1 when divided by 4.
To make life easier, here are a few lemmas (baby theorems) that help when dealing

with congruences.
Lemma 1. If a = b (mod c), then ma = mb (mod c).
Lemma 2. If a = b (mod c), then an = bn (mod c).
Exercises
70. Find a in each of the following, where a is non-negative and as small as possible.

 (i) 1234 = a (mod 5);   (ii) 416 = a (mod 3);
(iii) 2240 = a (mod 3);    (iv) 2240 = a (mod 5).

71. Restate Fermat's Little Theorem in terms of congruences.
72. Redo Exercises 67, 68, 69 using congruences.
73. Prove Lemmas 1 and 2.
74. For which non-negative integers n and k is

75. Show that  0 (mod 7) if and only if n is not congruent to 0 (mod 6).
76. Generalise the results of Exercises 68 and 73.
77. Find the smallest n such that 2n — 1 is divisible by 31.
78. For what primes p is 2(p-1)/2 ≡ 1 (mod p)?



For what primes p is p — 1 the smallest positive integer n such that 2n = 1 (mod p)?
(Beware!)
79. Find the smallest natural number N which has the properties:

(i) it's decimal representation has 6 as the last digit;
(ii) if the last digit is removed and placed in front of the remaining digits, the

resulting number is 4N.
4.5. A.P.'s
So far we have looked at Number Theory problems involving division but perhaps
addition is a more fundamental operation. In this section we try to find simple ways of
adding numbers that form a well defined pattern.
Example 10. Find the 5th term, the 10th term and the general (nth) term of the
following sequenceb of numbers:

2,5,8,11,…
We notice that for each new term we are adding on 3. Since the 4th term is 11, then the
5th term is 14. To get the 10th term we can work our way up: 14, 17, 20, 23, 26, 29. The
10th term is therefore 29.

This isn't a very efficient way to proceed though if we're looking for the one million
two hundred and thirty-four thousand, seven hundred and eighty-second term. So let's
try to find an expression for the nth term, Tn.

If n = 1, that's easy T1 = 2. Now T2 = T1 + 3, T3 = T2 + 3 = T1+ 2 x 3, T4 = T3 + 3 =
T1 +3 x 3. So we notice that the multiple of 3 is always one less than the number of the
term we're looking at. Hence Tn = T1 + (n — 1) x 3 = 2 + 3n — 3 = 3n — 1.

If we test this out for T1, T2, T3, T4, T5 and T10, we see we've got the right
expression for the general term. (After all T10 = 3 x 10 — 1 = 29 as we found before.)
Exercises
80. Find the 5th, 10th and nth terms of the following sequences all of whose terms

increase by a fixed constant:
    (i) 3,5,7,9,…; (ii) 3,11,19,27,…;

(iii) 5,6,7,8,…; (iv) 4,10,16,22
81. Consider the sequence a, a +d , a+2d , a+3d ,…Here T1 = a, T2 = a +d , T3 = a + 2d

and T4 = a + 3d. Find an expression for Tn. Check your answers to Exercise 80 by
using this most general Tn .
A sequence of numbers of the form a, a + d, a + 2d, a + 3d,…, where each new

number is obtained from the previous one by adding the constant difference d, is called
an Arithmetic Progression. (A.P. for short.)

The first term of the general arithmetic progression is a , the second a + d, and so on.
The nth term is a +(n — 1)d. Just add on d each time.
We will now see how to add up consecutive terms of an A.P.
Example 11.c Find the sum S =1 + 2 + 3 + 4 + 5 + 6 + 7+ 8 + 9 + 10. Well that's pretty
easy. Obviously it's 55. But suppose we had wanted to add up a large number of
consecutive integers. What would we have done then? Have a look at this trick.



So as a result of these shenanigans we see that 2S = 10 x 11. From that we get S = 55
again.
Example 12. Find an expression for 

On the right-hand side of this last equation we have n terms of the form n +1. Hence
2Sn = n(n +1). So we have

Exercises
82. Find the sum of the first 100 natural numbers.
83. The sum of the first n natural numbers is 100 less than the sum of the next n natural

numbers. Find n.
84. (a) Find the sum of the first 100 even natural numbers.

(b) Find the sum of the first 100 odd natural numbers.
85. (a) Find the sum 1 + 4 + 7 + 10+…+ 121.

(b) Find an expression for  using the technique of Example 12.
So how about we try to add up the first n terms of a general A.P.? Remember that T1

= a , T2 = a + d,…, Tn = a + (n – 1)d.
 
Theorem 7. Let 
Exercises
86. Find the sum of the first twenty terms of the following A.P.'s.

(i) 2,5,8,…;                           (ii) 2,9,16,…;
(iii) 15,21,27,…;                  (iv) —7,0,7,…;

(v) —90, —80, —70,…;     (vi) —2, —4, —6
87. Find the sum of all numbers less than 200 which are divisible by 3.
88. Use the technique of Example 12 to prove Theorem 7.
Show that Sn is the product of the number of terms and the average of the sum of the
first and last term. That is 
89. The triangular numbers 1, 3, 6, 10, 15, 21, 28,…are the sums of the first n positive

integers. They are called triangular numbers because of the triangular form shown
below.



(a) Write down an expression for tn , the nth triangular number.
(b) Notice that t3 = 2t2. Find another pair of triangular numbers such that one is

twice the other.
(c) Are there triangular numbers tr , ts which satisfy ts = 3tr or ts = 4tr?
(d) Show that for any triangular number ts , s > 1, there is another, distinct, tr , such

that ts ÷ tr is an integer.
But we can also add up powers of numbers too. For instance, we might we might to

find 
Example 13. Find an expression for 

Now we do this by first writing that 

As in Example 12, we add up the left and right sides. On the left side
we get {(n + 1)3 — n3} + {n3 — (n — 1)3} + {(n — 1)3 — (n — 2)3} + +{43 — 33} +
{33 — 23} + {23 — 13}. This simplifies nicely to (n + 1)3 — 13.

On the right-hand side we get  is what we're trying to
find and 

If we simplify all this and rearrange we get

Exercises
90. Find the sum of the squares of the first 10 positive integers using the formula of

Example 13. Check your answer by direct addition.
91. Note the following:

Use the above to guess a formula for the sum of the squares of the first n odd
integers. Prove this formula is correct.

92. Find a formula for the sum of the squares of the first n even integers.
93. Find an expression for the sum of the cubes of the first n natural numbers.
94. a  means the integer part of a. In other words 7.5  = 7, [8.321] = 8, [π] = 3 , e  =

2, 9  = 99.
Find a formula for

95. Find an expression for 
4.6. Some More Problems
We end as we started with twenty questions. They all use some aspect of the material in
the previous sections or the pigeonhole principle (see Chapter 2). The problems are in



no particular order. Some of the later ones are easier than the earlier ones.
Exercises
96. Find all n for which n2 + 2n + 4 is divisible by 7.
97. The lengths of the sides of a right angled triangle are consecutive terms in an A.P.

Prove that the lengths are in the ratio 3:4:5.
98. Calculate the sum of the numbers 6 + 66 + 666 +…+ 66…6, where the last number

consists of n 6's.
99. Show that among any seven distinct natural numbers not greater than 126, there are

two, m and n , such that
100. The product of three consecutive odd numbers is 357627. What is the smallest of

the three?
101. Let k be even. Show that 48 is always a factor of k3 — 4k .
102. Find all n for which n, n + 2, n + 4 are prime numbers.
103. Find all 2-digit numbers which are the square of the sum of their two digits.

Are there any 3-digit numbers which are the square of the sum of their three digits?
104. (a) If the tens digit of a perfect square is 7, what is the units digit?

(b) What is the longest string of 9's you can have at the end of a square number?
(c) Can 33**6 or 301** be perfect squares, where the asterisks stand for digits?
(d) Find all squares, all of whose digits are odd.

105. Show that n(2n + 1)(7n + 1) is always divisible by 6. Is it ever divisible by 12?
106. Prove that n4 — n2 is divisible by 12.
107. Find all natural numbers n for which n2 + 80 is a perfect square.
108. If n is odd and not divisible by 3, show that n2 — 1 is divisible by 24. What are the

last two digits of 2222 — 1?
109. What are the last two digits of 2222 - 1?
110. For what positive rational numbers  an integer?
111. Prove that for any number n,

112. Show that there are no integers a, b, c for which a2 + b2 — 8c = 6.
113. Let a, b, c , d be fixed integers with d not divisible by 5. Assume that m is an integer

for which M = am3 + bm2 + cm + d is divisible by 5.
Prove that there exists an integer n for which N = dn3 + cn2 + bn + a is also divisible

by 5.
114. (a) Determine all positive integers n for which 2n + 1 is divisible by 3.

(b) Determine all positive integers n for which 2n + 1 is divisible by 5.
115. Prove that when 2x+3y is divisible by 17 then so is 9x+5y and vice-versa.
4.7. Solutions
1. 987 × 121 = 109427. This problem can be solved by systematic trial and error.

(But note that, since 2 ×*** is a four digit number and “ ” × *** is a three digit
number, then “ ” = 1.)

2. That D equals 1 follows fairly quickly, as does A ≥ 2 and C + R ≥ 11. But R is even.
Now follow through the various cases. The summands are 92633 + 62513.

3. A = 3, b = 6, C = 8, or A = 8, B = 7, C = 2.



Note that 7 × 8 × 9 = 504 and 739000 divided by 504 has a remainder of 136.
4. 364. (It boils down to using the basic subtraction algorithm or solving 4AB + AB4 =

800.)
5. (a) 21978; (b) 10989; (c) none.
6. Start with n = 104x + 103y + 102z +10u + v and show that n = 103r.
7. 625 × 10a for a ≥ 1.
8. Suppose the cheque was for $y : x i.e., 100y + x cents. Then 100x + y – 5 = 2(100y +

x). Now if x 50, then 2x = y – 5 and x = 2y. But this leads to negative solutions.
Hence x ≥ 50 and x = 2y + 1, 2x — 100 = y — 5. This gives x = 63 and y = 31 so the
original cheque was for $31:63.

9. In this problem 124 divides 10020316 to give 80809.
(To get started note that 8 times the divisor is only a three digit number. So the

divisor is less than 125. Further 9 times the divisor is a four digit number, so the
divisor is greater than 111. The rest is careful detective work.) (Where did the 9
come from?)

10. 162 divides 3532572 to give 21806.
11. Let g be the number of geese. Then 

Hence g = 36.
12. HOCUS is 54867.
13. x2 + (x + y)2 = 25. Now this only has integer solutions if x2 = 0, 9, 16 or 25. Hence

(0, ±5), (3,1), (3, –7), (–3, –1), (–3, 7), (4, –1), (4, –7), (–4,1), (–4, 7), (±5,0) are
solutions for (x, y).

14. (121)b = 1  b2 + 2 ∠ b +1 = (1 + b)2.
15. 999,999 = 33 × 7 × 11 × 13 × 37. Hence the answer is 37.
16. The left side is 1 if:

(i) x2 – 3x + 1 = 1, when x = 0, 3;
(ii)x2 – 3x + 1 = – 1 and x + 1 is even, when x = 1; or
(iii)x + 1 = 0 and x2 – 3x + 1 ≠ 0, when x = –1.
Hence x = –1, 0, 1 or 3.

17. Here we get  if

  
18. From 1 to 9 is 9 digits; from 10 to 99 is a further 180 (a total of 189 so far); from

100 to 698 is a further 1797 (a total of 1986 so far). We therefore want the second
digit of 699. The answer is 9.

19. Let the six numbers be n, n +1, n + 2, n + 3, n + 4, n + 5.
First suppose n is even. Then so are n + 2 and n + 4. One of n, n + 2, n + 4 must be

divisible by 3 as must one of the odd numbers n +1, n + 3, n + 5. But two of these odd
numbers are not divisible by 3 and at most one of them is divisible by 5. So at least one
of the six numbers is not divisible by 2, 3 or 5 and so, is not divisible by 4 or 6 either.
Hence this number is divisible by primes which are greater than or equal to 7. None of
the other numbers can have this number as a factor (because there are only five of
them). Hence the result follows.



If n is odd, then only one of n, n + 2, n + 4 is divisible by 3 and the result follows
by the argument above (as applied to n +1, n + 3, n + 5).

20. We require 10a + b = 2ab . Hence 10a = b(2a — 1). Now since 10a and 2ab are even,
b must be even. Let b = 2k. So 5a = k(2a — 1). Hence 5 divides k or 2a — 1. If 5
divides k, 10 divides b. This is not possible since b is a digit. Hence 5 divides 2a —
1, which gives a = 3 or 8. If a = 8, 40 = 15k which is not possible since k is an
integer. If a = 3 then k = 3 and b = 6. Checking we see that 36 has the required
property.

21. (i) and (ii) are.
22. (i) and (iii) are.
23. They must be even and divisible by 3. So they must have an even digit in the units

column and the sum of their digits must be divisible by 3.
24. (i) If N is even, then M is (even if a zero is added at the end).

   However, if M is even (when M ends in zero), N may be odd.
  (ii) Yes. Adding zeros will not affect the sum of the digits.
  (iii) What about 30 and 3?

25. Using the ideas of the proof of Theorem 1 we see that we can tell the remainders of
the number from the remainders of the sum of its digits.

26. (i) and (iii).
27. Let the last two digits of N be ab and the last two digits of M be cd. If b = d is 0, 4 or

8, then M is always divisible by 4 (whether c = a or c = 0). If b = d is 2 or 6, then c =
a for M to be divisible by 4. If d = 0, then M is divisible by 4 (if c = 0 or c = b, which
is even).

For N divisible by 12 we have N divisible by 3 and 4. The sum of the digits of M is
divisible by 3 so is M. From the first paragraph we know when M is also divisible by 4.
28. To be divisible by 4, N must be of the form **12, **32, **52, **24. Since N is

divisible by 3 it can only be 4512, 5412, 1452, 4152, 1524, 5124.
29. Yes.
30. (i) and (ii).
31. (i) and (iii).
32. 1! = 1; 2! = 2; 3! = 6; 4! = 24; i! for i ≥ 5 is divisible by 5. Hence we only have to

test  for n ≤ 4. However none of these sums is divisible by 5. The answer is
none.

33. Yes — whether or not a zero goes on the end.
34. Basically, every power of 10 from 1000 is divisible by 8.
35. It's what you would expect for 5 and 8.
36. (i) and (iii).
37. (a) The sum of the digits in M is divisible by 9 if and only if the sum of the digits in

N is.
(b) False. After all 10 is a fattened form of 1.
(c) False. 90 is divisible by 18 but 9 isn't.
(d) False. Look at 30 and 3.

38. Since N is divisible by 72 it is divisible by 8. Hence 79b is divisible by 8. So b = 2.
Since N is divisible by 9 then so is a + 6 + 7 + 9 + 2. Hence a = 3.



Hence a =3.

42. (a) (i) 231 has to be tested directly;
(ii) for 1988 we need to look at 988 – 1 = 987. This is divisible by 7 so 1988 is;
(iii) 4965 requires 965 — 4 = 961. This is not divisible by 7;
(iv) 756 – 31 = 724 — not divisible by 7;
(v) –1234 + 567 = –667 — not divisible by 7;
(vi) 625 – 471 = 154 — yes;
(vii) 385 is not.
(b) 1234567876543218 is divisible by 7 if 218 – 543 + 876 – 567 + 234 – 1 is

divisible by 7. So in general, break up the digits into blocks of 3, putting + and
— signs on alternating blocks of 3. If the resulting sum is divisible by 7 then the
original number was (and vice-versa).

(c) The same test holds for 11. Why?
 (i) 231 – yes (directly);
 (ii) for 1212398 think of 1 – 212 + 398 = 187 and 187 divisible by 11;

(iii) for 8282395 test 8 – 282 + 395 = 121 and it's yes again.
(d) The test is exactly the same as for 7 and 11.

 (i) 456 - 123 = 333, no;
 (ii) 123 - 456 + 789 = 456, no;

(iii) 789 - 456 + 123 - 1 is divisible by 13.
43. (i) 3 and 4; (ii) 7 and 10; (iii) 7 and 2.
44. (i) 21 = 15 + 6; 15 = 2 × 6 + 3; 6 = 2 × 3. Hence (21,15) = 3;

  (ii) 4; (iii) 6; (iv) 3; (v) 4; (vi) 1.
45. (a) By the Division Algorithm 0 ≥ ri+1 ri. Hence at each step the quotient (ri)

decreases and so does the remainder (ri+1). Eventually the remainder must
become zero.

 (b) If rs+2 is zero, then rs+1 is a factor of rs. From the second last row, rs+1 is a factor
of rs-1. Working up the rows we see rs+1 is a factor of m and n and hence of (m, n).
  On the other hand the g.c.d. g of m and n divides m, n and hence r1. From the
second row g divides n, r1, and hence r2. Working down we eventually see that g
divides rs+1. Hence since rs+1 is a factor of g and vice-versa, so g = rs+1.

46. (i) a = 3, b = -2; (ii) a = -2, b = 1; (iii) a = 43, b = -9; (iv) a = -29, b = 56.



47. First note that 2 = 4 × 6 + (-1) × 22 = (4 + 22) × 6 + (-1 - 6) × 22 = (4 - 22) × 6 + (-1
+ 6) × 22 and so on. Hence we can insert as many multiples of 22 to multiply the 6 as
we subtract multiples of 6 to multiply the 22. But since 2 divides 22 and 6, we can
use 11 and 3. So 2 = 22(3n - 1) + 6(4 - 11n), where n is any integer.

48. 5 = 125(18n - 5) + 90(7 - 25n).
49. (i) x = -66 + 7n, y = 22 - 2n; (ii) x = 12 + 21n, y = -3 - 8n;

(iii) x = 1260 + 25n, y = -6090 - 121n;
(iv) there are no solutions since g = 17 does not divide 100.

50. Spiders have 8 legs and beetles 6. So you have to solve 8s + 6b = 54 with s, b
positive and s + b even. Hence 3 spiders and 5 beetles.

51. Convert this to 17x +11y = 296. So x = 9 and y = 13.
52. If the original cheque is for 100x + y cents, we want to solve 98y - 199x = 35, with x

positive and 0 ≤ y≤ 99. Now (-67 + 199n)98 + (33 - 98n)199 = 1 (by the Euclidean
Algorithm). We now need to find n such that 0 ≤ -67.35 + 199n 99. Here n = 12 to
give y = 43. Then 33  35 – 98  12 = –21. So the original cheque was for $21.43.
  Experiment with values other than 5 and 35.

53. 1 = 4 × 16 – 7 × 9. Fill the 16 litre container 4 times and empty the contents into the
9 litre container. Throw away 7 lots of full 9 litre containers and you'll have 1 litre
left.

54. Assume g = (21n + 4,14n + 3), then there exists a and b such that (21n + 4)a + (14n
+ 3)b = g. Hence 7n(3a + 2b) + (4a + 3b) = g. Since this equation is true for all n, 3a
+ 2b = 0 and 4a + 3b = g. This gives a = –2g and b = 3g. But then g2 is a factor of
(21n + 4)a and (14n + 3)b. So g2 is a factor of the sum of these which is g. Hence g =
1.

55. (a) (x – y)(x + y) = 74. So either x – y = 1, x + y = 74 or x – y = 74, x + y = 1 or x – y
= 2, x + y = 37 or x — y = 37, x + y = 2 etc. with the factors of 74. None of
these have integer solutions.

  (b) No. Try r = 4.
  (c) If r is odd, then one of x – y, x + y, has to be odd. Then there are no integral

solutions. If r is even we can always split the factors of 2r so that x – y and x + y
are both even. Hence they have integral solutions. So the complete answer is r
odd.

56. (±14, ±13), (±6, ±3).
57. For integral solutions 2 is a factor of x – y and x + y. Hence x and y are either both

even or both odd.
58. 1122962 – 798962 = (112296 – 79896)(112296 + 79896) = (32400)  (192192). Now

32400 = 10×5×648 = 10×5×9×72 = 10×5×9×6×12. Further 192192 = 11 × 17472 =
11 × 7 × 2496 = 11 × 7 × 8 × 312 = 11 × 7 × 8 × 3 × 104 = 11 × 7 × 8 × 3 × 4 × 26 =
11 × 7 × 8 × 3 × 4 × 2 × 13. All the factors of 13! are present. (You should use the
tests discovered in Section 4.3.)

59. (a) (1 – 2)(1 + 2) + (3 – 4)(3 + 4) = –(1 + 2 + 3 + 4).
  (b) 1 + (3 – 2)(3 + 2) + (5 – 4)(5 + 4) = 1 + 2 + 3 + 4 + 5.
  (c) 12 – 22 + 32 + (–1)n-1n2 = (–1)n-1(1 + 2 + 3+…+ n).



60. N is obviously even because 1n—3n is even. Then (1n—6n)+(8n—3n) = (1 — 6)(1 +
6 + 62 +…+ 6n-1) + (8 — 3)(8n-1 + 8n-23 +…+ 3n-1). Hence N has a factor of 5.
  Now N = –5(1+6+62 +…+6n-1)+5(8n-1+3  8n-1 +…+3n-1) = –5[1 + 6(1 + 6k)] +
5[3n-1 + 8m]. So N is divisible by 4 if and only if 5(3n-1 – 7) is divisible by 4. This
holds for n even.
 N is divisible by 40 if and only if 3n-1 – 43 and n < 2 is divisible by 8. This is true for
n even and n ≥ 4.
   How far can you go? 80? 160?

61. Since 2141 –1863 = 1770 –1492 = 278, the given expression is divisible by 278.
Similarly, 2141 — 1770 = 1863 — 1492 = 371, which is relatively prime to 278, also
divides the given expression. Hence (278)(371) = (53)(1946) is a divisor.
  This means finding the factors of the current year and working them into an an – bn

+ cn – dn scenario.

  (b) Try n = 1.
  (c) (n + 1)6 – n6 = [(n + 1)3 – n3][(n + 1)3 + n3].
  (d) Conjecture: (n + 1)m – nm is composite if n is even. It is not necessarily

composite if n is odd (though it can be sometimes — when?).
63. Experiment. You should find that 6 does but 12 or 18 doesn't. Note that n3 – n = n(n

– 1)(n + 1).
64. (a) M =(7+15)(72n – 72n-1  15 +…+(–1)2n152n) which is divisible by 2 for n > 0.

The case n = 0 is OK.
(b) E = 72n – 72n-1  15 +…+(–1)2n152n is the sum of an odd number of odd

numbers. So it's odd and 44 is out.
(c) From (b), E = 72n + 15k so E is divisible by 3 when 72n is. That is, never.

65. (a) See Exercise 64(a). You'll do better with 44 here but not with 66.
  (b) When is E = a2n – a2n-1b +…+(–1)2nb2n divisible by 3? Never if a (or b) alone is

divisible by 3. If a = b = 11, then E = (2n+1)112nwhich is divisible by 3 if and only
if 2n + 1 is. The same thing happens for a = 2, b = 20 (or vice-versa). For a = 8, b
= 14 I think the answer is n – 1 needs to be divisible by 3.

66. From Exercise 64 the expression is clearly divisible by 11. Now 52n+1 = (3+2)2n+1

which is of the form 3k+22n+1 (by the Binomial Theorem). Similarly for 112n+1 and
172n+1. Hence 52n+1 + 112n+1 + 172n+1 is divisible by 3 if 22n+1 + 22n+1 + 22n+1 is. But
3 x 22n+1 is obviously always divisible by 3.

67. By Fermat a5 = 5k + a for some k. Now a241 = a(5k + a)48 = 5t + a49(by the
Binomial Theorem). But a49 = a4(5k + a)9 = 5s + a13 and a13 = a3(5k + a)2 = 5u + a5

= 5v + a.
  Hence E = 1241 + 2241 + 3241 + 4241 has remainder 1 + 2 + 3 + 4 when divided by 5.
Hence E is divisible by 5.
   The same argument gives a240 has remainder 1 on dividing by 5. Hence F = 1240 +
2240 + 3240 + 4240 has remainder 1 + 1 + 1 + 1. Hence F is not divisible by 5.



68. Σ4
i=1 in is divisible by 5 if and only if n is not a multiple of 4.

   (Wait till you've read the congruences section before you try to prove this.)
69. By Remark 1 if d is the smallest number such that 2d – 1 is divisible by 47, then d

divides 46. Hence d =1,2, 23 or 46. Clearly d ≠ 1,2. However 223 – 1 is divisible by
47.
   Is it true that m = p(p – 1)/2 always gives 2m is divisible by p, a prime? If so, why
didn't Fermat prove this?

70. (i) a = 4; (ii) a =1 (since 4 = 1 (mod 3));
(iii) 2240 ≡ (22)120 ≡ 1240 ≡ 1 (mod 3) (or use Fermat);
(iv) 2240 ≡ (24)60 ≡ 1 (mod 5).

71. ap ≡ a (mod p) for p a prime.
72. Exercise 67: a5 ≥ a (mod 5). Hence a4 ≡ 1 (mod 5) for a not a multiple of 5. So a241

≡ (a4)60a ≡ 160a ≡ a (mod 5). Hence 1241 + 2241 + 3241 + 4241 ≡ 1 + 2 + 3 + 4 ≡ 0
(mod 5). Hence 1240 + 2240 + 3240 + 4240 ≡ 4 which is not congruent to 0 (mod 5).
Exercise 68: Let n = 4k + r. Then an ≡ (a4)kar (mod 5). Hence an ≡ ar (mod 5). Hence
we only have to consider r ≡ 0, 1, 2, 3.

     Hence Σ4
i=1 in = 0 (mod 5) if and only if n is not divisible by 4. Exercise 69: We

want d to be the smallest positive number such that 2d ≡ 1 (mod 47). Since d = 1, 2,
23 or 46 we only have to test the first three values. 21 = 2 not congruent to 1 (mod
47). 22 = 4 not congruent to 1 (mod 47). Now 29 ≡ 42 ≡ –5 (mod 47). Hence 218 ≡ 25
(mod 47). So 219 ≡ 3 (mod 47) and 223 ≡ 3× 16 ≡ 48 ≡ 1 (mod 47).

73. Proof of Lemma 1. If a ≡ b (mod c) then a – b = ck for some k. Hence ma – md =
mck , so ma = mb (mod c).

Proof of Lemma 2. If a ≡ b (mod c) then a = b + ck. Hence an = (b + ck)n = bn + ct
(by the Binomial Theorem). Hence an = bn (mod c).

74. Since for all k, the five terms k + 1, k + 2, k + 3, k + 4, k + 5 are congruent, in some
order to 1, 2, 3, 4, 5 (mod 5), then we only need consider Σ5

i=1 in. But 5n = 0 (mod 5)
for all n. Hence we only need to consider Σ4

i=1 in. Now go back to Exercise 66.
75. Again an = a6k+r = ar (mod 7). We only need consider the cases r = 0, 1,2, 3, 4, 5 to

see that the result follows.
76. When p is a prime, is Σp-1

i-1in = 0 (mod p) if and only if n is not divisible by p – 1?
  Does this work for composite p though?

77. The smallest n is 1, 2, 3, 4, 5, 6, 10, 15 or 30. Clearly 1, 2, 3 do not work. But 25 =
32 ≡ 1 (mod 31). Hence n = 5.

78. For p odd, 2(p-1)/2 ≡ 1 (mod p) if and only if p ≡ ±1(mod 8). I don't know a simple
way of proving this.



  “The smallest n is p – 1” problem is an, as yet, unsolved problem. It is not even
known whether or not there are an infinite number of such primes. If you think you
have a solution please let me know.

79. If n has last digit 6, then n = 10N+6. Condition (ii) gives 6 × 10k+N = 4(10N + 6).
Hence 2 × 10k – 8 = 13N, so 2 × 10k ≡ 8 (mod 13). Thus 10k+1 = 40 ≡ 1 (mod 13).
  From Fermat, k +1 = 1, 2, 3, 4, 6 or 12. Trial and error gives k = 5. Hence 13N =
199992 and so n = 153846.

80. (i) T 5 = 11, T10 = 21, Tn = 2n + 1;
  (ii) T5 = 35, T10 = 75, Tn = 8n – 5;
  (iii) T5 = 9, T10 = 11, Tn = n + 4;
  (iv) T5 = 28, T10 = 58, Tn = 6n – 2.

81. Tn = a + (n – 1)d.
(i) Here a = 3, d = 2, so Tn = 2n +1;
(ii) a = 3, d = 8, Tn = 8n – 5;
(iii) a = 5, d =1, Tn = n + 4;
(iv) a = 4, d = 6, Tn = 6n – 2.

85. (a) 2Sn = (1 + 121) + (4 + 118) + (7+ 115) +…+(121 + 1) = 41  122
.

 



93. To show that , start considering the differences of the form (n + 1)4 –
n4 and follow the method of Example 13.

94. First you will need to discover that

So in Sn there are 22 – 1 ones, 32 – 22 twos, 42 – 32 threes and so on.
  Hence

96. Let n = 7k+r. Then n2 + 2n+4 = (7k+r)2 + 2(7k+r)+4 ≡ r2 +2r+4 (mod 7). Checking r
= 0, 1, 2, 3, 4, 5, 6 we see that r = 1 or 4. Hence n is of the form 7k + 1 or 7k + 4 (i.e.
n ≡ 1 or 4 (mod 7).)

97. Let the sides be a, a + d, a + 2d. Then a2 + (a + d)2 = (a + 2d)2. We solve the
quadratic for d to give  or –a. If d = –a one side has negative length. Hence the
sides are a,  4f, and are in the required ratio.

99. For the pigeonhole principle, see Chapter 2, p. 29ff. If we divide {1,2,…, 126} into 6
sets, then one of these contains at least two of the chosen 7 numbers. If we can now
find 6 sets such that the largest number is at most twice the smallest we will have
solved the problem.
   The following sets will do:

{1,2}, {3,4,5,6}, {7,8,9,…,14}, {15,16,…,30}, {31,32,…,62}, {63,64,…,126}.



100. Let the odd numbers be a – 2, a, a + 2. (This simplifies the algebra.) Hence we have
to find the solutions of a3 – 4a – 357627 = 0. The cube root of 357627 is about 70
and a is odd so we find a = 71 is a possible root. Then (a – 71)(a2 + 71a + 5037) = 0.
Since a is positive a2 + 71a + 5037 is never zero. The only solution is 71. Hence the
smallest odd number required is 69.

101. Let E = k3 – 4k = k(k – 2)(k + 2). Since k is even, k – 2, k, k + 2 are consecutive even
numbers, so one of them (at least) is divisible by 4. Hence E is divisible by 16.
Further, since k – 2, k, k + 2 are consecutive, one of them is divisible by 3. Hence E is
divisible by 48.

102. Now n must be odd, since otherwise n + 2 is not prime. Since n, n + 2, n + 4 are
consecutive odd numbers, one of them is divisible by 3. But since they are all primes,
one of them is 3. This prime has to be n , since 1 is not a prime. Hence the three
primes are 3, 5, 7.

103. Let the required number be N = 10a + b. Then we have to solve 10a + b = (a + b)2.
Now this gives a2 + a(2b – 10) + (b2 – b) = 0 which has solutions

Now a is an integer, so d = (2b–10)2 – 4(b2 –b) is a square. However, d = 100 –
36b, so clearly b 3. If b = 0, a = 10 and so isn't a digit. If b = 1, a = 8. If b = 2, d isn't
a square. Hence 81 is the only number with the required property.

There's a nice problem for you!
104. (a) 6. This arises when squaring numbers congruent to 24, 26, 74 or 76 (mod 100).

(b) If b2 ≡ 9 (mod 10), then b ≡ 3, 7 (mod 10).
   If (10a + b)2 ≡ 99 (mod 100), then 20ab + b2 = 99 (mod 100).

    For b = 3, 60a + 9 ≡ 99 (mod 100). This has no solutions for a.
    For b = 7, 140a + 49 ≡ 99 (mod 100). Again this has no solutions.
(c) Let N = 33**6 = M2. Then M ≡ 4, 6 (mod 10). Further 180 M < 190, so M = 184

or 186. Now 186 is too large, so N = 33856.
     Let P = 301** = Q2. Then 170 < Q < 180, but 1732 = 29929 and 1742 =
30276, so P isn't a square.

(d) Take 1 and 9 for free.
  Let N = (10a + b)2 have all odd digits. Then N = 100a2 + 20ab + b2 and b2 = 1, 5,

9 (mod 10) and 20ab + b2 = odd number (mod 100). Now in fact b2 = 1, 9, 25, 49, 81
and all of these cause the tens digit to be even.

105. Let n = 6q + r. Then n(2n + 1)(7n + 1) ≡ r(2r + 1)(7r + 1) (mod 6). Hence the
expression is divisible by 6 if it is for n = 0, 1, 2, 3, 4, 5. It is.
   If n = 4, we get 36 × 29 which is divisible by 12.

106. Now n4 – n2 = (n – 1)n2(n + 1). One of n – 1, n, n + 1 is divisible by 3. If n is even
we are finished. If n is odd, both n – 1 and n + 1 are even and we are finished.

107. If n2 + 80 = m2, then m2 – n2 = 80. So (m – n)(m + n) = 80. We take only even
factors of 80 to give n =1, 8, 19.

108. Let N = (n – 1)(n + 1). Since n is odd, n – 1 and n + 1 are consecutive even
numbers, so one of them is divisible by 4. Hence N is divisible by 8. Since n is not
divisible by 3, one of n – 1, n + 1 is. Thus N is divisible by 24.



109. Now 210 = 1024 ≡ 24 (mod 100) and 220 ≡ 242 = 576 ≡ 76 ≡ –24 (mod 100). Hence
230 = –242 = -24 (mod 100), 240 ≡ —24 (mod 100) and so on. Since 222 = 220 + 2,
2222 ≡ –24 × 22 ≡ –96 ≡ 4 (mod 100). Hence 2222 – 1 = 3 (mod 100). The last two
digits of 2222 – 1 are 03.

110. Let  where p and q are natural numbers with no common factor. Then 

 If this is an integer, then p and q both divide p2 + q2. Hence p is a factor
of q2. But p and q have no factors in common. Hence p =1. Similarly the fact that q
divides p2 implies q =1. Hence m =1.

111. Now n ≡ 0, 1, 2, 3, 4, 5 (mod 6). Testing all these values shows the result holds.
Hence it holds for n in general.

112. Now n ≡ 0, 1, 2, 3 (mod 4), then n2 ≡ 0, 1, 4 (mod 8). So a2 + b2 = 0, 1, 2, 4, 5 (mod
8). But a2 + b2 is not congruent to 6 (mod 8). Hence a2 + b2 ≠ 8c + 6.

113. Since M ≡ 0 (mod 5) and d is not congruent to 0 (mod 5), then m is not congruent to
0 (mod 5). Hence m = 5k + r for r =1, 2, 3, 4.

  Now Mn3 – N = (mn – 1)[a(m2n2 + mn + 1) + bn(mn + 1) + cn2]. We now attempt
to choose n so that the right-hand side of this equality is divisible by 5.

This can be done by choosing n such that mn – 1 is divisible by 5. If m = 5k + r
and n = 5t + s then mn – 1 ≡ rs – 1 (mod 5). So if wecan find an s for each r, 1 ≤ r ≤
4, then we can find an n for every m ≡ 0 (mod 5).

If r = 1, s = 1; if r = 2, s = 3; if r = 3, s = 2; if r = 4, s = 4.
(Actually for each m  0 (mod 5) there are an infinite number of n which make N

≡ 0 (mod 5).)
114. (a) Let n = 2q + r. Then 22q+r ≡ (22)q2r ≡ 2r (mod 3). Hence since 2r + 1 = 0 (mod

3) for r =1, then 2n + 1 = 0 (mod 3) for all n odd.
   (b) Let n = 4q + r. Then 2n ≡ 2r (mod 5). Now 20 ≡ 1 (mod 5), 21 ≡ 2 (mod 5), 22 ≡

4 (mod 5) and 23 ≡ 3 (mod 5). Hence 2n + 1 ≡ 0 (mod 5) for n ≡ 2 (mod 4).
115. Using Theorem 6, if 2x + 2y = 17n, then x = –17n + 3k and y = 17n – 2k. Hence

9x+5y = 9(–17n+3k)+5(17n – 2k) = 17(–4n) + 17k. Hence 9x + 5y is also divisible by
17.

Now suppose 9x + 5y = 17n. Again by Theorem 6 we have x = – 17n + 5k and y =
34x – 9k. Hence 2x + 3y = 17(6n) – 17k. So 2x + 3y is also divisible by 17.

aAn algorithm is a step by step procedure that eventually finishes.



Chapter 5
Geometry 1

5.1. Introduction
Geometry is a vast area that it would take many books to get close to uncovering. I have
only written two chapters in this book but I hope that will be enough to get you started.
In this first chapter I've done small amounts on squares, triangles, circles and their
properties as well as some ruler and compass constructions.

Many of the problems here can be generalised. That means there are bigger
problems that contain my problems as special cases. You should always be looking out
for generalisations. That way, in one fell swoop you can solve a lot of little problems as
a result of solving one big problem.

You should also be thinking of extending a problem. For instance, if something
works for squares, does it work for something similar?

Keep asking questions; ask yourself, ask your friends, ask your teacher. In
mathematics asking questions (the right questions) is half the battle. Getting the right
answer is usually the result of a process of asking a sequence of the right questions.
5.2. Squares
One of the simplest shapes is a square so let's start there. Just in case you have never
seen one of these we show one in Figure 5.1.

A square is a four-sided animal all of whose sides are equal and such that adjacent
sides are perpendicular. So in Figure 5.1, AB = BC = CD =DA and ∠ABC = ∠BCD =
∠CDA = ∠DAB = 90°. Naturally squares come in all sizes from the side-of-a-house-
size squares to postage-stamp-size squares and even smaller and even bigger.

Figure 5.1.
For the record, if the side AB is of length a, then the perimeter of the square is 4a

(that's just the length round the outside) and the area is a2 (that's just the stuff inside).
That's all pretty dull really and perhaps so is the fact that the poor square invariably

goes unnoticed as it is squashed under foot or stuck on the wall and splashed on. But,
from our point of view, the fact that a square, along with an infinite gang of its mates all
of whom are of the same size, fits together without gaps to completely cover the plane,
is quite useful. Such stuff are tiles made of. We say that squares tile or tessellate the
plane. This is shown in Figure 5.2.

Although squares are great to tessellate, they aren't the only shape that'll do it. We
can see this by starting with a square and adding an arc of a circle on one side. (See
Figure 5.3.)

Now add the same arc on the inside of the opposite side. Throw away the shaded
area in Figure 5.3 and you've got another shape that'll tessellate.



Figure 5.2.

Figure 5.3.
Exercises
1. Experiment with various additions and subtractions from a square to produce

irregular shapes that tile the plane. Can you produce animal, bird or fish shapes in
this way, which tessellate?
(What has this got to do with M.C. Escher? Who you won't find on MacTutor. Or
will you?)

2. Starting from a square, use the idea of Figure 5.3 to show that there are hexagons
(six-sided shapes), which tile the plane.
The hexagons here are, of course, not regular. That is they don't have all sides equal
and all angles equal. Do regular hexagons tessellate? Show that there are eight-sided
figures which tessellate. Do regular octagons (all sides equal, all angles equal)
tessellate?
Show that there are 2n-sided figures which tessellate, for all natural numbers n. Are
there (2n + 1)-sided figures which tessellate?

3. A square is a special type of quadrilateral— a shape with four sides. A square has
two properties
(i) all sides are equal; and
(ii) all angles are right angles.
Show that there is an infinite number of different quadrilaterals with property (i).
What types of quadrilaterals have property (ii)?

4. Do all quadrilaterals tessellate?
A square not only tessellates it also does it in a self-replicating way. If we put four

squares of the same size together we produce another square whose side length is twice
that of the original square (see Figure 5.4). A self-replicating shape is one that, by
putting enough copies of itself together, can produce a larger copy of itself.

Any self-replicating shape must tessellate the plane.
So we've found that a square can make another square. On the other hand, any

square can be broken down into smaller squares. Clearly the large square of Figure 5.4
can be broken down into four smaller squares. It should also be easy to see that there
are five squares in Figure 5.4.



Figure 5.4.
Exercises
5. Find four self-replicating shapes.
6. Why does a self-replicating shape tessellate?
7. (a) How many squares are there in Figure 5.5(a)?

(b) How many squares are there in Figure 5.5(b)?
(c)Take a square of side length n, which is made up of n2 smaller squares. Imagine

that we've drawn the picture of this. How many squares are there in the picture?
(This count is to include all 1 by 1, 2 by 2,…squares.)

8. So we can see how to square a square (make up a square from smaller squares) using
squares all of which are of the same size.
(a) Can you square a square with two different sizes of squares?
(b) Can you square a square with three different sizes of squares?
(c) Is it possible to square a square with squares all of whose sizes are different?
(d) For what m is it possible to square a square with m squares?

Figure 5.5.

Figure 5.6.
(e) Given one square each of size 1,2,…, n, is it possible to put them together to

form a square?
(Take your time over this problem. It was not meant to be easy. You can learn a lot by

sticking at it till you've got it out. If you can't solve it, don't look up the answer.
Try it out on a friend.)

Take any two squares of any size and plonk them down on any plane that happens to
be handy. Now have a good look at how they overlap. What sorts of intersection can we
get?

Clearly if we put the squares a long way away from each other they won't intersect at
all. Their intersection will be the empty set.



But if you look at Figure 5.6 you can see that we can get a square (area shaded in
Figure 5.6(a)) or some other four-sided figure (see Figure 5.6(b)).
Exercises
9. (a) Can two squares overlap (intersect) in a four-sided figure whose angles are not all

right angles?
(b) Can two squares intersect in a four-sided figure with (i) precisely three right

angles; (ii) precisely two right angles; (iii) precisely one right angle; or (iv) no
right angles?

(c) Can two squares intersect in n-gons (n-sided figures) for (i) n = 3; (ii) n = 5; (iii)
n = 6; (iv) n = 7; (v) n = 8; (vi) n = 9; (vii) n ≥ 10?

(d) Describe carefully all possible n-gons which arise by intersecting two squares.
(Concentrate on the kind of angles the n-gons can have.)

(Again this question is meant to be thought provoking. Take your time over it. Try it
out on your friends. Try it out on your poor unsuspecting long-suffering teacher.
Only then look at the answer.)

10. Now take a cube-shaped piece of cheese. Cut it straight through with a knife. What
shaped faces can you produce? (See the Bright Sparks section of the site
www.nzmaths.co.nz.)

Figure 5.7.
5.3. Rectangles and Parallelograms
A rectangle is a four-gon (four-sided figure) all of whose angles are right angles and
whose opposite sides are equal in length.

We show a rectangle in Figure 5.7. Obviously a square is a special type of rectangle.
Exercises
11. Do rectangles tessellate the plane?
12. Did Escher ever start one of his “tessellations” from rectangles?
13. Are rectangles self-replicating?
14. Is every shape that tessellates the plane a self-replicating shape?
15. Can you square a rectangle

(i) with squares of equal size;
(ii) with squares of unequal size;
(iii) with squares which are all of different sizes;
(iv) with m squares;
(v) with one square each of side length 1,2,…, n?

16. Divide a rectangle of side lengths 6 and 9 into squares of side length one. How many
squares are there?
Generalise.

17. Can you rectangle a rectangle? That is, can you make up a rectangle from smaller
rectangles? In what different ways can this be done?

http://www.nzmaths.co.nz/


18. Take any two rectangles and plonk them down anywhere in the plane. In how many
different shapes will the two rectangles intersect?
So now we get to parallelograms. A parallelogram is a gram made of parallels. Take

two pairs of parallel lines. The four-sided figure (“gram”) they make is a parallelogram
(see Figure 5.8). So a parallelogram is a foursided figure with both pairs of opposite
sides parallel.

Figure 5.8.
We represent the parallel property by the insertion of arrows. Because the top and

bottom sides of the parallelogram in Figure 5.8 are parallel we put an arrow on each of
them. Because the left and right sides of the parallelogram are parallel (but not parallel
to the top and bottom sides) we put two arrows on each of them.

In general the angles between adjacent sides of a parallelogram are not equal.
However, when they are we get a rectangle or a square. Squares and rectangles are just
special parallelograms.
Exercise
19. Repeat Exercises 11-18 with the words “rectangle” and “square” replaced

everywhere by “parallelogram”.
It's worth picking up a few tips about parallel lines and angles.
In Figure 5.9, it should be clear that the angles b and c are equal. As you rotate the

horizontal line BC about B till it aligns with AB, the angles of size b and c are both
traced out together. So b = c.

These angles are called vertically opposite. So vertically opposite angles are equal in
size.

Figure 5.9.
Further a = b. These two angles are alternate angles on the parallel lines BC, AD.
Since a = b and b = c, then a = c. The angles a and c are corresponding angles on the

parallel lines BC, AD.
Finally since c + d = 180°(AB is a straight line) and a = c then a + d = 180°. Angles

like a and d on a pair of parallel lines always add up to 180°.
Incidentally, angles that sum to 180° are called supplementary.

Exercises
20. Find the size of a, b, c, d in each of the following diagrams.



21. In any parallelogram show that opposite angles are always equal. Are two
neighbouring angles in a parallelogram supplementary? What is the sum of the
interior angles of any parallelogram?

5.4. Triangles
A triangle is a figure with three sides (or three angles). Triangles are much more varied
than squares or even rectangles. The only limit to their variety is the one fact that they
all have in common, apart from the three angles or three sides. This fact is that the sum
of the angles of any triangle is 180°. We show a collection of triangles in Figure 5.10.

Figure 5.10.
In Figure 5.10(a) we have a triangle all of whose sides are equal and all of whose

angles are equal. Such triangles are called equilateral. This comes from the Latin
“equi” for equal and “latus” for side. An equilateral triangle is therefore equal sided. We
show this in Figure 5.10(a) by putting a little line in the middle of each side.

Hence we can see the triangle in Figure 5.10(b) has only two sides equal. Such
triangles are known as isosceles triangles. This comes from the Greek “iso” for equal
and the “skelos” meaning leg. (You can't say that reading these booklets is not a cultural
experience now can you?) If you've got two equal legs then you can make an isosceles
triangle with the ground.

Figure 5.10(c) shows a right angled triangle. The side opposite the right angle is
called the hypotenuse. Everyone knows that the square on the hypotenuse is equal to the
sum of the squares on the other two sides. This is called Pythagoras' theorem.

Figure 5.10(d) is just another old triangle that doesn't have any particular name. Or
does it?
Exercises
22. (a) What is the size of each angle in an equilateral triangle?

(b) Are any angles in an isosceles triangle equal? What is the biggest number of
degrees the angle at the feet of an isosceles triangle can be?

(c) Is every isosceles triangle equilateral or vice-versa?
(d) Can a right angled triangle be isosceles? If so, what are the sizes of its angles?
(e) Can a right angled triangle be equilateral?
(f) What is a scalene triangle? What is an obtuse angled triangle? What is an acute

angled triangle?
23. (a) Do equilateral triangles tessellate the plane?



(b) Can the same be said of all other triangles?
(c) Are all triangles self-replicating?
(d) Did Escher ever start one of his “tessellations” from some sort of triangle?

24. (a) Divide an equilateral triangle of side length 2 into equilateral triangles of side
length 1. How many equilateral triangles of side length 1 are there?
Repeat with an equilateral triangle of side length 3.
Generalise.

(b) Now ask how many equilateral triangles there are of any side length in an
equilateral triangle of side length n.

25. The last exercise shows that you can “equilaterally triangle” an equilateral triangle.
Is it possible to form an equilateral triangle using equilateral triangles all of which
have sides that are of a different size?

26. (It's plonk time again.) Plonk two equilateral triangles of arbitrary size down in the
plane. What possible shapes are the intersections?
Repeat with various shaped triangles.

As a result of all the above activity we know that any triangle is a selfreplicating
figure. How did we know that four copies of a triangle can be put together to form the
same sort of triangle? The basic assumption was that two triangles were “the same” if
all their angles were the same. Now that does seem a reasonable assumption. We'll use
it to define similar triangles.

Two triangles are similar if corresponding angles are equal. Figure 5.11 shows three
sets of similar triangles.

It looks as if the larger of any pair of similar triangles can be obtained from the
smaller by “pumping it up”. In actual fact that is pretty well what's going on. For each
pair of similar triangles ABC, PQR (in Figure 5.11 and anywhere else) the ratio of
corresponding sides is fixed. Hence, for some fixed r,

Exercises
27. Draw a pair of similar triangles ABC, PQR. Measure AB, BC, CA, PQ, QR and RP.

Check that  What value of r did you get? Now draw a pair of similar
triangles with r = 2.5.



28. Draw a pair of equilateral triangles. Measure the appropriate lengths to find r.
Why are all equilateral triangles similar?

29. Assume that 's ABC, PQR are similar. What can be said about the values 
Which of  are equal and why?

Now if r = 1, we can pick up one triangle and fit it exactly on top of the other one. In
that case we say that the two triangles are congruent.

The next example is typical of a whole series of proofs in geometry.
Example 5.1. Show that the opposite sides of a parallelogram are equal.
Proof. Let the parallelogram be ABCD (see Figure 5.12). Join B to D. Now consider 's
ABD and CDB.

Now ∠ABD = ∠CDB, alternate angles on the parallel lines AB, CD. Similarly
∠ADB = ∠CBD. Since the angles in any triangle add up to 180°, these two angle
equalities imply that ∠BAD = ∠DCB.

So 's ABD and CDB are similar. Hence because of the fact that the ratio of
corresponding sides in similar triangles is equal. We must therefore have AB = CD.

But Hence AD = BC.
So opposite sides of a parallelogram are equal.

Figure 5.12.
Exercises
30. Prove that the diagonals of a parallelogram bisect each other. (In other words, show

that in Figure 5.12, if AC and BD meet at the point E, then AE = EC and BE = ED.)
31.

In the figure M is the midpoint of BC and LM is drawn parallel to AB. Show that (i) L is
the midpoint of AC and (ii) LM is half the length of AB.
32. If in the figure of Exercise 31, we change the position of M so that  what can

be said about (i) the position of L along AC and (ii) the relative sizes of LM and AB?
5.5. Circles
A circle is a set of points in the plane all of which are the same distance from a fixed
point in the plane. The fixed point is the centre of the circle and the constant distance is
its radius.

All circles look the same. They're sort of, well, round.



Just about now you should be expecting my usual onslaught of questions involving
tessellating, self-replicating, circling the circle and so forth. However none of those
work. You just can't fit two circles close enough together to tessellate or self-replicate or
whatever. So let's try something else.
Exercises
33. Cover the plane with an infinite number of non-overlapping circles all of which have

the same radius. If this is done as efficiently as possible what fraction of the plane is
covered?

34. (a) Three circles of radius 1 just fit together inside a circle of radius r without
overlapping. Find r.

(b) Four circles of radius 1 just fit together inside a circle of radius r without
overlapping. Find r.

(c) Generalise.

35. A circle of radius 1 has area π and a square of side length 2 has area 4. So it might be
possible to place two overlapping circles of radius 1 so that they completely cover a
square of side length 2. Can this be done?
    If it can, show how. If it can't, find the smallest number of circles of radius 1
required to cover a square of side length 2.
Now we've got circles, we can construct triangles. Suppose we want to produce a

triangle with sides a, b and c. Then first we draw a line of length a. Call the ends A and
B (see Figure 5.13).

Now measure out a radius of length b on your compasses and draw an arc of the
circle, centre A, and radius b. Repeat this process with the arc of a circle, centre B, and
radius c. These two arcs intersect at C and ABC has sides a, b, c as required.

One thing to note here is that given a, b, c there is only one triangle that can be
constructed with side lengths a, b, and c. (You can see this because the construction of
Figure 5.13 produced only one triangle— of course there is another meeting point on
the other side of AB but it produces a congruent triangle.) Hence all triangles with sides
a, b, c are congruent. We say that they are congruent SSS (meaning side, side, side)
since corresponding sides are equal in length.
Exercises
36. Construct triangles with the following side lengths.

(i) 5, 12, 14; (ii) 3, 4, 5; (iii) 6, 7, 8; (iv) 6, 7, 18.
37. For what a, b, c is there no triangle of sides a, b, c? (Assume a, b, c are all positive

real numbers.)
Why is a + b > c known as the triangle inequality?
If two triangles agree AAA are they congruent? By this I mean are two triangles

congruent if they have three corresponding angles equal?



Figure 5.14.
The answer to this might be obvious by now. Look back at Figure 5.11. So what

combination of correspondingly equal angles and sides gives congruent triangles?
For a start we know from Chapter 2 that there are six ways of arranging three letters

which can either be A's or S's. These are
SSS, SAA, ASA, AAS, ASS, SAS, SSA, AAA.

We've already dealt with SSS and AAA. Consider SAA. The two triangles in Figure
5.14 have two equal angles and a common side equal. Since the angles of a triangle sum
to 180° we have a + b + c = 180° and a + b + d = 180°. Hence c = d.

So SAA triangles are clearly AAA. In other words they're at least similar. However,
they're similar with one equal side. Hence they must be congruent.

In exactly the same way a pair of ASA and a pair of AAS triangles are also congruent.
What about ASS then?

Exercises
38. In the following situations is it possible to construct more than one triangle ABC?

(The units are in centimetres.)
(i) ∠ABC =60°, BC =10.0, CA = 9.5;
(ii) ∠ABC =60°, BC =10.0, CA = 9.0;
(iii) ∠ABC =60°, BC =10.0, CA = 8.66;
(iv) ∠ABC =60°, BC =10.0, CA = 8.0.

39. Under what conditions is it possible to construct a unique triangle, given an angle α,
a side b and a side c in that order round the triangle?

40. (a) Can a pair of ASS triangles ever be congruent?
(b) Repeat (a) for SAS and SSA.

Having covered all six possibilities we now have a complete set of tests for
congruence. Two triangles are congruent if they agree SSS, SAA, ASA , AAS, SAS or
RHS.

The last condition comes from ASS when we know we have a Right angle and we're
also given the Hypotenuse and a Side. (See Exercise 40(a).)
Exercises
41. (a) Show that a diagonal divides a square into two congruent triangles.

(b) Repeat (a) with “square” replaced by “rectangle”.
(c) Is the result still true if “square” is replaced by “parallelogram”?

42. Show that the diagonals of a square intersect at right angles.
For what other parallelograms is this true?
As the Greeks knew a couple of thousand years ago, circles and straight lines are

good for making shapes with. So let's run through some ruler and compass
constructions.
Construction 1. To bisect an angle. In the diagram, P and Q lie on a circle, centre A. M
is the point of intersection of a circle with centre P and one of the same radius with
centre Q. We claim that AM bisects angle BAC. So why does this work?



Join P to M and M to Q by line segments. Then consider 's APM, AQM. Now AP =
AQ since these are both radii of the circle that we drew first which was centred at A.
Similarly PM = QM — equal radii again. And of course AM = AM. Hence 's APM,
AQM are congruent SSS. Hence ∠PAM = ∠QAM.
Construction 2. To bisect the line segment AB.

Arcs of circles centred at A and B with the same radius (greater than ½AB) meet at P
and Q. The line PQ meets AB at M. We claim that M is the midpoint of AB.
Exercises
43. Use congruent triangles to prove that M is the midpoint of AB in Construction 2.

Further prove that PQ is perpendicular to AB.
44. Use ruler and compasses to construct the altitude from A to BC in some ABC. (That

is, construct AH such that AH is perpendicular to BC and H is on BC.)
45. Use ruler and compasses to construct the median from C to AB in ABC. (That is,

construct CM such that M is on AB and MA = MB.)
46. Use ruler and compasses only to perform the following

(i) Construct a square with a given side length.
(ii) Find the centre of a given circle.
(iii) Given a circle construct a square which lies outside the circle so that the sides

of the square are tangents to the circle.
(iv) Given a square, construct a circle which passes through its vertices.
(v) Given a square, construct a circle which has the four sides of the square as

tangents.
(vi) Given an angle α, construct an angle at a given point equal to α.
(vii) Repeat (iii), (iv) and (v) replacing “square” by “regular hexagon” and then

“regular pentagon”.
(viii) Construct a triangle which has the same area as a given quadrilateral.

47. Show that there is an infinite number of circles which pass through two points.
How many circles pass through three given points?
How many circles pass through four given points?

48. Construct a square with two vertices on one side of a given triangle and the other
two vertices one on each of the other two sides.

49. (a) Find the sum of the internal angles of a hexagon.
(b) Find the sum of the internal angles of an n-gon.



(c) A concave polygon has some interior angles bigger than 180°. Find the sum of
the interior angles of a concave quadrilateral.

(d) Repeat (c) for a concave pentagon.
(e) Repeat (c) for a concave n-gon.

50. What is the size of an interior angle of a regular n-gon?
51. Which regular n-gons tessellate the plane?
52. Which regular n-gons are self-replicating?
53. Is it possible to divide any square up into n squares for any n  ?
54. The drawing below is an equilateral triangle of squares pointing to the right. What is

the fewest number of squares that need to be moved so that the triangle is facing to
the left?

5.6. Solutions
1. Escher made many prints based on tessellations. He was able to produce birds, fish,

horses and riders, etc. that came from tilings. How did you do? (See The Graphic
Work of MC Escher published by Pan, London, 1973 or check on the web.)

2.

Regular hexagons do tessellate (ask your local bees how). (Not that the hexagon to the
left is not regular!)

You can tessellate with odd-gons but you have to be a bit tricky. Start with pentagons
and work your way up.



3. (i)

(ii) Squares and rectangles.
4. Yes, but this takes a little bit of work.
5. Rectangles (take four copies); parallelograms; the shape below; for more see later.

6. It can be made bigger and bigger to eventually cover more and more, and eventually
all of the plane.

7. (a) 14 = 9 + 4 + 1; (b) 30; (c)  (see Chapter 4,
Example 13, p. 130 for the simplification).

8. (a) Of course. Use one 2 × 2 and five 1 × 1 squares in Figure 5.5(a).
(b) You should manage to square a 5 × 5 square with one 3 × 3 and an assortment of

2 × 2's and 1 × 1's.
(c) Yes. It's done somewhere in this chapter but I'm not saying where.
(d) This can be done for all m except m = 2, 3 and 5. Once you get 6, 7 and 8 you

can successively divide a square up into four smaller squares and so get all the
remaining values of m.

(e) Suppose this were possible. Then the smaller squares could make up an m × m
square. Calculating areas gives 
     It is a non-trivial result in Number Theory to show that the only solutions of
6m2 = n(n + 1)(2n + 1) are n = —1, 0, 1, 24. Did you get this far?
     But can you actually square the 70 × 70 square with different squares ?

9. (a)

(b) (i) If three are right angles then the fourth one has to be, whether the figure is
formed by squares or not;



(ii) See (a). Can the right angles be adjacent?
(iii) No. If the right angle is produced at the intersection of two sides of distinct

squares, then the intersection has four right angles. The one right angle of the
intersecting 4-gon must therefore be from one of the squares. All other corners
of this square must lie outside the region of intersection. This forces one corner
of the other square to be in the intersection.

(iv) This would mean that all the corners of the squares would be outside the region
of intersection. This forces a polygon with more than four sides.

(c)

(vii) The most that can be done is 8, because no side of a square can be intersected
more than twice.

(d) Must a triangular intersection contain a right angle?
     Must a 5-gon have three right angles? Must a hexagon have two right angles?
Must a heptagon have only one and an octagon none?

10. See Bright Sparks at www.nzmaths.co.nz.
11. Yes. (If you can't see this, tessellate with squares and then let neighbouring pairs of

squares join to form a rectangle.)
12. Most certainly. Look at his horsemen for instance.
13. Take four and put them together.
14. No. Try self-replicating the pentagons of Exercise 2.
15. (i) easily; (ii) see Exercise 8;

(iii) put the squares of Exercise 8(c) together;
(iv) this might depend on the size of the rectangle;
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(v) I have no idea.

For an m x n rectangle where m < n we have  squares. This
simplifies to  (What happens if n = m?) (Now see how many
cubes there are in a box.)
17. It's easy enough to see that you can put the same rectangle together several times to

build up another rectangle. Is it possible to divide a rectangle into unequal rectangles
though? Have a look at Exercise 8 and then take a stretch.

18. Is there any difference between the sort of shapes you can get here and the ones you
got in Exercise 8?

19. Ex. 11: Yes. Ex. 12: Possibly. Ex. 13: Yes. Ex. 15: Push rectangles out of shape. Ex.
16: You clearly can't divide all parallelograms up into rectangles. What about
dividing a 6 × 9 parallelogram up into parallelograms of size 1 × 1 though?
Generalise. Ex. 17: Push rectangles out of shape. Ex. 18: Does this give anything
new? (Clearly you can drop the right angle restrictions.)

20. (i) a = c =70°, b =100°. (ii) a =100° = c, b = 80° = d.
21.

Now e = a, alternate angles. Then e = c corresponding angles. Hence a = c.
Since e + d = 180°, c + d = 180°. Hence c and d are supplementary. Since a = c, then

a and d are supplementary.
Clearly a + b + c + d = 360°.

22. (a) 60
(b) Equal angles are opposite equal sides. In Figure 5.10(b) then, a = b. Since a + b

< 180°, and a = b, then a and b are both less than 90°. However, they can be as
close to 90° as you care to make them without ever equalling 90°.

(c) Every equilateral triangle is isosceles but not vice-versa.
(d) Yes. The angles of such a triangle are 45°, 45°, 90°.
(e) No! Definitely not!
(f) I hope you've looked these up in an old geometry book or on the web. If not, a

scalene triangle has all its sides (and therefore angles) different sizes; an obtuse



angled triangle has an obtuse angle — one bigger than 90°; and an acute angled
triangle has no obtuse angles.

23. (a) Yes. (b) Yes. (c) Yes. (d) Yes.
24. (a) Four. Nine. In general an n-sided equilateral triangle has 2n + 1 triangles along a

side. So the total number of small equilateral triangles is 1 + 3 + 5 +…+ (2n +1)
=  (2i+ 1). This turns out to be n2. (For a proof see Chapter 6, Exercise
13(ii).)

(b) Now the side length 2 triangles give us some problems. First there are 1 + 2 + 3+
…+ (n — 1) oriented this way:  and a further 1 + 2 + 3+ -- - + (n — 4) oriented
this way: V. This gives n2 — 4n + 6 of these.
The other side lengths work in the same way.
For side length 3 we have [1 + 2+ + (n — 2)]+ [1 + 2+ + (n — 6)];
For side length 4 we have [1 + 2+…+ (n — 3)] + [1 + 2 +…+ (n — 8)] and so
on.
Do these all add up to a simple formula? If they do, can the formula be obtained
by some more efficient method?

25. I really don't know the answer to this. Can anyone help me? Is it on the web
somewhere?

26. All sized n-gons from n = 3 to 6 inclusive can be obtained, whether or not we stick
to equilateral triangles.

27. What did you get? Can you now make similar triangles with r to order? (It might be
easy to do this with some geometry software.)

28. They all have the same angles.
29. They are equal.
30.

In parallelogram ABCD we want to show that AE = EC and that BE = ED.
Consider 's ABE, CDE. Now ∠BAE = ∠ECD alternate angles and ∠ABE = ∠EDC
for the same reason. Hence 's ABE, CDE are similar since all the angles are the same.
(Of course we only need to prove two angles are equal. The third angle follows since
the angles in any triangle sum to 180°. Actually in the present case ∠AEB = ∠CED
since they are opposite angles.)
     But we know from Example 1 that AB = CD. Hence 's ABE, CDE are congruent
and so AE = EC and BE = ED.



We know that CM = MB and LM| |AB (LM is parallel to AB). Draw LP so that P is on
AB and LP| |CB.
First we show that 's ALP, LCM are congruent. They are similar since they have the
same angles. This can be seen by noting that ∠LAP = ∠CLM (corresponding angles on
parallel lines) and ∠ALP = LCM (for the same reason). But MB = LP by Example 1.
Hence LP = CM. So 's ALP, LCM are indeed congruent.

(i) It follows immediately that AL = LC, so L is the midpoint of AC.
(ii) Further AP = LM since 's ALP, LCM are congruent and PB = LM by Example

1. Hence LM =½AB as required.
32. By the initial part of the argument of the last exercise, 's ALP, LCM are similar.

(i) Now if  then  also (PL = BM by Example 1). Since 's ACP,
LCM are similar and , then . This gives the position of L and AC.

(ii) Now  the similarity of 's ACP, LCM.
Hence by Example 1.
Hence

33. The closest packing of circles occurs when their centres are on equilateral triangles.
The fraction of the area of the plane not covered is the ratio of the shaded part of the
triangle ABC to the total area of that triangle.

Suppose the radius of each circle is one. Then the length of each side of the triangle is 2
and the altitude is √3 (an application of Pythagoras). Hence the area of ABC is √3.

The sector of each circle in ABC subtends an angle of 60° at the centre. Hence its
area is (The area of a sector is . If
you want to use degrees for the angle C then the area is
The shaded area is therefore  The proportion of the plane not covered is
therefore  and the ratio covered is . About 90% of the plane is
covered by circles.
34. (a)



If we can find OD we will have found r. Now first consider the equilateral triangle
ABC. Each side is of length 2 and the altitude is √3.
    Inside triangle XYZ we have two right angled triangles with 30° and 60° angles. By
similarity any such right angled triangles will have its sides in the ratios 1:√3:2.

Now go back to the circles. Extend DO to intersect BC at E. Then OEC is a right
angled triangle and ∠OCE = 30°.
By what we said above . But CE = 1 since it is the radius of the circle. Hence
OE =
    Now AO = AE -OE =  Thus r = AD + Ao = 

(b).

PQ is a diameter of the circle, so PQ = 2r. But PQ = PA + AC + CQ. Since AC is a
diagonal of the square ABCD which has side length 2, then AC = 2√2 (use Pythagoras'
Theorem). Hence 2r = 2 + 2√2 or r = 1 + √2.

(c) It's probably easier to do an even number of circles first. Is the answer for 6
circles simply 3?
Show what happens to r as the number of circles gets larger and larger. Does r
approach a limit?

35. If every corner of a square lies inside a circle then four different circles are required.
This is because no circle can cover two corners in its interior.



    Two corners can only be covered if the side of the square is a diameter of a circle.
The two other corners require two more circles (and then there is still some square
not covered) unless we again use circles whose diameters are the sides of the square.
Hence four circles whose diameters are the sides of the squares are needed.

36. You should be OK till (iv). Then, big trouble!
37. You should have worked out from the last exercise that, for a triangle to exist, the

sum of any two sides is greater than the third. Hence we get a + b > c, b + c > a, and
c + a > b. If for some side lengths a, b, c, a + b < c then no triangle exists.
     This can be seen when you try to construct such a triangle using compasses. So I
should have mentioned in the construction of triangle ABC, that the construction
won't work if you don't have the triangle inequality holding.

38. (i)

(ii) 2 triangles as in (i);
(iii) one triangle;

(iv) no triangles since, 8.0 < 5 3.
39.

If AC is perpendicular to BA then the triangle is unique.
40. (a)

In the diagram, we have ASS. If we know ∠ZXY and sides XY, Z'Y = ZY, then we can
construct two triangles. So ASS is not a test of congruence unless ∠XZ'Y = 90°, or
unless ∠Z'XY = 90°. (Draw the diagram in both cases.)

(b) SAS is OK.



Suppose we know XY, YZ and ∠XYZ. Then XZ is uniquely Y defined. The quickest
proof of this is by the cosine rule. But then we are in an SSS situation.

(c) This is the clockwise version of (a) above. SSA is not a test for congruence
unless we have one of the right angle situations mentioned before.

41. This is essentially Example 1.
(a)

We wish to prove that 's DAB, BCD are congruent.
∠CDB = ∠ABD (alternate angles AB | |CD).
∠ADB = ∠CBD (alternate angles AD | |BC) and BD is common.
So 's DAB, BCD are congruent by the ASA test.

(b) If you label your rectangle in the right way you can use the proof of (a) with no
change.

(c) See (b).
42.

∠EAB = 45° since ABC is isosceles. Similarly ∠ABE = 45°. Hence ∠AEB = 90°.



Suppose the diagonals of ABCD intersect at right angles. Now we know that AE = CE
since the diagonals of a parallelogram bisect each other (Exercise 30).
Consider 's AEB, CEB. From above AE = CE. Clearly BE = BE. Finally ∠AEB =
∠CEB = 90°. So we have congruence by SAS.

This means that AB = CB.
Precisely the same argument shows that AB = AD (= CD).

Hence if the diagonals of a parallelogram intersect at right angles, the parallelogram
has all sides equal.

(Is it true that in a parallelogram with all sides equal, the diagonals intersect at right
angles?)
43. 's APB, AQB are congruent (SSS) and isosceles. Hence ∠PAM = ∠PBM = ∠QAM

= ∠QBM. Similarly 's APQ, BPQ are congruent (SAS) and isosceles. We can use
these facts to show that A's APM, BPM are congruent (ASA). Hence AM = MB.
Since ∠AMP = ∠BMP (A's APM, BPM are congruent) and ∠AMP + ∠BMP =

180°, then PM (and hence PQ) is perpendicular to AB.
44. Draw circular arcs with centre A to intersect BC (produced if necessary) at P and Q.

Now use Construction 2 to determine the midpoint M of PQ. Since AM is
perpendicular to PQ it is perpendicular to BC. Hence AM is the required altitude.

45

Construction 2 enables us to find M the midpoint of AB. Join C to M.
46. (i)

Draw the line segment AB with the required length.
Use the compasses to locate A' such that AB = BA'. By Construction 2, construct the

perpendicular to AB at B.
Similarly construct the perpendicular to AB at A.
Use the compasses to locate C on the perpendicular at B so that BC = AB. Construct

the perpendicular to BC at C. This perpendicular meets the perpendicular to AB at A in
the point D. The points A, B, C, D are the vertices of the required square. (ii) (This is
not to be done by looking for the hole in the paper.)

Draw two arbitrary chords AB, CD to the given circle. The perpendicular bisectors of
these two lines meet at the centre, P, of the circle.



Proof. Suppose O is the centre of the circle.
Then since OA = OB (radii of the circle) A's AMO, BMO are congruent SSS (AM =

BM and MO = MO). Hence O lies on the perpendicular bisector of AB.
Similarly O lies on the perpendicular bisector of CD. Since O is common to two

perpendiculars, it must be at their point of intersection, namely P.
(iii) Through the centre O of the circle (found via (ii) if necessary) draw the line AB

so that A, B are two points on the circumference. Construct perpendiculars to
AB at A and B.
    Now construct the perpendicular to AB at O. Let this perpendicular meet the
circle at C and D. Construct perpendiculars to CD at C and D.
    The perpendiculars at A, B, C, D meet to form the required square.

(iv) Construct the diagonals of the square. They meet at a point which is equidistant
from each vertex of the square. This is the centre of the required circle. The
radius of the square can be taken from the diagram.

(v) The centre of the required circle is at the intersection of the perpendicular
bisectors of adjacent sides of the square. The radius of the square can be taken
from the diagram.

(vi) It is enough to show that I can construct, through a given point, a line parallel
to a given line.

Let AB produced be a given line and P be a given point. Draw AP. Using AP as radius
and P as centre find the intersection of this circle with AB produced. Let the new point
be Q. Since APQ is isosceles, ∠PAB = ∠AQP. Now ∠RPQ = ∠PAQ + ∠PQA =
2∠PAQ. Now bisect ∠RPQ. Then ∠TPQ = ∠PQA, so PT||AB.

(vii) Hexagon around a circle. First we need to be able to construct an equilateral
triangle. But, of course, that's easy. Just use compasses to produce a triangle all of
whose sides are equal. This also allows you to construct an angle of 60°.



So take your circle and draw a diameter. Construct perpendiculars at the ends of the
diameter. Now construct 60° angles as shown. Constructing perpendiculars (tangents to
the circle) at P, Q, R, S to complete the regular hexagon.
Construct a circle around a hexagon. The lines joining opposite vertices of the hexagon
intersect at the centre of the required circle. The radius of the circle can be taken from
the diagram.

Construct a circle inside a hexagon. The same centre is required for this circle. Then
construct the perpendicular from O to AB. This provides the radius for the circle.
Pentagon around a circle. To do this we need to construct an angle of 72°. Once this
has been done the rest is straightforward.

Draw the circle with radius OA. Construct OB perpendicular to OA with B on the circle.
Then bisect OB to find the midpoint M of OB. Bisect the angle OMA. The point N is on
the line of bisection and on OA. Construct the perpendicular at N. This perpendicular
meets the circle at P. The angle POA is 72°. (The big question though is why. Can you
prove this? Find an expression for the cosine of angle POA.)

(viii) Take quadrilateral ABCD and then construct diagonal AC (if ABCD is an
arrowhead, concave quadrilateral, then take the internal diagonal). You now
have two triangles — ABC and ACD. Now construct altitudes from B to AC and
D to AC. Label them a1 and a2. Now draw a line segment A* C* equal in length
to AC. Through F draw a line perpendicular to A*C* and lay off on it a segment
equal in length to a1 (labelled a1*) and then at a1*'s farthest end part, lay off a
segment equal in length to a2(a2*). Now connect A* to the farthest end point of
a2* and C* to the farthest end point of a2

*. Label this last point E. Triangle
A*EC* is the triangle wanted.



Proof. The quadrilateral ABCD was dissected into two triangles and had an area of ½ ×
(AC) × (ai) + ½(AC)(a2) which by the distributive law is equal
to i(AC) x (01 + 02). The area of triangle A*EC* is i x (A*C*) x (EF). A*C* is equal to
AC. EF is equal to (ai + a2). Therefore the areas of ABCD and A*EF* are equal. ?
47. Construct the perpendicular bisector  of the line segment between the two points.

Any point on  is the centre of a circle which passes through the two points.
    If the three given points are on a straight line, then no circle goes through them. If
the three points A, B, C are not on a straight line, then the perpendicular bisectors of
AB, BC, CA meet at a unique point. This point is the centre of the unique circle
through A, B, C. (To prove this use a similar argument to that of Exercise 46(ii)).
    It is always possible to choose four points which do not lie on a circle or four
points which lie on a unique circle.

48.

Let PQRS be the required square. If P'Q'R'S' is any square with one vertex on AB and
two on AC, then R' is on the line AR. (You can prove this using similar triangles.) Hence
to construct PQRS, first construct any square P'Q'R'S'. The point R is the intersection of
AR' andBC.
The rest of the vertices of PQRS are then easily found.
49. (a) Take any point P inside the hexagon and construct the six triangles with P as one

vertex and the sides of the hexagon as the sides of the triangle opposite to P.
Hence the sum of the internal angles is the sum of the angles of six triangles
minus the angle around P. This is 6 × 180° - 360° =4 × 180° = 720°.

(b) In general this is n x 180° - 360° = (n - 2)180°. Now prove this without
introducing a point P in the middle of the n-gon.



If we join B to D we see that the quadrilateral is composed of two triangles. Hence the
sum of the internal angles is 360° (the same as a convex quadrilateral).

(d) Again divide the polygon into triangles and get three of them to give 540°.
(e) (n – 2)180°. But you have to make sure all your triangles can be inside the

polygon.
50. We know that the interior angles sum to (n —2)180°. There are n angles, so in a

regular polygon they are all equal to .
51. To tessellate the plane we need k of them to fit around a point. Hence k  =

360°. So k(n – 2) = 2n or k = . But k has to be an integer, so n - 2 divides
4. There are only three possibilities.

Case 1. n – 2=1. Here n = 3 and the polygon is a triangle. We know equilateral triangles
tessellate.
Case 2. n – 2 = 2. Here n = 4 and the polygon is a square. We know that squares
tessellate.
Case 3. n – 2 = 4. Here n = 6. Regular hexagons do tessellate.
Hence only equilateral triangles, squares and regular hexagons tessellate.
52. If a regular polygon is self-replicating it will tessellate. Hence we only have three

candidates for self-replicating regular polygons.
    We already know that equilateral triangles and squares are selfreplicating. What
about regular hexagons?

Suppose regular hexagons are selfreplicating. We know from Exercise 48 that their
interior angles are 120°. Hence if AB, BC represent two sides of a “large” regular
hexagon, ∠ABC =120°.

This means that if the figure is self-replicating, a smaller regular hexagon must fit
exactly into the corner near B. But the ∠ADE = 30°. We cannot fill this angle
using a regular hexagon. Hence regular hexagons are not self-replicating.
    Are there any self-replicating hexagons?

53. Not too easy for 2, 3 or 5?
54. Just 2. That's not so hard but generalise this to equilateral triangles that have n

squares on each side.
8. (c) Sorry you had to wait for so long.



(http://en.wikipedia.org/wiki/Squaring_the_square)

http://www.en.wikipedia.org/wiki/Squaring_the_square


Chapter 6
Proof

6.1. Introduction
This chapter looks at three things: A problem about regions in a circle; Proof by
Contradiction; and Proof by Induction. The main reason for the problem is to show that
you can never take anything in mathematics for granted. You think that you may have
found a pattern or discovered a nice answer to a problem but until you are able to prove
what you think then you can't be sure. Of course we have been proving things
throughout this book so far but here we say why we have been doing that. In addition
we show in this chapter that there are set types of proof and we talk about two of these
that may come in handy.
6.2. Why Proof?
Consider the following problem. If n points are placed on the circumference of a circle
and the nC2 = ½n(n – 1) chords drawn so that no three have a common point of
intersection, then how many regions is the circle divided into?

As with any problem, if you can't see the answer, try a few examples. I've done that
in the diagram below.

It's probably useful now to draw up a table. (It should be clear where the values for n =
1 and n = 2 come from.)

The pattern is now perfectly obvious. The number of regions must be 2n-1. So what's
difficult about that? Surely nothing. Why don't you just check out the case n = 6?

Why proof? Well it's one thing to discover a pattern, it's another to be absolutely
certain that you've discovered the correct pattern. In the example above, everything's
behaving nicely, at least up to n = 5. It might also go on behaving well in the n = 6, 7, 8
cases. However, how can we be absolutely sure that by the time we get to n = 573 the
pattern still holds?

We can't. So that's why proof comes in. And this is why Mathematics is different
from Physics and Chemistry. Once a mathematical fact has been established by rigorous
proof it is true for all time. This is not the case with the other sciences that seek to
explain the Universe and what lies in it. For instance, the “truth” about the Solar System
has changed as our ability to investigate it has changed. Originally Ptolemy convinced
us that the Sun and the planets revolved around the Earth. That was the truth till
Copernicus got to measuring and put the Sun at the centre with the planets moving in



circular orbits. As measurement and theories got more sophisticated we gradually built
up the picture we have today.

Now at this moment we may or may not fully understand the Solar System. The
point is that the “truth” about the Solar System has been a function of time. Don't for
one moment doubt that people believed they had it right. People were willing to kill to
defend their views on the matter while, reciprocally, others were willing to die for their
beliefs.

So there's a difference between Maths and Physics but before Maths gets too carried
away by itself we should stop and reflect. The reason Maths is able to be rigorous is that
it chooses its own ground rules.

Take Euclidean geometry, for example. By assuming certain axioms we can produce
results about space. Those results are never wrong but, and this is a capital BUT, they
may have nothing whatever to do with actual space. If things don't tie up in
Mathematics with reality, then we go back and change the axioms and start again.

So maybe Mathematics isn't too different from the other sciences after all.
Oh, I think after all this philosophising we should come back to our original

problem. Sorry folks! The number of regions into which the lines divide the circle is not
2n-1. Go and work out what happens when n = 6. You should get 31 not 32. We didn't
have to go as far as n = 573 after all.
Exercises
1. Try to find the number of regions for n = 7, 8.
2. Conjecture the number of regions for n points.
3. Prove/disprove your conjecture.

(In the case of a disproof, GO TO 2.)
You are all probably coming to realise that the sort of problems we have been

looking at require a proof. It is not enough to just come up with the answers. One way
to see this is to consider an example.
Example 1. The floor of a rectangular room is covered with square tiles. The room is m
tiles wide and n tiles long with m ≤ n. If exactly half of the tiles are on the perimeter,
then find all possible values for m, n.

Comment. A bit of work with pencil and paper will probably convince you that there
are two solutions: m = 5, n =12 and m = 6, n = 8. Try it. A bit of hand waving will
suggest to you that there are no other solutions. But how can you be sure? In order to
make things watertight we require a sound argument that these are indeed the only
solutions. The matter must be proved.
Proof. The total number of tiles is mn. The total number of edge tiles is 2n+2(m–2).
Because half of the tiles are on the perimeter mn = 4n+4m–8. Actually it's not totally
obvious the first time you see it, how to solve this equation. Perhaps surprisingly, we
have to rely heavily on the fact that m and n are integers. First factor the expression to
give this



And now play the integer card. Now m – 4 and n – 4 are both integers. Further, the only
pairs of integer factors of 8 are 1 x 8, (– 1) x (–8), 2 x 4 and (–2) x (–4). For physical
reasons we can discard the negative factors. So, since m ≤ n, m – 4 must be 1 and n – 4
must be 8 or m – 4 must be 2 and n – 4 must be 4. Thus we have the solutions m = 5, n
= 12 or m = 6, n = 8.

Notice that as far as the answer goes, providing a proof at first sight didn't seem to
help. With hand waving and fast-talking we might have been happy with the two
answers and gone off to do other, more interesting things like kicking a football or
reading a book.

The point of the proof, however, is to bring total satisfaction, to eradicate all doubts,
to make you feel you really understand and have complete control over the problem.

Once given “the proof”, anyone can see what the solutions are, how they were
obtained (in the case above, they were obtained systematically) and that there are no
more, nor can there possibly be any more, solutions.

It is important in virtually all problem solving, to produce a proof because you will
then know that the problem is settled. The proof should first convince you and second
convince everyone else.

Proofs are often not common in school mathematics. Usually anything you do in
school only involves a few steps that are often simply mechanical use of an algorithm.
(Solve this quadratic equation, factorise this polynomial, and so on.)

As a result you may find writing proofs a little difficult. They certainly take a bit of
practice. At the start of proof writing it may not be quite clear to you when you have a
proof and when you haven't or whether you have included enough in the proof for it to
be watertight. Overcoming these difficulties is important. Like everything else it
involves a lot of work. Remember the old proverb “Practice makes proofs”. And people
who run competitions, especially the IMO, are looking to proofs to give points to.

Now friends, teachers, and family are all laid on for you to practice your proof
presenting. When you think you have a proof to a problem write it out. Then ask a
friend if she (or he) is convinced. If she isn't, then find out why and redraft your proof.
Keep this up till she is convinced. Then put the proof aside for a day or two. After that
period read it yourself to see if you are still happy with it. If you aren't, fix it up.
6.3. Proof by Contradiction
A proof is just a logical chain of statements which in total reaches some conclusion.
There are some recognisable proof types. One of these is Proof by Contradiction, or, to
give it a grander sounding name, Reductio Ad Absurdum.

The idea of this kind of proof is to assume the opposite of what you are trying to
prove (which sounds a crazy thing to do). Then proceed via the logical chain of
argument till you reach a demonstrably false conclusion. Since all the reasoning was
correct and you've reached this false conclusion, then the only thing that could be
wrong is the initial statement. What you are trying to prove must have been true.

Confused? Let's try the argument. First, let me remind you that a rational number is
one of the form  where m and n are integers. So ¾ is a rational number and so is 

A number which is not rational is called irrational. We now give the classical proof
that  is irrational.



Example 2. Required to Prove:  is irrational.
Proof. Assume  is rational.

If  is rational, then,  =  for some integers m and n. Actually we can say more
than this. We can even assume that m and n have no factors in common because if they
did, we could cancel the factors without changing the value of the fraction 

So  = . Hence n  = m. This leads to 2n2 = m2.
This means that m2 is an even number. Hence m is an even number.

(The square of an odd number is odd — (2n + 1)2 = 4n2 + 4n + 1.) So we can write m =
2p for some integer p.

Thus 2n2 = (2p)2 = 4p2. Hence n2 = 2p2. But this means that n2 is even and so n must
also be even.

However, if m and n are both even, then they must both have a factor of 2. Thus we
contradict the assumption that they have no common factors.

Since all the steps in the argument are sound, the only reason for this contradiction is
the fact that our original statement is wrong. Hence  is irrational.

In the above proof everything went well until we found that two numbers that didn't
have a common factor, did. Every step of this proof has been correct. Therefore the
original statement must have been false.

Now try your hand at the following questions.
Exercises
4. (a) Show that if 3 divides n2, then 3 divides n.

  (Hint. n can only be of the form 3a, 3a + 1 or 3a + 2).
(b) Show that if 5 divides n2, then 5 divides n.
(c) For what q is it true that if q divides n2, then q divides n.

5. Where possible, use Proof by Contradiction to settle the following. In each case
below, b and c are integers.
(i) Prove that √3 is irrational;
(ii) Prove that √5 is irrational;
(iii) Prove that √p is irrational for any prime p;
(iv) For what values of b is √b rational?
(v) Is √2 + √3 irrational?
(vi) If √b and √c are irrational is √b + √c always irrational?
(vii) If √b and √c are irrational is √b – √c always irrational?
(viii) For what values of b is  rational?
(ix) Is the sum of a rational number and an irrational number irrational?
(x) Is the product of a non-zero rational number and an irrational number rational?

6. Prove that there is no largest integer. Is there a smallest integer?
7. Prove that there are infinitely many prime numbers.
8. Prove that for all a, b ≥ 0, ½(a + b) ≥√ab.
9. Prove that 32n + 5 is never divisible by 8, no matter what value the natural number n

takes.
10. Prove that the highest common factor of n and n + 1 is 1.
11. Prove that the decimal expansion of an irrational never terminates nor has a section

which repeats continuously.



12. Prove that in every tetrahedron there is a vertex such that the three edges meeting
there have lengths which satisfy the triangle inequality. (IMO 1968.)

13. Let f(n) be a function defined on the set of all positive integers and having all its
values in the same set. Prove that if f(n +1) > f(f(n)) for each positive integer n, then
f(n) = n for each n. (IMO 1977.)

6.4. Mathematical Induction
How do you teach a robot to climb a ladder? There are really only three steps involved.
These will enable the robot to get to the nth rung, where n is any natural number.
Step 1. Get the robot on the first rung.
Step 2. Assume that the robot can make it to the kth rung.
Step 3. If the robot can get to the kth rung it can move to the (k + 1)th rung.

Let's assume we've programmed our robot to follow the three steps above. Can it
climb the ladder?

Well it can certainly get somewhere. Step 1 puts the robot on the ladder.
Ah! But don't you see, Step 1 has accomplished Step 2 for k = 1.
Now we can use Step 3. With k =1, Step 3 tells us that the robot will go from the 1st

rung to the (1 + 1)th rung. The robot has successfully got itself to the 2nd rung.
At this stage we can go back to Step 2. Clearly Step 2 is true for k = 2 now. So it's on

to Step 3 which gets the robot from the 2nd rung to the (2 + 1)th or 3rd rung.
About now you ought to see what's going on. No matter how big n is, by alternating

Steps 2 and 3 we can get our robot to the nth rung of the ladder. We've taught our robot
to climb any ladder of any length.

Of course if it's not an infinite ladder the poor thing's going to fall off the top but you
can work on that problem for the next prototype.

How do you make dominoes fall? You've all seen, on TV if nowhere else, strings of
dominoes tumbling and making interesting patterns. How does this work? Well it's the
old domino principle of course. Here's how to get the nth domino to fall.
Step 1. Push over the first domino.
Step 2. Assume that the kth domino has fallen.
Step 3. If domino k falls, then domino k + 1 falls.

How do your dominoes fall?
Apply Step 1 and you're off. Step 2 is now true for k = 1, so moving to Step 3 we see

the second domino falling. Back to Step 2. This is now true for k = 2. So moving on to
Step 3, the third domino goes.

Then it's back to Step 2, then Step 3, then 2, then 3,…And they all fall down.
OK. If you're on top of that you're ready for, roll on the drums, fanfare of trumpets, the
Principle of Mathematical Induction. This is a simple three step proof which is good for
proving a variety of results which are true for all positive integers.

First the three steps, which you will note are amazingly (what a coincidence) like
robot ladder climbers and falling dominoes.
Step 1. Show the result is true for n = 1.
Step 2. Assume the result is true for n equal to some integer k.
Step 3. Prove that if the result is true for k, it is true for k + 1.

Once again it is easy to see why the proof method works. If the result is true for n =
1, then Step 2 is OK for n = 1 so Step 3 tells us it's OK for n = 2. Back to Step 2. This is



fine for n = 2 so Step 3 gives the result for n = 3. We keep this up until we've covered
all the integer rungs on the real number ladder or equivalently, all the integer dominoes
have fallen.

This Principle of Mathematical Induction then enables us to prove results which are
true for all integers.

Now you understand the idea, let's try an example or two.
Example 3. Prove that the sum of the first n positive integers is + ½n(n+1)
Proof. We've seen this already when we did Arithmetic Progressions in Chapter 4,
Section 4.5, p. 128. Now let's do it another way.
Step 1. Show the result is true for n = 1.

Now the first 1 integer adds up to 1.
If we put n = 1 in the expression \n{n-\-1) we get 1. So the result is certainly true

for n = 1.
Step 2. Assume the result is true for n = k.

This step says 1 + 2 +…k = ½k(k + 1).
Step 3. If the result is true for k, it is true for k + 1.

This is the step that usually causes problems.
We now have to show that the result is true for k + 1. In other words we have to

show that

Start with the LHS (left-hand side).

This completes Step 3.
Hence by the Principle of Mathematical Induction 1 + 2 +…+ n =½n(n + 1), for all

positive integers n.
The Principle of Mathematical Induction always works like this. Let's have a look at

another example.
Example 4. Prove that 2n > n for every natural number n.
Proof.
Step 1. If n = 1, 21 = 2. Now 21 > 1 and so, for n = 1, the inequality is certainly true.
Step 2. Assume 2k > k.
Step 3. If 2k > k, then we have to prove that 2k+1 > k +1.

Now 2k+1 = 2 x 2k > 2 x k = 2k. (by Step 2)
But 2k ≥ k + 1. Hence 2k+1 > 2k ≥ k +1.
So 2k+1 > k + 1 as required and Step 3 is completed.

Hence by the Principle of Mathematical Induction we know that 2n > n for all natural
numbers n.
Exercises



(Throughout, N is the set of natural numbers {1, 2, 3,…}.)
14. Use Mathematical Induction to prove

(i) 2 + 4 + 6 +…+ 2n = n(n + 1);
(ii) 1 + 3 + 5 +…+ (2n - 1) = n2;

(iii) 1 + 4 + 7 +…+(3n - 2) = ½ n(3n – 1);
(iv) 2 + 7 + 12 +…+ (5n - 3) = ½n(5n - 1);
(v) a + (a + d) + (a + 2d) +…+ [a + (n - 1)d] = ½n[2a + (n - 1 )d], where n is a

natural number and d is real.
15. Use Mathematical Induction to prove

16. Use Mathematical Induction to prove

17. Use Mathematical Induction to prove for all natural numbers n that

Does the result hold if n is an integer?
Here's another type of use for Induction.

Example 5. Prove in two ways that n2 + n is even.
Proof.
(1) First we'll use the Principle of Mathematical Induction. Let S(n) =

n2 + n.
Step 1. If n = 1, then S(1) = 2 which is even.
Step 2. Assume that S(k) = k2 + k is even.
Step 3. Now S(k + 1) = (k + 1)2 + (k + 1) = (k2 + k) + (2k + 2) = S(k) + 2k + 2. By

Step 2, S(k) is even and clearly 2k + 2 is even. Hence S(k + 1) is even.
   Thus S(n) is even for all natural numbers n.

(2) The second method is quicker.
Now S(n) = n(n + 1). But any number or its successor is even. Hence S(n) is even.

Exercises
18. Prove the following by two methods.

(i) n3 — n is divisible by 6;
(ii) 6n + 4 is divisible by 10.

19. If f(n) = 32n + 7, where n is a natural number, show that f(n + 1) – f(n) is divisible by
8. Hence prove by Induction that 32n + 7 is divisible by 8.
Here are a few harder questions that you can easily leave out the first time through.

Exercises
20. If m, n  , where m is fixed, prove by Induction on n that



21. Prove by Induction that a set with n elements has exactly 2n subsets.
22. (Euclid c. 300 BC). If the primes are written in ascending order of magnitude, p1 <

p2 < p3…, i.e. 2 < 3 < 5 <…, then
(i) prove that Pn+1 ≤ 1 + (p1p2…Pn), for n  
(ii) use Induction to prove that pn ≤ 22n;
(iii) what do you think of the conjecture: 1 + (p1p2…pn) is a prime, for every n  

23. Prove that there are infinitely many primes. (Again!!)
24. (Bernoulli's inequality 1686). For x ≥ –1, prove that (1 + x)n ≥ 1 + nx, where n  .

Show, by choosing particular values of x and n, that the inequality is not
necessarily true if n is not a positive integer.

25. If sin x ≠ 0, prove that for n  

(Hint. You may need to find an expression for sin 2A first.)
26. Find the flaw in the following “proof” that all positive integers are equal: “The proof

is by Induction. For each n  , consider the following statement: If r, s   and
max{r, s} = n, then r = s.
(i) When n = 1 the statement is true because if max{r, s} = 1, then r = s = 1.
(ii) Assume the statement is true for n. Let r, s   with max{r, s} = n + 1. Then

max{r – 1, s – 1} = n and hence by the Induction hypothesis, r – 1 = s – 1, that
is, r = s. Hence the statement is true for n + 1 and by Induction true for all n  
.

To finish off the proof, let r and s be positive integers. Then max{r, s} = n, for some
n  , and hence r = s.
27. Prove that 72n– 48n – 1 is divisible by 2304, for every n  .
28. Prove that 
29. For every positive integer n, show that the Fibonacci number

is a positive integer.
30. The Towers of Hanoi. This is a toy which consists of 3 pegs and n circular discs of

different sizes with holes in their centres so that they fit over the pegs. At the
beginning of the game the discs are all on one of the spindles, as shown in the
diagram, the smallest at the top and increasing in size as one proceeds down the pole.

Rules. (i) One disc at a time may be moved from one peg to another.
(ii) No disc may be placed on top of a smaller disc.

Object. To move all the discs from one peg to another, subject to these rules.
(a) Prove by Induction that this can be done in 2n – 1 moves.



(b) Can you say anything about the smallest number of moves needed?
Sometimes of course someone has broken the first few rungs of the ladder. Our

ladder-walking robot can still climb the ladder if only he can get on to it. Suppose the
first five rungs are broken. Then we change Step 1 to Step 1'. Get the robot onto the 6th
rung.

That's enough to get the robot going. From here, along with Steps 2 and 3, the robot
can climb the ladder.

Sometimes the same sort of thing happens to a mathematical proof. An expression
happens to be true from some natural number onwards. To cope with this situation we
use the following modified version of the Principle of Mathematical Induction.
Step 1'. Show that the result is true for n = a.
Step 2'. Assume the result is true for n equal to some integer k greater than or equal to
a.
Step 3'. Prove that if the result if true for k it is true for k + 1.
Example 6. Prove that for all sufficiently large natural numbers n, n! > 3n.
Proof.
Step 1'. After some trial and error we see that 7! = 5040 > 37 = 2187. So we will prove
that n! > 3n for all n ≥ 7.
Step 2'. Assume that k! > 3k, for n = k > 7.
Step 3'. We must prove that if k! > 3k for k ≥ 7, then (k + 1)! > 3k+1.

Now (k + 1)! = k!(k + 1) > 3k(k + 1) (by Step 2). But k ≥ 7, so k + 1 ≥ 7 > 3. Hence
3k(k + 1) > 3k x 3 = 3k+1.

We have now shown that (k + 1)! > 3k+1 and Step 3 is complete.
By the Principle of Mathematical Induction, n! > 3n for all n ≥ 7.

Exercises
31. Prove by Induction that for certain sufficiently large n,

In each case, state the smallest value of n for which the statement is true.
In the remaining questions Induction may be used as part of the solution.
32. Given a (2m +1) x (2n +1) chessboard in which the four corners are black squares,

show that if one removes any one red square and any two black squares, the
remaining board is coverable with dominoes (1 x 2 rectangles).

33. Observe that

Guess a general law suggested by these examples, and prove it.
34. Let f be a function with the following properties:

(1) f(n) is defined for every positive integer n;
(2) f(n) is an integer;
(3) f(2) = 2;



(4) f(mn) = f(m)f(n) for all m and n;
(5) f(m) > f(n) whenever m > n.
Prove that f(n) = n for n = 1,2,3…

35. Let n be a positive integer and let a1, a2…an be any real numbers greater than or
equal to 1. Show that

36. Prove that, for each positive integer n,

37. State and prove a generalisation of the following set of equations.

38. Let n be a positive integer. Prove that the binomial coefficients nC1, nC2, nC3…nCn-1
are all even, if and only if n is a power of 2.

39. Prove that 
40. Suppose that 0 ≤ xi ≤ 1 for i = 1,2…n. Prove that

with equality if and only if n — 1 of the xi's are equal to 1.
41. Prove that there is a unique infinite sequence {u0, u1, u2,…} of positive integers such

that, for all n ≥ 0,

42. Determine all continuous functions f such that, for all real x and y

43. Show that there exist infinitely many sets of 1983 consecutive positive integers each
of which is divisible by some number of the form a1983, where a is a positive integer
greater than 1.

44. Show that if x2 + y2 is divisible by 7, then it is divisible by 49.
45. (a) What is the smallest number which has remainder 2 on dividing by 7 and

remainder 4 on dividing by 9?
(b) Show that there is no number which has a remainder 2 on dividing by 7 and a

remainder 6 on dividing by 9.
6.5. Conclusion
We started out with the problem of trying to find the maximum number of regions into
which a circle can be divided by joining pairs of points from a set of size n with straight
lines. The thing about this problem is that it does not behave as one starts to expect.
From the table on p. 181, it starts to look as if the number of regions is 2n-1. However,
those of you who tried 6 points will have discovered only 31 regions — not the 32 you
might have hoped for.



So just because patterns start off heading in one direction there is no guarantee that
they won't veer off in another direction on the merest whim.

And that's why in Maths we have to prove things.
Let me finish by nailing down the problem we started with. First though, recall

Euler's formula from Chapter 3, Section 3.9. It says that in a connected planar graph,
the number of vertices, v edges, e and faces, f are connected by v – e + f = 2.

We can now prove that the largest number of regions in our circle problem is

Before we start the proof, which is not by contradiction or Induction, we note that the
formula governing the number of regions, f, formed inside our circle is v – e + f = 1. We
get this using Euler's Formula and throwing away the outside face.
Proof. That nC4 + nC2 + 1 is the number of regions.

The result is clearly true for n = 1,2, 3. So we work with n ≥ 4. Now each subset of 4
from the given n points will contribute one intersection point in the circle. Conversely,
each intersection-point arises from just one subset of four points, namely those at the
ends of the two chords through it. Hence the number of intersection-points is equal to
the number of ways of choosing 4 of the n given points, i.e., nC4.

Consider the graph formed by the n given points considered as vertices, the
intersection points considered as vertices, and the “natural” lines joining these two
types of vertices. Now each of the given points, considered as vertices, has degree n – 1.
Further each of the nC4 internal vertices is of degree 4. Since the sum of the degrees
equals twice the number of edges we have

while

By Euler's Formula, f = e – v + 1. So that f = nC4 + nC2 + 1 — n.
But the regions that we want to count includes some regions snuggling between the

graph and the circle. Adding these extra n regions the total number of regions is given
by

The proof I've given here can be found in the Mathematical Gazette, May, 1972,
pages 113–115. The article is by Timothy Murphy and is called “The dissection of a
circle by chords”.
6.6. Solutions

1.  n = 7 gives 57; n = 8 gives 99. Bang goes the 2n-1 conjecture.
2&3.  What did you get? My solution appears in Section 6.5.
4.  (a) Now n = 3a, 3a + 1 or 3a + 2. Hence n2 = 9a2, 9a2 + 6a +1, 9a2 + 12a + 4.

Since 3 divides n2, then n2 = 9a2 and n = 3a. Hence 3 divides n2.
(b) Use a similar proof to (a). Let n = 5a, 5a + 1, 5a + 2, 5a + 3, 5a + 4. The only

square of the form 5b comes from n = 5a.
(c) q has to be square-free.

5.  (i) Assume √3 =  where m and n have no common factors. Then use Exercise
4(a).



(ii) In a similar way if t2 is divisible by 5 then so is t.
(iii) If s2 is divisible by the prime p then s is divisible by p.

    This follows by assuming that the prime decomposition of s is .
Then . If p divides s2, then p has to divide  for some i. Hence,
since p is a prime, p = p1. Therefore p is a factor of s.
   The rest follows in the usual way.

(iv) Clearly b can be anything but a perfect square. The proof is as in the earlier
parts of the question if b is square free. So assume b = c2d, where d is square
free. Then we find that if √b =  with m and n having no common factors, then
m2 = n2b = n2c2d. For d ≠ 1 the usual proof technique shows that d divides m
and n.

(v) Yes. If √2 + √3 = , then 2√6 + 3 =  Hence √6 = ½(  – 5). This is a
contradiction since √6 is irrational (by (iv)).

(vi) Yes.
(vii) No. Try b = c. Is that a surprise? What if b ≠ c
(viii) b must be a perfect cube. The proof follows along the lines of (iv).
(ix) Yes.
(x) No.

6.  Let m be the largest integer. Then m +1 is an integer larger than m. This is clearly
a contradiction.

    What do you mean by the smallest integer?
7.  Assume there are a finite number of primes p1, p2,…, pn. Form t = p1p2…pn + 1.

Now either t is a prime or contains a prime factor other than p1, p2,…,pn. This is
the contradiction here.

8.  Use the facts that (i) if p > q, then p2 > q2 and (ii) r2 ≥ 0 for every real number r.
You might get the contradiction 0 > (a – b)2.

9.  Assume 32n + 5 is divisible by 8. Actually if you look at congruences modulo 8
you mightn't need contradiction.

   Blow it. The wretched thing's not even divisible by 4! After all, 32n + 5 ≡ (–1)2n +
1 (mod 4).

10.  Suppose k > 1 is the highest common factor of n and n + 1. Then n = kq and n +
1 = kr. Hence 1 = k(r – q). For k > 1 this provides the contradiction.

11.  Suppose the decimal expansion of the irrational number b terminates at the rth
decimal place. Then b = b' + 0 . b1b2…br, where b', b1,…, br are integers and 0 ≤ bi
≤ 9.

    Clearly  is a rational.
    Suppose b has continuous repetition of a section of r digits, then 10rb — b is a

terminating decimal.
12.  Recall that the triangle inequality says the sum of the lengths of any two sides

exceeds the length of the third. Equivalently, the three segments are not the sides
of a triangle if and only if the longest of them is greater than or equal to the sum of
the other two.
   Denote the vertices of any tetrahedron by A, B, C, D and let AB be the longest



side. Suppose there is no vertex such that the edges meeting there are the sides of a
triangle. Consider vertex A with attached edges AB, AC, AD. Then AB ≥ AC + AD
by the above remarks. Similarly, by considering vertex B, we conclude that BA ≥
BC + BD. Adding these inequalities, we get

But from the triangular faces ABC and ABD we get AB < AC + BC and AB < AD
+ BD; and if we add these two inequalities we get

a contradiction.
13.  First note that f (1) is the unique minimum of f. For suppose that for some j > 1, f

(j) is minimum. Then f > f (f (j — 1)) and if f (j – 1) = k, this shows that f (j) > f (k).
Thus we contradict the claim that f (j) is minimum.
   The same reasoning shows that the next smallest value is f(2), etc.
Thus

Since f(n) ≥ 1 for all n, we have, in particular, f(n) ≥ n. Suppose that, for some
positive integer k, f(k) > k. Then f(k) ≥ k + 1; and since f is an increasing
function, f(f(k))≥ ≥ f(k + 1), contradicting the given inequality. Therefore f(n) =
n for all n.

[In the Mathematical Induction proofs that follow, we give only the key steps.
Step 1 must always be tested but we omit it here because of space.]

can actually be proved more quickly by noticing that  etc. Then all of
the dominoes fall in another way.

The inequalities are reversed if n is negative.
18.  (i) S(k + 1) = (k + 1)3 – (k + 1) = k3 + 3k2 + 3k + 1 – k – 1 = S(k) + 3k(k + 1). By

Example 5, k(k + 1) is divisible by 2. Hence S(k + 1) is divisible by 6.



    Alternatively n3 – n = (n – 1)n(n + 1). At least one of these must be even and at
least one divisible by 3.

(ii) S(k + 1) = 6k+1 + 4 = 6k + 4 + 5 + 6k = S(k) + 5 . 6k. For k ≥ 1, 5 . 6k is divisible
by 10. Hence S(k + 1) is divisible by 10. 6n ≡ 6 (mod 10).

19.  f(k + 1) = 32k+2 + 7 = 32k+ 7 + 8t = 8s + 8t. ∴ f (k + 1) is divisible by 8. Or is it
easier to notice that f(n + 1) = 32(n+1) + 7 = 9(32n + 7) – 56?

20.  More algebra.
21.  A subset of k + 1 elements either uses the first or it doesn't. If it doesn't, it is a

subset of k elements and there are 2k of these. If it does, the subset minus the first
element is a subset of k elements and there are 2k of these. Altogether there are 2k

+ 2k = 2k+1 subsets of a k + 1 element set.
22.  (i) 1 + p1p2…pk+1 is not divisible by p1,p2,…,pk+1. It is therefore either a prime

(larger than pk+1) or is divisible by a prime larger than pk+1. (See Exercise 7.)
(ii) Use (i).
(iii) Test it out. It should be false. What is the smallest n for which it fails?

23.  This follows directly from Exercise 22(i).

26.  The trouble is that if r, s  , then it is not necessarily true that r – 1, s – 1  .
Even though max{r, s} = n+1 implies max{r – 1, s – 1} = n we cannot conclude
that r – 1 = s – 1 since the Step 2 assumption only applies to members of .

29.  The Fibonacci numbers are un, where un = un-1 + un-2, with u1 = 1 = u2. Now
uk+1 = uk + uk-1, so use a little algebra since uk and uk-1 are obtainable from the
question with n = k and n = k – 1.

30.  The top k discs can be moved to another peg in 2k – 1 moves. Then move the
largest disc to the third peg. The smaller k discs can be moved to this third peg in
2k – 1 moves. Altogether there are (2k – 1) + 1 + (2k – 1) = 2k+1 – 1 moves.

31.  (i) True for n ≥ 4.
(ii) True for n ≥ 4.
(iii) True for n ≥ 2.
(iv) 7? 8?

32.  We shall refer to such a (2m + 1) x (2n + 1) chessboard with one red square and
two black squares removed as a deleted chessboard. First, we note that the case m
= n = 1 is easily handled by exhaustion. Owing to symmetry, there are only six
cases that need to be considered, and these are shown below.



We now proceed by Induction. We are given a (2m+1) × (2n+1) deleted
chessboard C and we may assume that any smaller (2k+1) × (2l + 1) deleted
chessboard which is contained in C may be covered with dominoes. Since at
least one of the two dimensions of C is of length at least five, C has two
oppositely placed, non-overlapping ends E1 and E2 of width two.

Clearly, we can choose an end containing at most one of the deleted squares of C.
Let this end be E1 and consider the following two cases.

Case 1. E1 contains no deleted square of C. Then C–E1 contains all three of the deleted
squares. By the Induction assumption, C–E1 can be covered with dominoes. This
covering, together with the obvious one for E1, yields the desired covering of C.
Case 2. E1 contains exactly one deleted square of C. In this case, with the deleted
square in E1 we identify an associated! square of the same colour in C – E1 as shown
below.

Now delete the associated square in C – E1 . By the Induction assumption, there
is a domino covering of C – E1 with this deletion. Now C, with its original
deletions, may be covered by making use of the covering just found, together
with the scheme shown below.



This procedure would fail only in the case where the only choice for the
associated square in C – E1 was also deleted. This is impossible in the case of a
red square. In the case of a black square, we infer that the one deleted red
square is in E2 and proceed as before.

33.  A general law suggested is:

34.  First we observe that f (1) = 1 (substitute m = 2, n = 1 in (4)). Now

35.  The result is valid for n = 1. Assume it is valid for n = k. Then

We now show that

where a = ak+1, and s = a1 +…+ ak. Multiplying out (and rearranging terms) we
obtain

and this is valid because a ≥ 1 and s ≥ k. There is equality only if aj = 1 for all i.
Thus the result is valid for n = k + 1 and by Induction for all n.

36.  The result is valid for n = 1. Assuming its validity for n = k, i.e.

we deduce that

37.  A generalisation for set A is:

This can be proved by Induction. The equality is valid when n = 1. Assume that it
holds for n = k:



Then

38.  The given condition is equivalent to

Now observe that

and, using Mathematical Induction, we can prove that

i.e., (*) holds if n is a power of 2. If n is not a power of 2, then n = 2kl + 2k2 +…
with at least two distinct ki's. Then

and (*) is not satisfied. Hence nC1, nC2, nC3,…, nCn-1 are all even integers if and
only if n is a power of 2.

40.  The result is clearly true for n = 1. For n = 2, we have to prove 2(1 + x1x2) ≥ (1 +
x1)(1+ x2). This is equivalent to (1 – x1)(1 – x2) ≥ 0, which is valid with equality if
and only if either of x1 and x2 equals 1.
Suppose the result holds for all values of n up to k ≥ 2, with equality occurring

under the stated condition. Then, given 0 ≤ xi ≤ 1, i = 1,2,…, k + 1,

using the result for n = 2 and n = k. If equality occurs, at least k – 1 of the
quantities x1, x2,…, xk are 1. If only k – 1 of these quantities are 1, then xk+1
must equal 1 as well.

41.  By letting n = 0,1,2,3, successively, we find that uu = 1, u1 = 2, u2 = 22, u3 = 23.
Consequently, we conjecture that un = 2n for all n; we will establish this result by
Induction. We assume that uk = 2k for k = 0,1, 2,…, n – 1. Then from the given
relation and the Induction hypothesis,



If it were known that

it would then follow from (1) that

and since uk < 0, uk = 2k which would complete the Induction and establish uk =
2k as the unique solution of the problem. Now (2) is easily shown to be
equivalent to

Although (3) is a known binomial identity, we give a proof below. Denote the
right side of (3) by ak. Using the identity

we obtain

where we have made the substitution r – 1 = s in the first term. Thus,

which reduces to ak = 4ak–1.
   Since a0 = 1, we get an = 4n = 22n by Induction.

42.  Three obvious solutions of

are f (x) = 0, 1 or –1.
   Setting y = 0, we get (f (x))2 = (f (x))2(f (0))2, so that, if f (x) ≠ 0 for some
value of x, then f (0) = 1 or –1. Since f satisfies (1) if and only if –f does, it
suffices to consider the case f (0) = 1.
   If we put x = 0, we get f(y)f (–y) – (f (y))2. If f(y) ≠ 0, we can divide and get

Equation (2) still holds if both f(y) and f(–y) are 0, so we have shown that f is an
even function. Putting x = y, we get

Thus if f vanishes anywhere, then it vanishes on a set of points approaching 0.
Since f(0) = 1 and f is continuous, that cannot happen. Consequently f(x) > 0
everywhere.

We claim now that for all natural numbers n,

For n = 1, (4)1 holds trivially; for n = 2, (4)2 is equation (3). We prove (4)n by
Induction, setting y = kx in (1):



We use (4)k and (4)k-1 to obtain (4)k+1. This will complete the Induction. Setting x
= 1/n in (4)n we get

and using (4) again, we find f(m. 1/n) = (f (1/n))m2
 . So for all positive rational

values of x,

By continuity (5) holds for positive irrational values of x also. To cover negative
values of x we use the fact that both sides of (5) are even. Thus the nonzero
solutions of our problems are the functions of the form ±ax2

 , a > 0.
43.  More generally we will show by Induction on n that for any fixed positive

integer m there exists a set of n consecutive positive integers each of which is
divisible by a number of the form am, where a is some integer greater than 1.
   For n = 1, clearly am satisfies the conditions. Assume that for n = k, each of the k
consecutive numbers N1, N2,…, Nk is divisible by an mth power >1. Thus Ni is
divisible by (ai

m(ai > 1) for i = 1,2,…, k. Let P = (a1a2…ak)m. We now define N =
Nk+1{((P + 1)m – 1)m – 1}, where Nk+1 = Nk + 1. Then N + N1, N + N2,…, N +
Nk+1 are k + 1 consecutive numbers divisible by af, a2

m, a2
m, (P + 1)m,

respectively. Hence the desired result is valid by Induction.
44.  For a = 7n , 7n + 1, 7n + 2 , 7n + 3 , 7n + 4 , 7n + 5 , 7n + 6 , we have a2 of the

form 7m, 7m + 1, 7m + 2, 7m + 4 only. The only way for two squares to add to a
number which is divisible by 7 is for them to be of the form 7m. So x2 = 7m and y2

= . But by Exercise 4(c) this gives x = 7n and y = 7 . Then (7m)2 + (7 )2 =
49(n2 + 2). Hence x2 + y2 is divisible by 49.
   Is it true that if x2 + y2 + z2 is divisible by 7 then x2 + y2 + z2 is divisible by 49?
   For what t is it true that if x2 + y2 is divisible by t, then x2 + y2 is divisible by t2

45.  (a) Let N = 7a + 2. For a = 0, 1, 2, 3, 4, 5, 6, 7, 8, 7a + 2 has remainder 2, 0, 7, 5,
3, 1, 8, 6, 4 on dividing by 9. As a increases the same remainders cycle round. So
the required n is 58.

(b) I lied! 51 will do the job and so will 51 + 63t for any natural number t.
(Remember not to trust anyone when it comes to mathematics.)



Chapter 7

Geometry 2
7.1.Cartesian Geometry
Geometry went a long way on the strength of rulers and compasses, polygons and
circles, distance and angle. The Greeks established a mountain of knowledge on these
objects and Euclid published most of it in his book the “Elements”. Hence this area of
geometry became known as Euclidean geometry. It sought to discover the basic
geometrical properties of the world starting from basic assumptions (axioms) about
points and lines and the way they behave. Euclidean geometry made a great deal of
progress. Some of this can be seen in Chapter 5.

Euclidean geometry worked from axioms via logic to theorems (true statements). It
continued to develop long after the Greek era. However, another branch of mathematics
had also been developing — this was algebra. In the Seventeenth Century, René
Descartes (1596–1650) brought these two branches together when he invented what we
know as cartesian geometry (and named after Descartes, see MacTutor).

This chapter explores some avenues of cartesian geometry. In particular, lines, the
modulus function and the locus of points.
7.2. Lines
In Chapter 5, we looked at triangles and squares but one of the simplest geometrical
objects is the line. Most of you have probably done some coordinate geometry. You
know about coordinates, axes and so on. You possibly also know about the equation of
a line. For instance in Figure 7.1, I've drawn for you x = 3, y = –1, y = x and y = –x+ 2.

Now any two points define a line. In other words, there is only one straight line
between any two given points. The question is, how do we find the equation of a line?

Figure 7.1.



Figure 7.2.
Let's have a look first at lines that go through the origin and some other point.

Example 1. Find the equation of the line which goes through the origin and the point A
= (1, 1). (See Figure 7.2.)

To do this we need to find a relation between the x and y value for every point on the
line. One way of doing this is to notice that 's OAB, OPQ are similar (see Chapter 5).
Hence = . But AB = OB = 1, PQ = y and OQ = x. So we have f = y- This
simplifies to y = x. The equation of the line which goes through (0, 0) and (1,1) is y = x.
Exercises
1. Find the equations of the lines that go through the origin and each of the points

below.

2. Find the equation of the line that goes through the origin and the point (1, m).
As m changes, what happens to the line?
Finding the equation of a line through two arbitrary points is done in a similar way.

Example 2. Find the equation of the line which passes through L = (2,1) and M = (3,4).
(See Figure 7.3.)

Again we'll try to get an equation linking x and y, where (x, y) is a point on the line.
Now 's LMN, LPQ are similar, so  From Figure 7.3, PQ = y -l, LQ = x - 2,

MN = 3 and LN = 1. Hence . So y - 1 = 3x - 6. This gives y = 3x — 5.
Exercises
3. Find the equation of the lines through the following pairs of points. Where possible

express your answer in the form y = mx + c.

Figure 7.3.



Figure 7.4.
4. Find the equation of the line through the points (xi, y1) and (x2, y2). Are there any

problems if y1 = y2? What if x1 = x2?
In general a line is parallel to the y-axis and has equation x = k1, or it is parallel to

the x-axis and has equation y = k2, or it is of the form y = mx + c. The numbers k1, k2,
m, c are all constants.

The significance of the m is that it tells how much of a slope the line has. The
quantity m is called the gradient of the line. The effect of a change in m is shown in
Figure 7.4.

On the other hand, the value c is the value of the y-intercept of the line. In other
words, the line y = mx + c cuts the y-axis at y = c.
Exercises
 5. Find the gradient and y-intercept of the following lines.

(i) y = 2x + 4; (ii) y = 4x - 2; (iii) 2y = x - 1; (iv) 0 = 4x + 8y + 7.
Sketch these lines on a set of cartesian axes.

 6. Find the gradient of the line through the points (x1, y1) and (x2, y2).
 7. Sketch the following pairs of lines and determine the angles at which they meet.

(i) y = x, y = —x; (ii) y = x +1, y = —x + 4.
 8. (a) Find the equation of the line through the origin which is perpendicular

to y = 2x.
(b) Find all possible lines which are perpendicular to y = 2x.

 9. Repeat Exercise 8 with the line y = —3x.
10. Let m be any non-zero real number.

(a) Find the equation of any line which is perpendicular to the line y = mx.
(b) Find all possible lines which are perpendicular to the line y = mx.

 
So we see that lines in the plane are sets of points like {(x, y): y = x}. But what

happens if we change the equality to an inequality? What is {(x, y):y > x}?
We have to find all those points (x, y) for which the y-value is greater than the x-

value. Now (1, 2) is one such point. You can see that it lies above the line y = x in
Figure 7.5.



Other such points are (–2,1) and (–2, –1). They both lie above y = x. But any point
(x, y) with y > x, lies above the line y = x. So {(x, y): y > x} is the whole region above
the line y = x.

In practice we only need to test one point to find out the region that we're looking
for. If the point that we test satisfies the inequality, then so do all of the points in this
region. If the point doesn't satisfy the inequality then the region that we want is on the
other side of the line.

We represent this region in the plane by shading in the part above the line y = x.
Since the line y = x is not part of the region {(x, y): y > x}, we draw y = x as a dotted
line. This is all shown in Figure 7.6.

Figure 7.5.

Figure 7.6.

Figure 7.7.
If the boundary line is actually part of the region under consideration, then we draw

it as a solid line. We show {(x, y): y < x} in Figure 7.7.
Exercises



11. Sketch the following regions.

7.3. Modulus
At this stage we bring in the complication of the modulus sign. For reasons which I
hope you'll learn to appreciate (if not actually love) we define

We read |x| as the “modulus (or magnitude or absolute value) of x”.
So |5| = 5, |74 ∠ 3| =74 . 3, | —1| = 1 and |—37 ∠ 89| = 37 ∠ 89.
The whole point about | x| is that it tells us how big x is. If you like, it

tells us its magnitude.
Exercises
12. Write down the numerical value of the following.

(i) |17|;         (ii) |—21 |;          (iii) |—99|;
(iv) |0|;        (v)|7| + |6|;          (vi) |7| + |—6|;
(vii) | —8| + |—5|.

13. Which of the following is true for all real numbers a and b

Can |a + b| = |a| + |b|?
14. Which of the following equalities hold for all values of a?

(i) 3|a| = |3a|;                (ii) —3|a| = |—3a|;
(iii) |a — 5| = |5 — a|;   (iv) |a| + | —5| = |a| — 5.
Generalise where possible.

 
Do these things lead to any interesting graphs? What does the graph of y = | x| look

like?
Now y = |x| is the same as y = x for x > 0. On the other hand, for x < 0 it's the same

as y = —x. So the graph of y = |x| looks like the V shape in Figure 7.8.
The graph of y = |x — 1| can be found by breaking things up into two parts. Now for

x – 1 ≥ 0, |x – 1| = x – 1 < 0, |x - 1| = -(x - 1) = 1 - x. So



Figure 7.8

Figure 7.9

The graph is shown in Figure 7.9. It's actually a translation of y = |x| by one unit to
the right.
Exercises
15. Sketch the following graphs.

(i) y = |x — 2|;      (ii) y = |x — 3|;    (iii) y = |x + 2|;
(iv) y = |2x|;          (v) y = |3x — 3| ;   (vi) y = |1 — 2x|.

16. Which of the following pairs of graphs are the same?
(i) y = 2|x|, y = |2x|;           (ii) y = —2|x|, y = |—2x|;
(iii) y = |x — 4|, y = |4 — x|;   (iv) y = |x| + |— 4|, y = |x|— 4.

17. By considering the four regions where x ≥ 0, y ≥ 0 and x > 0, y 0 and x < 0, y ≥ 0 and
x < 0, y 0, sketch the graph of |y| = |x|.

18. (a) Sketch the following graphs
(i) |y| = |x — 1|;       (ii) |y| = |2x|;      
(iii) |y — 1| = |x|;       (iv) |y| = |3x|.
(b) Find the equation in modulus form of the two perpendicular lines which pass

through (5, 3), given that one line has gradient 1.
One final example.

Example 3. Sketch {(x, y): |y — x| + |y| = 2}.
To be able to sketch this we first notice that we have two modulus signs. Both of

these have two things happening to them depending upon whether the expression inside
them is positive or negative. So we first have to find the four regions (4 = 2 × 2) into
which these conditions divide the plane. We then have to look at the values of the
modulus signs in these regions to see what sort of graph we've got. It's not hard, just a
bit tedious. However the surprising result at the end is worth the effort. We work it out
this way.

The regions we want are, y — x > 0, y > 0; y — x > 0, y 0; y — x 0, y > 0; and y — x
0, y 0. We show these regions in Figure 7.10.

If y — x > 0, y > 0, the equation |y — x| + |y | = 2 becomes y — x + y = 2 or 2y — x
= 2. This simplifies to y = ½x + 1. So the part of the whole graph in region I (and
region I only) is the line y = ½x + 1.

If y — x > 0, y > 0, the equation |y — x| + |y | = 2 becomes y — x — y = 2 or x = —
2. This goes in region II. So we will need to draw x = —2 in region II only.



If y — x 0, y > 0, the equation |y — x| + |y | = 2 becomes x — y + y = 2 or x = 2. We
use that part of the line x = 2 which lies in region III.

Figure 7.10

Figure 7.11
Finally, if y– x 0, y > 0 the equation |y— x| + |y| = 2 becomes x– y— y = 2. We use

the part of this line which is in region IV.
We put all this information together in Figure 7.11. Surprisingly we come up with

what looks like a parallelogram.
Now we've got to the end, you might like to go through this again just to make sure

you've mastered all of the steps. You should note though, that |y — x| + |y| = 2 is the
equation of a parallelogram. Why? Isn't that neat!
Exercises
19. Sketch the following sets and identify the shapes in these graphs.

(i) {(x, y): |x| + |y| =4};
(ii) {(x, y): |x — y| + |x + y| =4};
(iii) {(x, y): |x — 2y| + |2x + y| =4};
(iv) {(x, y): |x — y| + |x + y — 2| =4}.

20. Sketch the following squares OABC and describe them using modulus signs.
(i) A = (2,0), B = (2,2), C = (0,2);

(ii) A = (— 1,0), B = (— 1,1), C = (1,0).
21. Sketch the following squares ABCD and describe them using modulus signs.

(i) A = (1,0), B = (1,2), C = (— 1,2), D = (— 1,0);
(ii) A = (1, —1), B = (1,1), C = (— 1,1), D = (—1, —1);
(iii) A = (1,0), B = (0,1), C = (— 1,0), D = (0, —1);



(iv) A = (1, 0), B = (2, 1), C = (1, 2), D = (0, 1).
22. Given any square anywhere in the plane, how would you find its equation using

modulus signs?
23. Sketch the following sets and identify their shape.

(i) {x, y):|y—x|+|x|= 2};
(ii) {x, y):\y — 2x \ + \y\ = 4};
(iii) {x, y):\y — x \ + \yf 2x \ =6};
(iv) {x, y):|y—x|+|y— 2x| =6}
(v) {x, y):\3y — x \ + \x+ 3y \ == 6};(vi) {x, y):2\3y — x \ +x +3y \= 6}

24. Sketch the following quadrilaterals ABCD and describe them using modulus signs.
(i) A = (1, 0), B = (2, 1), C = (1, 1), D = (0, 0);

(ii) A = (1, —1), B = (2,1), C = (— 1,1), D = (—2, —1);
(iii) A = (1, —1), B = (3, —1), C = (4,1), D = (2,1).

25. (a) Show how to find the equation of any parallelogram using modulus
signs.
(b) Is it possible to express any quadrilateral as an equation using modulus signs?
(c) What polygons have equations that can be expressed in terms of modulus signs?

This is an open ended investigation. Start with triangles. You've done four-sided
polygons so after triangles try pentagons, hexagons and so on.

26. Are there any values of b for which the equations

have an infinite number of points in common? If so, find them; if not, say why not.
7.4. Loci: One Fixed Point
Most objects that move do so within certain constraints. Cars usually stick to roads or
they invariably come to grief. Planes are not very good under water. What goes up must
come down.

In this section we look at points that move under certain constraints in the plane. The
result is called the locus of the point. (The plural of locus is loci not locuses.)

The simplest way to start is to look at a point P which moves so that it is a fixed
distance from a fixed point. Clearly P moves in a circle. The fixed distance is the radius
of that circle.
Exercises
27. On a set of cartesian axes, using whatever instruments you think might be

appropriate, draw the loci of the following points that are the given distance from the
given point.
(i) 5 from O = (0, 0);       (ii) 10 from O;

(iii) 4 from O;                  (iv) 4 from C = (1, 1);
(v) 5 from C = (1, 2);     (vi) 4 from C = (— 1,1);

(vii) 8 from C = (—2, —3). (Use appropriate units to suit your graph paper.)
28. The point P moves so that it is always a distance 4 from the fixed point C. If the

locus of P passes through (– 1, 0) and (7, 0) find the coordinates of C.
29. The point P moves so that it is always a distance 5 from the fixed point C = (a, 4). If

the locus of P passes through (–2, 0) and (4, 0), find a.



30. The point P moves so that it is always a distance 2 from the fixed point C = (2, b).
Find b if the locus of P passes through (1, 0) and (3, 0).

31. A point P moves so that its distance from the fixed point C is 5. The locus of P
passes through the points (0, 0) and (6, 0). Find all possible positions of C.

32. A point P moves so that its distance from the fixed point C is 13. The locus of P
passes through the points (0, —1) and (0,9). Find the coordinates of C.

33. A point P moves so that its distance from a fixed point C is 13. The locus of P
passes through the points (2, –3) and (2,7). Find the coordinates of C.

34. A point P moves so that its distance from a fixed point C is 13. The locus of P
passes through the points (1,2) and (11,26). Find the coordinates of C.

35. A point P moves so that its distance from a fixed point C is 25. The locus of P
passes through the points (7, –1) and (32, 24). Find the coordinates of C.
I think we're just about ready now to find the equation of a circle, given its radius

(the fixed distance of the original locus problem) and its centre (the fixed point of the
locus problem).
Example 4. Find the equation of the circle centre O and radius 2.

Look at Figure 7.12. Let P = (x, y) be any point on the circle. Then OP = 2 since the
circle is of radius 2. By Pythagoras, x2 + y2 = 22. So the equation of the circle is simply
x2 + y2 =4.

Figure 7.12
The locus of the point P which moves so that it is a fixed distance 2 from the fixed

point O is a circle of radius 2. Any point (x, y) on this locus has the x and y linked by
the equation x2 + y2 =4.
Exercises
36. Find the equations of the loci where P moves so that it is a fixed distance r from the

point C, where



37. What is the locus of a point that moves so that it is equidistant from the points (1, 0),
(—1, 0)?

38. What is the locus of a point that moves so that it is equidistant from the two points
(0, 1), (0, 3)?

39. What is the locus of a point that moves so that it is equidistant from the two points
(1, 0), (0, 1)? P(x, y)
Summarising, for the record, using Pythagoras we see that the equation of the locus

of the point which moves so that it is a fixed distance r from
the fixed point (x1, y1) is

Equivalently, this is the equation of the circle, radius r, centre (x1, y1).
7.5. The Cosine Rule
We start this section with an Exercise.
 
Exercise
40. Find all the unknown angles and sides.

It turns out that cos θ is useful in determining unknown sides or angles in triangles
which are not right angled. This is because of the Cosine Rule. For the sides and angles
in Figure 7.13, it turns out that we have

This is known as the Cosine Rule.

Figure 7.13.
Example 5. Find the unknown sides and angles in the triangle below.

Since the triangle is isosceles B = 30°. Then A =180° - 60° = 120°.
Now a2 = 12 + 12 - 2 x 1 cos 120° = 2 - 2 x (-0.5) = 3.



Hence a =√3.
Exercises
41. Find all the unknown sides and angles in the triangles below.

42. Pythagoras' Theorem is usually quoted as follows: In a right angled triangle the
square on the hypotenuse equals the sum of the squares on the other two sides.
Show that if the square of one side of a triangle is equal to the sum of the squares on

the other two sides, then the triangle is a right angled triangle.
43. Prove that the Cosine Rule is true.
44. Discover, then prove, a Sine Rule for triangles.
45. Let y = m1x + ci and y = m2x + c2 be any two lines where neither m1 nor m2 is zero.

Show that the two lines are perpendicular if and only if m1 m2 = -1.
46. In the situation in the diagram below, use the Cosine Rule to prove that the ratio of

AP to BP is 2 no matter where P is on the circle. (C is the centre of the circle.) (Do
you need to know that A = (0, 0) and B = (3, 0)?)

7.6. Loci: Two Points
So let's move on to two fixed points. What is the locus of a point that moves so that it is
equidistant from two fixed points?

In Exercises 37, 38 and 39 we saw that, in each case, the locus was a straight line. Is
this always the case?
Exercises
47. What is the locus of a point that moves so that it is equidistant from the pairs of

points below?
(i) A = (1,0), B = (3,0);      (ii) C = (1,0), D = (1,4);

(iii) E = (2, 0), F = (0, 2);   (iv) G = (2, 0), H = (0,4).



48. In all cases so far we have found that the locus of a point that moves so that it is
equidistant from two points, is a straight line. Can this be proved? Is it true?
If it is true, use Euclidean arguments to prove it. If it's false find a counterexample.

 
We'll now use coordinate geometry to show that the locus of a point which moves so

that it is equidistant from two fixed points is a straight line.
Let the fixed points be (a, b), (c, d). Let P = (x, y) be a point equidistant from (a, b)

and (c, d). Then ?s/(x - a)2 + (y - b)2 = y/(x-c)2 + (y -d)2.

Hence
 

If b = d, then a ≠ c or we only have one fixed point. So 2x(a - c) = a2 — c2. This
simplifies to x = ½(a + c), the equation of a line perpendicular to the x-axis (and the
line between the two fixed points).

If b = d, then d - b = 0 so we may divide both sides of (1) by 2(d - b) to give
Again this is the equation of a straight line.
Exercises

49. Show that all the loci of Exercise 47 are lines that are the perpendicular bisectors of
the line segments joining the two fixed points.
Is this always the case?

50. Given two fixed points the simplest locus is that of a point moving so that it is
equidistant from the two fixed points.
Exercise 46 suggests that if P is such that AP: PB is 2, then P lies on a circle.
(a) For the fixed points A, B of Exercise 47, find the equation of the locus of P such

that AP : PB = 2.
(b) What is the locus of the point P which moves so that PB : AP = 2?
(c) Repeat (a) and (b) for the other pairs of fixed points of Exercise 47.

51. Given any fixed points A and B, what is the locus of P such that AP: PB = 2?
52. Repeat Exercise 51 with “3” replacing “2”.
53. Guess, sorry conjecture, what will happen if “2” in Exercise 51 is replaced by any

real number “k”.
Prove your conjecture.
(Have you taken into account all possible values of k? Does it make any sense for k
to be negative?)
The next kind of locus we can try that is associated with fixed points is the “length

of string” locus. Take a piece of string, two drawing pins, a piece of hardboard, some
paper and a pencil. Put the paper on the board and then put a drawing pin in either end
of the string to fix it to the board. Don't stretch the string between the pins; keep it
loose. Now put your pencil against the string and pull the string tight. Move the pencil
round the paper so that the string is always kept as tight as possible.



What is the shape of the locus that is traced out by the pencil? What is therefore the
locus of the point of the pencil?

We illustrate the situation in Figure 7.14. You should find that the pencil makes a
complete closed curve. It actually looks a bit like a circle that has been sat on. Is it? Has
it?
Exercises
54. Suppose the drawing pins are at the points A and B, and the length of the string is k.

Construct the “length of string” locus for the following points and values of k.
(Choose your own units.)
(i) A =-1,0),B= (1,0),k=6;
(ii) A =-1,0),B= 1, 0),k=9;
(iii) A =-2,0),B= (2, 0),k=9;
(iv) A =-2,0),B= (2, 0),k=12;
(v) A =-2,0),B= (2, 0),k=15.

For each locus find the coordinates of the points where it crosses the x- and y-axes.
(You will need to use Pythagoras' Theorem again to calculate the y-intercepts.)

55. Continue your own investigation of the “length of string” locus.
Keep A and B fixed. What is the effect of changing k? Is there a smallest value of k?

Is there a largest value of k?

Figure 7.14
What shape are you producing? Are you convinced it's a closed curve? Is it a circle?

Could it ever be a circle?
Let's find the cartesian equation of the “length of string” locus.

Example 6. Find the equation of the locus of Exercise 54(i).
Here our drawing pins are at A = (-1,0) and B = (1,0). The length of string is 6. Let P

= (x, y) be any point on the locus. Then we know that√AP + PB = k = 6.
Now AP = (x + l)2 + y2 and PB =√ (x — l)2 + y2, so we have

Equation (2) is a mess. Have you ever come across anything like this with two
square roots? Even if we squared it we'd still have one square root left. To get rid of that
we'd have to square again!

I'm sorry. There's nothing for it but to do it. Here goes. Squaring both sides of (2)
gives

If we keep the square roots on the left, and square again, we'll finally get rid of all the
square roots. So let's tidy up and square again.



So

Let's square again like we did last summer.

The algebra we've got left to do here, boggles the mind. Take a deep breath, or a short
break, or use a CAS program, and then…

Ah! Blessed relief. At least we can do some cancelling. We lose all the x4's, y4's and
x2y2's. Then we've only got

This simplifies to

so

That's considerably simpler than we had any right to expect. But is it right? Perhaps we
should check a few points. We know from Exercise 58(i) that the curve crosses the x-
axis at (3,0) and (-3,0). Do these points satisfy equation (3)?

Yes. These points do satisfy the equation.
We also know, that (0, 2√2) and (0, -2√2) also lie on the locus. Do these satisfy the

equation (3) too?
Exercises
56. Find the equations of the loci of Exercise 54. All your equations should end up being

as simple as equation (3).
Check your equations by determining whether or not they are satisfied by the x-and

y-intercepts that you found in Exercise 54.
57. So far all the “length of string” loci that we have considered have had equations of

the form αx2 + βy2 = γ.



(a) Suppose our “length of string” locus has equation 4x2 + 9y2 = 36 and the
drawing pins wereon the x-axis and symmetrically placed about the y-axis. Find
the position of the drawing pins and the length of the string.

(b) Repeat (a) with the following equations
            (i) x2 + 4y2 = 4;     (ii) x2 + 9y2 = 9;
          (iii) 5x2 + 9y2 = 20;   (iv) 7x2 + 8y2 = 56.

58. Suppose the drawing pins are placed at A = (-c, 0), B = (c, 0) and the string is of
length k. Show that the equation of the “length of string” locus has the form αx2 + βy2

= γ.
59. Show that any “length of string” locus lies between two circles. How are these

circles related to the x- and y-intercepts of earlier exercises? Show that a point on the
“length of string” locus has coordinates that partly come from the smaller of these
two circles and partly from the larger.
Exercise 59 and equations of the form αx2 + βy2 = γ, where α ≠ β, should convince

you that the “length of string” loci are not circles. They are in fact ellipses. This is a
shape that is like one of the cross-sections of a rugby ball. It is also pretty close to the
shape of the orbit of the planets around the sun.

The technical jargon for the position of the drawing pins is the foci of the ellipse. So
in Exercise 58, A is the position of one focus and B is the position of the other. In the
planetary situation, the sun sits at one of the foci of each planet's orbits.
Exercises
60. In all our work so far on ellipses, we have taken our foci to lie on the x-axis.

Investigate what equations are obtained when the foci are on the y-axis and
symmetrically placed about the x-axis.
In such situations do the ellipses still lie between a pair of circles? Given a pair of
circles with centres at the origin, show the two ellipses that lie between them. (Can
more than two ellipses lie between these circles?)

61. The equation  is commonly used for an ellipse which is symmetrically
placed about the origin.
(a) If a > b, find the position of the foci and the “length of the string” which formed

the ellipse.
(b) Repeat (a) if b > a.
(c) What happens if a = b?

62. Which reminds me, the “length of string” loci arise because the sum of the distances
from P to two given points is a constant. What happens if the difference between the
distances from P to two points is a constant? To help you answer this suppose the
fixed points are A, B and the difference is k. Find the equation of the locus of P such
that |AP - PB| = k, where
(i) A = (-1,0), B = (1,0), k = 1;

(ii) A = (-2,0), B = (2,0), k =3;
(iii) A = (-3,0), B = (3,0), k = 4.
Do we still have a closed curve?

63. What is the locus of a point that moves so that it is equidistant from two fixed lines?



64. What is the locus of a point that moves so that it is equidistant from three fixed
points?

65. What is the locus of a point that moves so that the sum of its distances from three
fixed points is a constant?

66. What is the locus of a point that moves so that its distance from a fixed line is equal
to its distance from a fixed point?

67. Is the area of the equilateral triangle on the hypotenuse of a right angled triangle,
equal to the sum of the areas of the equilateral triangles on the other two sides?
Generalise.

68. Find the equations of the loci of the points that move so that they are equidistant
from the fixed points A and the fixed lines L.
(i) A = (0, 0) and L is y = 6; (ii) A = (0, 0) and L is x = -4.

69. Find the equations of the loci of the points that move so that they are equidistant
from the fixed lines L and M.
(i) L is y = 4 and M is y = 6;

(ii) L is y = 4 and M is x = -4;
(iii) L is y = 2x and M is y = 4x;
(iv) L is y = 2x + 3 and M is y = -3x + 2.

7.7. Conics
Look at the double cone in Figure 7.15. It has a circular horizontal cross- section.

If you take a horizontal cut through it, the exposed interior face will be a circle.
A cut at an angle, like that of A, will expose a face with an elliptical boundary — the

section here is an ellipse. Cuts like B, which are parallel to the “side” of the double cone
produces parabolic sections — the boundary of the exposed face is in the shape of a
parabola. Vertical cuts like C will produce hyperbolic cross-sections.

Figure 7.15.
Double cones are difficult to model in wood but single cones are not hard. You may

well have one in your school that is even cut in the ways I've considered in Figure 7.15.
Because of their links to the cone via cross-sections, the circle, the ellipse, the

parabola and the hyperbola are called conic sections. These shapes all appear
somewhere in the last section.



You can find out more about conics by looking on the web or by looking at a
geometry book in a library.
7.8. Solutions
1.

2. y = mx; see Figure 7.4 to find out what happens as m changes.
3.

4. Using the approach of Example 2 you should see that  or equivalently 
 If x1 ≠ x2 and y1 ≠ y2 this can be written in the form

(If you didn't get either of the equations of the first sentence, it is still possible that
you are not wrong. Does your equation give the equation of the second sentence
above?)
   In the case y1 = y2, we get a horizontal line. Every point on this line has y1 as its y-
value. Hence the equation of such a line is y = y1.
   If x1 = x2, we have a vertical line. On such a line, every point has the same x-
value. The line's equation is therefore x = x1.

5. (i) gradient: 2; y-intercept: 4; (ii) 4; –2;
(iii)  (the equation must be written in the form 
(iv) 

7. (i) 90°; (ii) 90°; (iii) 90°; (iv) 90°.
8. (a)

In the diagram, y = kx is the required line. Let A be any point on the line y = 2x. Let C
be the point where the line through A perpendicular to the x-axis meets the x-axis
and let B be the point where this perpendicular meets the line y = kx.
   Since angle AOB = 90°, then 's AOC, OBC are similar. (You should be able to
show this for yourself. You only need to prove that the triangles have the same
angles.) Hence  But  gives the gradient of the line y = 2x, so  On
the other hand,  is the magnitude of the gradient of the line y = kx. Since this
gradient is negative, then its value is  The line y = kx is therefore 



(b) Every line perpendicular to y = 2x is parallel to  Hence all the lines
perpendicular to y = 2x have gradient  Hence their equations are all of the
form 

9. (a)

Using a similar argument to that of Exercise 8(a) we see  Hence the gradient of
the line y = kx is 

(b) All possible lines perpendicular to y = —3x have equation y = 
10. (a) Exactly the same arguments used in Exercise 8(a) will give y =  provided m ≠

0.

11.



12. (i) 17; (ii) 21; (iii) 99; (iv) 0; (v) 13; (vi) 13; (vii) 13.
13. Clearly  Hence |a + b| > |a| + |b| cannot be true for all real numbers.

   On the other hand |a + b| ≤ |a| + |b| is true for all real numbers. Test the four cases a
> 0, b > 0; a > 0, b < 0; a < 0, b > 0; a < 0, b < 0.
   From your work in these four cases you will see that |a + b| can equal |a| + |b| if a
and b are both positive or both negative or both zero.
   (|a + b| < |a| + |b| is sometimes referred to as the Triangle Inequality. Why? See
Chapter 5.)

14. (i) For a > 0, |a| = a and |3a| = 3a, so 3|a| = |3a|. For a < 0, |a| = –a and |3a| = –3a, so
3|a| = |3a|. This argument can be used to show that k|a| = |ka| for all non-
negative values of k.

(ii) Since | –3a| is always positive and –3|a| is always negative, –3|a| ≠ | –3a|.
However, for all negative values of k we can show that k|a| = – |ka|.

(iii) |5 – a| = |– (a – 5)| = |– 5|. It can be shown that |ka| = |k||a|, which generalises the
generalisation of (i).

(iv) This is clearly false if a is zero, for instance.
15.



16. (i) and (iii) are the same (see Exercise 14).
(ii) and (iv) are not the same (again see Exercise 14).

17.

We sketch the graph below

The four regions x > 0, y < 0, etc. are the four quadrants into which the x- and y-axes
divide the plane. We insert the appropriate part of y = x or y = –x in the appropriate
quadrant to get the graph above. This shows two intersecting perpendicular lines.





22. First find the equations of the diagonals of the square. If these are y = m1x + c1 and y
= m2x + c2 then the equation of the square is a|y – m1x – c1| + b|y – m2x – c2| = 1. The
values of a and b will depend on the size of the square in question.
   ((1) What is the relation between m1 and m2? (2) Actually for fixed m1, m2, c1, c2,
as a and b are varied in a fixed ratio you get an infinite set of “concentric” squares.
What happens if you change a and b independently? (3) How do the diagonals of the
square come into the picture? (4) What is the relation between the gradient of the
diagonals? (5) How do you determine a given square from an infinite set of
“concentric” squares?)



(It would be interesting to see what happened if you sketched a|3y – x | + |x + 3y| = 6
for various values of a.)

(Again the diagonals seem to play an important role here.)

(If you did the extra work in Exercise 23(vi) you should have found this easily.)
25. (a) a|y - m1x - c1| + b|y - m2x - c2| = 1 where y = m1x + c1, y = m2x + c2 are the

diagonals of the parallelogram and a and b have to be found for each
quadrilateral.
   (Can you actually prove this?)

(b) I don't think so. I conjecture that you need the quadrilaterals to be
parallelograms. What do you think of that conjecture?

(c) What did you find? How did things go for things odd?
26. Sketch the two graphs with b = 0, say. Then move the second graph until it overlaps

with the first. This is the same as translating the graph with b = 0. The values 6 and
-6 look interesting.

27. These are all circles. The centres of the circles are the given points and the radii are
the fixed distances.

28. The line segment between (-1, 0) and (7, 0) is 8 units long. Hence this is a diameter
of the circle involved. Thus C = (3, 0).



29. From Chapter 5 we know that the perpendicular bisector of a chord of a circle passes
through its centre. Hence C = (1,4) and a =1.

30. The points C = (2, b), (2, 0) and (1,0) (or (3, 0)) form a right angled triangle with
hypotenuse 2. Hence b =  (There are two possible points C. Why?)

31. C = (3, 4) or (3, -4). (See the last Exercise.)
32. C = (12, 4) or (-12, 4).
33. C = (14, 2) or (-10, 2).
34. Since (1, 2) and (11, 26) are a distance 26 apart, they form a diameter of the circle.

Hence C = (6, 14).
35. Since the distance between the two given points is 25  and the radius of the circle is

25, C, (7, -1) and (32, 24) are on the vertices of a right angled triangle with sides 25,
25, 25 . Hence C = (32, -1) or (7, 24).

37. We're obviously now moving in another direction. Let the point be P = (x, y). Then
we know that (x – l)2 + y2 = (x + l)2 + y2. If we simplify this we get x = 0. The locus
is therefore the y-axis. (Or was this obvious from the start?)

38. Here we have x2 + (y – l)2 = x2 + (y – 3)2. This simplifies to y = 2.
39. (x – l)2 + y2 = x2 + (y – l)2 simplifies to y = x.
40. To do these problems you need to know the standard triangles below.

41. (i) c2 = 52 + 52 – 2 · 5 · 5cos60° = 50 — 50cos60° = 25. Hence c = 5 and therefore A
= B = 60°. (Actually it's easier to see from the start that A = B = 60°, so c has to
be 5.)

(ii) A = l20° and b = c. Hence 4 = 2b2 — 2b2 cos 30°. Therefore b ≈ 3.86;
(iii) 2 = l + l — 2 cos B. Therefore B = 90° and A = C = 45°.

This result is known as the converse of Pythagoras' Theorem.
In the triangle shown, assume that a2 + b2 = h2.
No, apply the cosine rule: h2 = a2 + b2 — 2ab cos θ. But since a2 + b2 = h2, cos θ = 0.
Hence θ = 90°.
(Beware! We may be on sand here. Does a proof of the Cosine Rule depend on what we
are trying to prove? If it does we have gone in a circle and have proved nothing. What



do you think?)
43. We prove the Cosine Rule for an acute angle θ. The proof for an acute angle is

similar. You should try to work that out for yourself.

Now by Pythagoras g2 = a2 — (c — t)2 and g2 = b2 — t2. Hence 2tc = b2 + c2 — a2.
Further  Simplifying we get the Cosine Rule.
   (Note. We proved this using Pythagoras' Theorem. Hence the converse of Pythagoras
that we proved in the last exercise has been proved. There is no flaw in our argument.)
44. The sine rule says that 

   Using the triangle in Exercise 43 we see that g = b sin A = a sin B. Hence 
 The rest of the rule follows by dropping the perpendicular from angle A

and using a similar argument on the two triangles so created.
45. If the two lines are perpendicular, then Exercise 10 shows us that m1m2 = - 1.

Now we'll assume that m1 m2 = —1 and prove that the two lines are perpendicular.
Suppose the lines meet at R in an angle θ. Then ST2 = RS2 + RT2 — 2RS ? RT cos θ.
   If we are cunning and choose U so that RU = 1, then SU = m1 and UT = |m2|. (I'm
assuming for simplicity that m1 > 0.) In RSU we then have

Now

Hence

On the other hand

So back to the Cosine Rule…

Clearly cosθ = 0, so θ = 90°. Hence if m1m2 = -1, then the two lines are
perpendicular.



46. Use the Cosine Rule on 's APC and BPC. Let ∠BCP = 0. Then

Hence the result follows.
47. (i) the straight line x = 2;

(ii) the line y = 2;
(iii) (x - 2)2 + y2 = x2 + (y - 2)2 gives the line y = x;

(iv) (x - 2)2 + y2 = x2 + (y - 4)2 gives the line y= .
48

Let P be any point such that AP = PB, where A and B are arbitrary fixed points. We will
show that P lies on the perpendicular bisector of AB.
Consider 's APX, BPX, where X is the midpoint of the line segment AB. Now AP =
BP, and AX = XB given. Clearly PX = PX. Hence 's APX, BPX are congruent (SSS).
Hence ∠AXP = ∠BXP. But ∠AXP + ∠BXP = 180°, so ∠AXP = ∠BXP = 90°.
We have proved that PX is perpendicular to AB, so P lies on the perpendicular bisector
of AB. Hence all points which are equidistant from A and B lie on a line (the
perpendicular bisector of AB). The required locus is therefore a straight line.
49. I'm too lazy to do all of these. So here goes with (iv). (The rest are the same but

easier.)
Now the midpoint of GH is (1, 2). This lies on the line y = . The gradient of

GH is – 2 and of the line is ½. Since ½ (– 2) = – 1, the line segment GH and the line
y = 1 2x + 3 2 are perpendicular. Hence y =  is the perpendicular bisector of
GH.

Exercise 48 shows that this is always the case.
50. (a) Let P = (x, y). If AP : PB = 2 we have AP2 = 4PB2. Hence

x2 + y2 =4[(x - 3)2 + y2].
Simplifying gives

If you know the algebraic trick of completing the square then you'll see that



If you don't know the trick I think you should be able to check that what I've done is
correct.
     So going back to equation (4) we get

This is clearly a circle, centre (4, 0) and radius 2.

These are both circles. Similar results hold for (iii) and (iv).
51. Let A and B be any two distinct points. Suppose they are a distance 3a apart. Let BC

= a, where C is on the line AB extended past B. (Here I'm cheating a little by letting
BC = a but it is a good guess based on what we have done so far.)

We will show that PC is a constant for all P such that AP : PB = 2. Using the Cosine
Rule on triangles APC, BPC gives

Hence

Simplifying gives PC = 2a. Since this is a constant, P moves so that it is always
equidistant from the fixed point C. Hence the locus of P is a circle.

(Note. (1) You can use the cartesian method of proof but the algebra gets a bit
messy.

(2) BP : AP = 2 must also give a circle. Just interchange the roles of A and
B in the proof above.

(3) A and B are not necessarily on a horizontal line.)
52. Surely a circle again. Try the argument of the last exercise with AB = 8a and BC = a.

You should find that PC = 3a, so the locus of P is a circle of radius 3a, centre C.
53. Conjecture. For k positive, the locus of P is such that AP : BP = k is a circle. The

centre C of this circle is on the line AB extended a distance  past B.



Comment. This conjecture looks good for k = 2, 3. Does it have any obvious
drawbacks though? As with all conjectures you now either prove it or come up
with a counter-example. I'll go away and come back later when you've had a
chance to think.

54. You should find answers that are close to the following ones.

55. With A and B fixed and k increasing, the magnitude of the y-intercepts and that of
the x-intercepts get closer in value. Consequently the closed curve becomes more
circular. However, no matter how large k becomes, the curve is never actually a
circle.

From the physical constraints of the problem it is clear that k must be at least as
big as the distance between A and B. If k equals this distance what locus do we get?
What is the relation between the x-intercept and k?

56.

57. (a) Find the x- and y-intercepts. The length of the string is 6. (This is twice the x-
intercept. Why?) If the drawing pins are at (±c, 0) then c = √5 (using y-intercept
information). So the drawing pins are at (±√5, 0).

58. You should get 
59

(Here we are assuming that α < β .)
Draw the line ORQ. Then the vertical through Q and the horizontal through R,

intersect at P, a point on the ellipse. So P has the x-coordinate of Q and the y-
coordinate of R.

52. (Revisited) I knew you'd find this eventually. By now you've had a chance to think
over my conjecture. For a start, you should have found that k = 1 causes difficulties.
We already know that if AP = PB, then the locus of P is a line. The fact that we were
looking at a quantity  should have alerted you to this.

This means we need k > 1. However, at this stage I think the conjecture can be
proved using the Cosine Rule as we did in Exercise 55.



But what does 0 < k < 1 mean? If AP: PB = k then PB : AP =  and  > 1. So in
this case we just interchange the roles of A and B and our circle reappears but with its
centre on the “A side” of AB.

You might like to think about what happens for k > 1 as k approaches 1. The centre
C moves further and further away from B. I suppose in the limit you might think of C
as reaching infinity so that the straight line we get when k = 1 is somehow the arc of
a circle with infinite radius.

As k passes through 1, does C reappear at infinity (or at least a very long way off)
but on the “A side” of AB?

(Use some technology to animate this situation and see what it looks like.)
60. Just rotate the situation for foci on the x-axis, through 90°.

For the “two ellipses” situation, take the x-coordinates of R (see Exercise 63's
solution) and the y-coordinate of Q to get a point on the new ellipse.

You can actually get an infinite number of ellipses by rotating the diagram slowly.
61. (a) First note that the x-intercepts are (±a,0) and the y-intercepts

are (0, ±b). Hence the length of string is 2a and the foci are at .
It's at this point you see why a needs to be bigger than b. If it were the other way

round we would be trying to find the square root of a negative number in order to
find the position of the foci.

(b) You should sketch this situation. Now the long axis of the ellipse is vertical.
Consequently the string length is 2b and the foci are at 

(c) If a = b, then we have a circle, centre the origin and radius a. (Here the two foci
coincide to become the one centre.)

62.

None of these are closed curves. They actually consist of two branches.
Such curves are popularly known as hyperbolas.

63. If the lines are parallel, then the locus is another line parallel to these two and mid-
way between them.
     For skew lines the locus is the two lines that bisect the two adjacent angles formed
by the skew lines. (What is the relation between the angle between the original pair
of lines and the angle between the lines of the locus?)

64. Suppose P moves so that it is equidistant from A, B and C. From Exercise 48, P lies
on the perpendicular bisectors of AB and BC. If A, B, C are not collinear then this
gives us a unique point. If A, B, C are collinear it gives us no point.

65. I don't know but I'd like to find out. I conjecture that, depending on the constant, it is
a closed curve. However, rushing into algebra containing three square roots is
extremely off-putting. Has anyone got any better ideas? (Try a CAS program.)

66. This is a parabola. It isn't a closed curve. It looks a bit like a part of a hyperbola.
67. Surely it is.
68. (i)  a parabola;

(ii) y2 = -8x +16 — also a parabola but with a horizontal axis of symmetry.
69. (i) y = 5; (ii) y = -x; (iii) y = 3x; (iv) y = 5.



Chapter 8
Some IMO Problems

8.1. Introduction
This chapter is slightly different from the others in that it is the only one that looks
specifically at four problems and makes no effort to introduce any new mathematics.
The problems too, are ones that have been used or proposed at International
Mathematical Olympiads (IMO). The aim here is to give you a chance to have a go and
compare your ability with the best students in the world. Because the questions are
hard, I provide some hints and suggestions in case you get stuck. Complete solutions
are provided eventually.

The main reason for choosing the problems that I have is that they are all questions
in which progress can be made by trial and error and looking at special cases. This is
not always the case with IMO problems. Usually you'll need to know some geometry,
some number theory or whatever, before you get started. But the problems I've chosen
here can be done after a little experimentation. Hopefully the hints will help you see
how experimenting with maths problems can sometimes lead you to a solution.
8.2. What is the IMO?
There are mathematics competitions held in a large number of countries throughout the
world. In some countries there are regional competitions, and in some there are national
competitions, while in some others there are both. The supreme maths competition
available to secondary school students, however, is the International Mathematical
Olympiad. This is open to any country that can assemble six or fewer students (20 years
and under) to travel to the country hosting the IMO in that particular year.

Each participating country may send questions it has devised to the host nation.
From these questions, approximately 30 are selected for consideration by the Jury —
the collection of team leaders, who gather in the host country a few days before the
arrival of their teams. From these short-listed questions, six are chosen and on each of
two consecutive mornings, three questions are attempted by the students in a 4½ hour
marathon exam.

After they have completed the two mornings of competition the students are
entertained by their hosts, while the team leaders and their deputies mark their team's
attempts. These marks have to be justified before a panel of people from the host
country.

Approximately the top 50% of students gain a medal of some description. The lower
half of the medal winners get bronze medals, the top one- sixth get gold and the rest get
silver. The IMO has been going since 1959. It started as a competition between eastern
bloc countries and by the turn of the 21st century some 90 countries from all over the
world competed.

One of the singular features of the IMO is that once a team arrives at a
predetermined point in the host country, accommodation and meals are both provided
free of charge. It maybe this that is the reason for the very friendly atmosphere in which
the IMO take place. It may, of course, simply be that people are people wherever they



come from and the majority of us put on our best behaviour when we are someone's
guests.

Finally let me say that the IMO is not an end in itself. I think most of the team
leaders would not be involved just for the sake of the six who they take to IMOs.
Generally the effort is all about encouraging students to think about mathematics. The
IMO serves as a pinnacle to attract the best students of all countries but in the process
of finding these students, hopefully a large number of students of all levels of ability are
introduced to more mathematics than they would meet in school.
8.3. PHIL 1
The following problem was proposed by the Philippines at the 30th IMO.
Problem 1. Prove that the set {1,2,…,1989} can be expressed as the disjoint union of
17 subsets A1, A2,…, A17 such that

(i) each Ai contains the same number of elements, and
(ii) the sum of all elements of each A1 is the same for i =1,2,…, 17.

The IMO organisers thought that the following two alternative forms should be
considered by the Jury.
Problem 2. Prove that the set {1,2,…,1989} can be expressed as the disjoint union of
A1, A2,…, A117 such that

(i) each Ai contains the same number of elements, and
(ii) the sum of all elements of each Ai is the same for i = 1,2,…, 117.

Problem 3. Let M = {1,2,…, n}. Prove necessary and sufficient condition(s) for the
number m, so that M can be expressed as the disjoint union of m subsets Ai, i = 1,2,…,
m, such that

(i) each Ai contains the same number of elements, and
(ii) the sum of all elements of Ai is the same for i = 1, 2,…, m.

Problem 2 was used in the 30th IMO as Question 1. I refer to it in the section
heading as PHIL 1 because that was its name in the early Jury sessions.

It occurs to me that some of you may never have heard of “necessary and sufficient”.
Actually, it's the same as “if and only if”.

You all know Pythagoras' Theorem. It can be stated as
“A triangle is a right angled triangle if and only if the square of the hypotenuse (h) is
equal to the sum of the squares of the other two sides (a, b).”
This is because if the triangle is right angled, then h2 = a2 + b2 and if h2 = a2 + b2,

then the triangle is right angled. (I talked about this in the last chapter.)
But we can also state Pythagoras' Theorem in terms of necessary and sufficient.
“A necessary and sufficient condition for a triangle to be right angled is that h2 = a2

+ b2.”
Think of it this way. If the triangle is right angled, then h2 = a2 + b2. There is no other
choice for h, a, b. They have to be linked by h2 = a2 + b2. It is necessary that h2 = a2 +
b2.

On the other hand, if h2 = a2 + b2, then the triangle is right angled. In other words, to
get a right angled triangle all we have to know is that h2 = a2 + b2. It is enough, that is,



it is sufficient for our purposes — the getting of right angle-ness — that h2 = a2 + b2.
So that's what necessary and sufficient is all about. In Problem 3, then, you have to

find some condition “blah” (or conditions blah, blah and blah), such that blah implies
that M can be broken into the Ai's as required (blah is sufficient). You also have to show
that if M can be broken up into Ai's as described, then blah follows (blah is necessary).

You should now sit down with pencil and paper for a day or so and see how far you
can get. If you think you can solve Problem 2 see what you can do with Problem 3. If
Problem 2 escapes you then go to p. 254 for some hints.
8.4. MON 1
The following problem was submitted for the 30th IMO by Mongolia. It didn't make the
final six but was considered by the Jury. Below I have reformulated the question in
terms of graphs. This formulation doesn't make the question any easier or more difficult
but it does make it nicer to state.

For background on graph theory, see Chapter 3. Some of the basic concepts and
ideas discussed there may help you to solve this problem but I have given a few more
ideas on graphs here. Some of these might help you understand the solution to the
problem but you might still be able to solve the problem without them.

Recall that a graph is simply a collection of vertices joined by edges. I've shown
four in Figure 8.1.

If all vertices are joined to all other vertices, then we say that the graph is complete.
We denote the complete graph on n vertices by Kn. Hence C is K5 but B is not K4 (there
is an edge missing).

We can put two graphs G and H together to make their union, G ∪ H, just by
drawing them next to each other. So D = K3 ∪ K4.

A spanning subgraph H of G is one with the same vertices as G but only a subset of
the edges. Hence B can be thought of as a spanning subgraph of K4 and A as a spanning
subgraph of K5.

Figure 8.1.
Actually A is a tree. That is, it doesn't have any cycles — you can't go from any

chosen vertex in A to any other along edges of A and then get back by another, different
such route. However, you can get from any vertex to any other vertex along edges of A.
This “getting between” and “no cycles” are the two things that make a graph a tree.
Clearly B and C are not trees because they have cycles. D fails both because it has
cycles and because you can't get from a vertex of the K3 to a vertex of the K4 using
edges of D.

All this talk leads to the fact that A is a spanning tree of K5.
Now onto Problem 4.

Problem 4. A graph on seven vertices has the property that, given any three vertices, at
least two are joined by an edge.



What is the smallest number of edges in such a graph?
Find all such graphs.
Now work through this problem for yourself. If you haven't solved it after a day or

so, then look at the Hints on p. 256.
To make things easy for ourselves, I will refer to the idea that among any 3 vertices

there is at least one edge, as the triple property.
8.5. MON 6
The problem on which we base this section and the discussion of Section 9 was also
submitted by Mongolia to the 30th IMO. It was not included in the final six problems
because the idea had been used in another competition. However, this doesn't mean that
it isn't an IMO standard problem.
Problem 5. A positive integer is assigned to every square of an m × m chessboard.
These numbers can be changed by adding an integer to two adjacent squares, provided
such additions produce non-negative numbers.

Find necessary and sufficient conditions on the original positive integers, so that
after a finite number of such additions, all numbers on the board are zero.

(Two squares are adjacent if they share a common edge.)
Now work on. Previous questions should have given you a clue as to how to

proceed. Hints can be gathered from p. 258.
8.6. UNK 2
The following problem was posed at the 29th IMO by the United Kingdom.
Problem 6. A function f is defined on the positive integers, n, by

Determine the number of positive integers n, less than or equal to 1988, for which f(n)
= n.

This is a nice problem for several reasons. The idea behind the function is interesting
and even when you've found f there's still a little bit of work to do. In addition, even if
you don't immediately see what f is, a little perspiration should lead you to finding it.

The hints start on p. 259 but by now you should be able to work out for yourself the
first few things to try.
8.7. Hints — PHIL 1
In a question like this you can hunt around for inspiration by trying small cases and then
looking for a pattern. This is one of the most basic of problem solving techniques and is
possibly one of the most useful.
Problem 2'. Find two disjoint subsets A1, A2 of M = {1,2,3,4} whose union is M where |
A1 | = | A2 | and where the sum of the elements of A1 equals the sum of the elements of
A2.

Incidentally | A1 | means the number of elements in the set A1 and disjoint means that
A1 and A2 have no elements in common.

Surely you'll quickly see that A1 = {1,4} and A2 = {2, 3} will do. (In fact I'm pretty
sure that they're the only ones that will do.)



The aim of the next few exercises is to give you a feel for how you might play with
the ideas of Problem 2, until you have assembled enough ammunition to be able to
solve it.
Exercises
1. Find disjoint sets A1, A2, A3 whose union is M = {1, 2, 3, 4, 5, 6} such that | A1 | = |

A2 | = | A3 | and such that the sum of the elements in each of A1, A2, A3 is the same.
Is there only one solution?

2. Find disjoint sets A1, A2, A3, A4 whose union is M = {1, 2, 3, 4, 5, 6, 7, 8} such that |
Ai | is the same for i = 1, 2, 3, 4 and the sum of all elements of Ai is the same for i =
1, 2, 3, 4.
Is there only one solution?

3. Now answer Problem 3 if n = 2m.
Is your solution unique?
Just to save ourselves a lot of writing I'm going to bring in a definition at this point.

I'll say that {A1, A2,…, Am} is a partition of the set M if ∪m
i=l Ai = M and if Ai ∩ Aj = 

unless i = j. Here ∪m
i=l Ai = A1 ∪ A2 ∪…∪ Am.

So a partition is a collection of subsets of a set whose union is the whole of the set
and such that no two subsets have any elements in common (they are all disjoint). For
instance, in Problem 2', ∪2

i=1 A1 ∪ A2 = M and A1 ∩ A2 = . Hence {A1, A2} is a
partition of {1, 2, 3, 4}.

Again the aim behind the next set of Exercises is to see how to play with a problem
until you get on top of it. Try leading up to a general solution.
Exercises
4. Show that your solutions of Exercises 1, 2, 3 are partitions of M in each case.
5. Rephrase Problem 3 using the word “partition”.
6. Partition the set M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} into three sets of equal size

so that the sum of the elements in each set is the same. {Before you start, what is
going to be the size of the sum of the elements in each set of the partition?}
Is your solution unique?

7. Repeat Exercise 6 with a partition of four equal subsets.
Is your solution unique?

8. Show that M = {1,2,…, 9} can be partitioned into 3 equal size sets so that the sum of
the elements in each set is the same.
Can you show that this can only be done in two ways?

9. Partition M = {1,2,…, 15} into five equal subsets the sum of whose elements are
equal.
Is your solution unique?

10. Can you see how to partition M = {1,2,…, 3m} into m subsets of the same size so
that the sum of the elements in each set is the same?
If so, do it. If not, try some more specific values of m before returning to the general
case.
Is the solution unique?



11. Partition M = {1,2,…, 5m} into m subsets of equal size, the sum of the elements in
each set being the same.

12. Repeat Exercise 11 with M = {1,2,…, 7m}.
13. Solve Problems 1 and 2.
14. Based on your work above, what do you conjecture is (are) the required necessary

and sufficient condition(s) for Problem 3.
Prove your conjecture.
When the required partitions exist are they ever unique?
But almost any problem can be extended. We start off with an extension that isn't

really.
Exercises
15. Let M = {2i : i = 1,2,…n}. For what n can the set M be partitioned into sets Ai of

equal size such that the product of the elements in each set Ai is the same?
16. Let M = {1,2,…, 14}. If Ai ⊆ M, let πi be the product of all of the elements of Ai.

(a) Partition M into sets Ai of size 2 so that 7
i = 1 πi is as small as possible.

(b) Partition M into sets Ai of size 2 so that 7
i = 1 πi is as large as possible.

(c) Repeat (a) and (b) with subsets of size 7.
Generalise.

8.8. Hints — MON 1
If you can't immediately see how to tackle a problem like this (and most of us can't),
then try a smaller one and work your way up. Smaller cases are usually more
manageable and at the same time they give you a feel for the problem and may suggest
a line of attack.
Exercises
17. Try the problem first with 3, 4, 5 and 6 points. (There's really no point starting with 2

points because Problem 4 is about triples of points.)
The answer for 3 should be clear.
For 4 is 1 edge enough? Do we need 3 edges? What do the smallest graphs look like?

18. Conjecture what a smallest graph on 7 vertices must look like. Prove that the
minimum graph must have at most that many edges.
Can you prove that the minimum graph has precisely that many edges?
Naturally though we can't stop there. It is clear that this problem can be generalised.

So push on to the generalisation.
Exercise
19. What is (are) the smallest graph(s) (in terms of edges) on n vertices which obey(s)

the triple property?
A graph on n vertices is said to be minimal with respect to the triple property if it has

the triple property but none of its subgraphs on n vertices does.
For instance, J = K3 ∪ K5 is minimal with respect to the triple property for all graphs

on 8 vertices. Clearly it satisfies the triple property. However, if any edge is removed
from J the triple property is lost.

The concept of minimality is a common one in mathematics. It tells us something
about the smallest member of a string of objects. The string of objects with J as its



minimal element is the set of graphs obtained from J by adding edges which don't exist
in J.
Exercises
20. Find all the graphs on 7, 8, and 9 vertices, which are minimal with respect to the

triple property.
21. What are the graphs on n vertices which are minimal with respect to the triple

property?
22. A graph is said to satisfy the quadruple property if given any four vertices at least

two are joined by an edge.
Describe the minimal graphs with the quadruple property. What is the smallest
number of edges among all such graphs?

23. A graph is said to satisfy the m-ple property if given any m vertices at least two are
joined by an edge.
Describe the graphs on n vertices which are minimal with respect to the m-ple
property.

24. A graph is said to satisfy the triangle property if there is a triangle joining three of
any four given vertices.
Describe the graphs on n vertices which are minimal with respect to the triangle
property.

25. A graph is said to satisfy the t-clique property if the subgraph induced by any t + 1
vertices contains a complete graph on t vertices.
Describe the graphs on n vertices which are minimal with respect to the t-clique
property.
It is clear that we could go on forever with this line of generalisations. Insert your

own properties of graphs and see if you come up with some interesting results or
interesting graphs.
8.9. Hints — MON 6
Once again I suggest that you proceed by stages with this problem. There's no point in
looking at a 1 × 1 chessboard, so start with a 2 × 2. Also drop the non-negative
condition. It's a little unnecessarily restrictive to start with.
Exercises
26. In the following 2 × 2 boards, a positive integer is placed in each square. By adding

integers to pairs of neighbouring squares, which boards can be reduced to ones which
contain all zeros? For the others, keep a record of how far you can get towards all
zeros.

27. In the 2 × 2 board below, a, b, c, d are positive integers. By adding various integers
to pairs of adjacent squares, find a relation between a, b, c, d, so that the numbers in
each square eventually become zero.



28. Repeat Exercise 26 but this time only allow non-negative numbers to appear in each
square at any stage.

29. Repeat Exercise 27 but this time only allow non-negative numbers to appear in each
square at any stage.

30. Can the following one row board be reduced to all zeros by successively adding
integers to neighbouring squares, without any square ever containing a negative
integer?

31. Solve Problem 5 for the case m = 1 and arbitrary n. (Beware the problems of
Exercise 30.)

32. Solve Problem 5 for the case m = 2, n = 3.
(If you find this too hard at first, go through the preliminary stages of putting in
specific values for the original numbers. Then do the general case as in Exercises 27
and 31. This should give you a conjecture at least.)

33. Solve Problem 5 for the case m = n = 3.
34. Solve Problem 5.
35. Once again arbitrarily assign positive integers to the squares of an m × n chessboard.

Change these numbers by progressively adding the same integer to a pair of
neighbouring squares. Never allow any square to contain a negative number.
How close can you get to reducing all the numbers to zero?
Can you predict this at the start?

36. Solve Problem 5 for the case when positive real numbers are initially assigned to
each square and we may add any real number to an adjacent pair of squares so that no
square ever contains a negative number.

8.10. Hints — UNK 2
If you have no idea what f is at least you know that you should be trying to find it. The
best way to start is to draw up a table of values.

Throughout the exercises, f refers to the function of Problem 5.
Exercises
37. Determine f (n) for all n ≤ 30.
38. In the range of Exercise 37, for what n is f (n) = n? For what n is f (n) ≠ n?

Can you see any patterns in any of these?
39. Without calculating f (31) do you think it is 31 or something else? Why?

Now calculate f (31).
At this stage (or perhaps much earlier) you will realise that if you had a computer at

your disposal you could get it to solve the problem for you. All you need to do is to
program it to calculate f (n) for all n ≤ 1988 and check which of these values is the same
as n. Indeed if you are desperate you could do the calculations yourself by hand.

In the meantime let's press on to find an analytical solution.
Exercise
40. Determine f (2m) for all m.

Determine f (2m ± 1) for all m.



Have we now covered all the values in Exercises 37 and 39?
In my youth I knew a doughnut shop which sold rather delicious doughnuts. On the

wall was, roughly speaking the following poem:
“As you wander on through life my friend May this always be your goal. Keep your
eye upon the doughnut And not upon the hole.”
In mathematics sometimes it pays to look at the hole. Even the holes tell you

something about the doughnuts they're attached to.
Exercises
41. Note that there are some pairs n1, n2 that get interchanged by f. In other words there

are n1, n2 such that f (n1) = n2 and f (n2) = n1. Try to identify as many of these as you
can.
Is there any pattern here? Are these any help in trying to find f?

42. Since f (2n) = f(n) you've probably stricken even numbers off of your Christmas card
list. How does f (2n) = f(n) fit in with the interchanging of Exercise 41?
By now if you haven't worked out what f is and if you haven't stolen a look at the

answer, you're probably extremely perplexed. Give it all another 24 hours to switch
itself around in your head.
Exercises
43. Just for something different, and to give you a totally new perspective on life,

express 11 and 13 in bases 2, 3 and 4. Look for similarities.
Repeat with 19, 23, 25, 29.

44. (a) So what do you think flipping f is doing?
(b) Whatever you think it is, show that f satisfies the defining relations in Problem

6.
(c) Can any other function satisfy those relations?

45. Now you know what f is, for what n is f (n) = n?
Count all such n that are less than or equal to 1988.

46. How many numbers less than or equal to 1988 exist such that f (f (n)) = n?
47. Produce a similar problem to Problem 6 which is based on the number 3.
48. The function g is defined on the natural numbers and satisfies the following rules:

(i) g(2) = 1;
(ii) g(2n) = g (n) and g(2n + 1) = g(2n) for all natural numbers n.

Let n be a natural number such that 1 ≤ n ≤ 1989. Calculate M, the maximum
value of g (n). Also calculate how many values of n satisfy g (n) = M.

(Irish Mathematical Olympiad 1989)
Of course, you need to have a certain basic mathematical knowledge before you

tackle these problems — that's always going to be true. You can't do much in life on
zero knowledge. But most of you know enough mathematics to be able to solve the
problems posed here, by yourself. What you may not have had was an idea of how to
tackle the problems. Now you know how to worry problems to death before they do the
same to you.
8.11. Solutions
1. A1 = {1,6}, A2 = {2,5}, A3 = {3,4}.



Since the sum of the elements of M is 21 then each set Ai must have a sum of 7. Sums
of 7 can only be obtained from M in three ways. Hence, to within labelling of the
Ai there is only one solution to this problem.

2. Ai = {i,9 – i} for i = 1,2, 3,4.
The argument of Exercise 1 shows that this solution is unique.

3. Ai = {i, 2m + 1 – i} for i = 1,2,…, m.
Clearly the solution is unique.

4. In each case M = ∪m
i=l Ai and Ai ∩ Aj =  for i ≠ j.

5. Let M = {1,2,…, n}. Prove necessary and sufficient condition(s) for the number m so
that M can be partitioned into m equal size subsets the sum of whose elements are
the same.

6. The sum of the elements of M is 78. Since we are to have three subsets in the
partition and they are to have the same sum, the sum of each Ai is 26.

One solution is Ai = {i,7 – i, i + 6,13 — i} for i = 1,2, 3, 4. However, you should be
able to see that there are at least 15 different partitions that will do the job. This is
because we have essentially taken the partition of M into 6 equal subsets with the
same sum of 13, and combined them.

There are more solutions yet. For instance, A1 = {1,6,8,11}, A2 = {2,5,7,12}, A3 =
{3,4,9,10}, does not come by combining partitions whose sum is 13. There is no way
that both A1 and A2 can be subdivided into 2-element subsets any of whose sums is
13.

So how many partitions exist for this problem?
7. For this partition, if it exists, we need a sum of 78 ÷ 4. Clearly, no such partition

exists.
8. Suppose 1  A1. Let A1 = {1, a, b}. A quick count shows that 1 + a + b = 15 so a + b

= 14. The only pairs in M which give 14 are 5, 9 and 6, 8.
Case 1. A1 = {1,5,9}. Suppose 2  A2 and A2 = {2, c, d}. Then c + d = 13. This
forces c and d to be 6 and 7. (We can't use 9 and 4 because 9 is already in A1.
Similarly we can't use 5 and 8.) So A2 = {2, 6, 7} and we are left with A3 = {3,4, 8}.
Case 2. A1 = {1, 6, 8}. So let A2 = {2, c, d}. Because c + d = 13 and 6 and 8 have
been used in A1, c and d are 4 and 9. So A2 = {2,4, 9}. This forces A3 = {3,5,7}.

So M can be divided in precisely two ways.
9. A1 = {1,8,15}, A2 = {2,9,13}, A3 = {3,10,11}, A4 = {4,6,14}, A5 = {5,7,12}.

There are at least two other solutions. Try to find them. One of them doesn't have
all of 1, 2, 3, 4, 5, in different sets of the partition.

10. First we notice that the sum of elements of M is ½3m(3m +1). Hence the sum for
each set of the partition is 3/2(3m+l). This is only an integer if m is odd. So we need
m to be odd. In other words it is necessary that m be odd.

So suppose m is odd. Can we do the partitioning? Try to generalise Exercise 9.
Take A1 = {1, a, b}. Now in Exercise 9, b = 3m. Since we must have 1 + a + b =
3/2(3m + 1) we see that a = ½(3m + 1). Because m is odd, a is an integer.



So, in generalising the partition given in Exercise 9, let Ai = {i, ai, bi} with bi = 3m
– 2(i – 1) for 1 ≤ i ≤ ½(m + 1) and bi = 3m – 2(i – 1) + m for ½(m + 3) ≤ i ≤ m and
with i + ai + bi = 3/2(3m + 1). Hence ai = ½(3m – 1) + i for 1 ≤ i ≤ ½(m + 1) and ai =
½(m – 1) + i for ½(m + 3) ≤ i ≤ m.
We now need to check that no number is repeated twice. Since 1 ≤ i ≤ m then there
are no repeats in the ith term.

Now ½(3m – 1) + l ≤ ai ≤ ½(3m – 1) + ½(m + 1) for 1 ≤ i ≤ ½(m + 1)
and ½(m – 1) + ½(m + 3) ≤ ai ≤ ½(m – 1) + m for ½(m + 3) ≤ i ≤ m. Hence ½(3m + 1)
≤ ai ≤ 2m for 1 ≤ i ≤ ½(m + 1) and (m + 1) ≤ ai ≤ ½(3m – 1) for ½(3m + 1) ≤ i ≤ m.
So the ai's take on all values from m+1 to 2m and so no two ai's are the same and no
i1 and ai2 can be equal.

Finally 2m + 1 < bi < 3m for 1 < i ½(m + 1) and these are all odd, and 2m + 2 ≤ bi
≤ 3m – 1 for ½(m + 3) ≤ i ≤ m and these are all even. So the bi's take all values from
2m + 1 to 3m and so i1, ai2 and bi3 can never be equal.

So the sets Ai as defined, do indeed form a partition with each set Ai having the
required sum. In this proof it was enough to know that m was odd. So to obtain a
partition of the required type it is sufficient to assume that m is odd.

Hence a necessary and sufficient condition for M = {1,2,…, 3m} to be partitioned
into sets of equal size, so that the sum of the elements of each set is the same, is that
m be odd.

On the uniqueness side it is easy to take one of the other partitions of Exercise 9
and generalise it. Unlike Exercise 3, the solution to the “3m” problem is not unique.

11. I assume that before you tackle this problem you will have tried to achieve a
partition for the cases where m = 3, 5, 7,…. When you've discovered a pattern you
should form a conjecture and try to prove it. In other words, you should repeat
(unless you've suddenly got insight into this problem and that may well happen) the
steps leading to the proof of Exercise 10.
Claim. A necessary and sufficient condition for a partioning of M = {1,2,…, 5m} of
the type required is that m be odd.
Proof. m odd is necessary. The sum of the elements of each set has to be 

. This number has to be an integer so we need m to be odd.
m odd is sufficient. Assume m is odd. Then let {Ai} be a partition of 3m into m sets as
described in the proof of Exercise 10. Let Bi = {3m + i, 5m – (i – 1)} for i = 1,2,–, m.
Finally let Ci = Ai ∪ Bi.

Now the sum of each of the elements in Ai is 3/2(3m+ 1) and the sum of the two
elements of Bi is 8m + 1. Hence the sum of all the elements of Ci is 3/2(3m + 1) +
(8m + 1) = 5/2(5m + 1) as required.

Because the elements of Ai are the integers from 1 to 3m and the elements of Bi are
the integers from 3m + 1 to 5m (no two of which are equal) then ∪m

i=1 Ci = M.



Further Ci ∩ Cj = (Ai ∪ Bi) ∩ (Aj ∪ Bj) = (Ai ∩ Aj) ∪ (Bi ∩ Bj). Now we know
from Exercise 10 that for i ≠ j, Ai ∩ Aj = . It is clear that Bi ∩ Bj =  for i ≠ j since
3m + i covers the integers from 3m +1 to 4m while 5m – (i – 1) covers 4m +1 to 5m.

Hence, given m odd, the sets Ci partition M in the required way.
(Clearly this partition is not unique.)

12. By dividing the sets of size 7 into one triple and two pairs, we again see m odd is a
necessary and sufficient condition for the right type of partition to exist.

13. Problem 1. First note that 1989 = 117 × 17. One possible solution is to take Ai from
Exercise 10 to cover the first 3m integers where m = 17. Each such Ai has sum 78.

Now note that Bi = {52 + (j – 1) + 57i, 1989 – (j – 1) – 57i: j = 1,2,…, 57} has sum
2041 × 57 = 116337.

Let Ci = Ai ∪ Bi. Then the sum of the elements in Ci is 116337 + 78 = 116415 (as
required by  Further Ci ∩ Ci =  and ∪17

i=1 Ci = M.
Problem 2. The same sort of argument works again. Take the Ai from Exercise 10 to
cover the first 3m = 381 integers. Then take Bi = {382 + (j – 1) + 7i, 1989 – (j – 1) –
7i: j = 1,2,…, 57}.

Let Ci = Ai ∪ Bi. Check that the Ci partition M as required.
14. Clearly n must be divisible by m or we cannot partition M into sets of equal size. Let

n = mt.
Since the sum of the elements in each set of the partition is equal,  must be an

integer. Now n = mt so if n is odd, n + 1 is even and 2m is a factor of n(n +1). On the
other hand, if n is even, n +1 is odd and n + 1 is not divisible by m. We thus require
2m to be a factor of n. This will happen unless t is odd.

The required necessary and sufficient condition is that either n is odd or n is even
and  is even. Alternatively the condition is either m and t are both odd or t is even.
(Note that the problems of Exercises 10, 11 and 12 are special cases of m and t being
odd.)

The proof for t = 1 is obvious. For t even we use the proof of Exercise 3. For all t
odd, t > 1, t = 2s + 3 and we can apply the proof technique of Exercises 10, 11 and
12.

The partitions are only unique when t = 1 or 2.
15. Since 2i2j = 2i+j, in other words, we add the indices when we multiply, this question

is exactly the same as Problem 3.
16. (a) If Ai = {i, 15 – i}, i = 1,2,–, 7 then we minimize  This is seen by noting that 

 Assume that i < i'. Then ij' + i'j is greater than ij + i'j' if
j' < j. Therefore if i < i' and j' < j we need to put ij + i'j' into  rather than ij'
+ i'j.

(b) The argument above shows that we need to put the high numbers together.
Hence we require the partition Ai = {2i,2i – 1} for i = 1,2,…,7.

(c) The argument of (a) implies that the partition A1 = (1, 3, 5, 8,10,12,14}, A2 = {2,
4, 6, 7, 9,11,13} minimises the sum of the products and B1 = {1, 2, 3,4, 5, 6, 7},



B2 = {8, 9,10,11,12,13,14} maximises the sum of the products.
17. |VG| = 3. Clearly we only need one edge. There is a unique smallest edge graph here

— the graph on three vertices with one edge.
|VG| = 4. Let VG = {a1, a2, a3, a4}. Suppose |EG| = 1 and a1a2  EG. Then a1, a3,

a4 do not contain an edge between them. Hence we need |EG| > 1.
Let EG = {a1a2, a3a4}. Checking out the various possibilities we see that this

graph is a required smallest graph. Any other two-edge graph on 4 vertices is of the
form EG = {a1a2, a2a3}. Then a1, a3, a4 do not satisfy the triple property. Hence there
is a unique smallest graph here too.

|VG| = 5. Let's try to build up from what we know. Assume VG = {a1, a2, a3, a4,
a5}. Now in Ga5 (G with vertex a5 removed), by the 4-vertex case we must have at
least two edges. So suppose a1a2, a3a4  EG. Consider Ga1. This causes us to add
a2a5 if we adopt the strategy of adding the fewest number of edges at a time. Now
consider Ga2. This forces a1a5  EG.

At this stage we have G = K3 ∪ K2. Checking all sets of 3 vertices in G we see that
they contain at least one edge. But can we find a graph with the triple property which
has only 3 edges?

Let VH = {a1, a2, a3, a4, a5} and |EH| = 3. Now H does not have a spanning tree
and is therefore not connected. If H has two isolated vertices, then these vertices plus
any other vertex, disobey the triple property. Otherwise H has two components, one
of which is not a complete graph, so two vertices in this component are not joined by
an edge. These two vertices and a vertex in the other component do not satisfy the
triple property.

So there are four edges in the smallest graph and that graph is K3 ∪ K2 and is
unique.

|VG| = 6. Because K3 ∪ K3 has fewer edges than K4 ∪ K2 then guess that the
minimal graph here has 6 edges. We will assume that the minimal graph H has 5
edges and hope for a contradiction.

If H is connected it is a tree. If H has more than 2 endvertices (vertices of degree
1), then any 3 of these vertices do not satisfy the triple property. Hence H is P6, a tree
with no vertex of degree bigger than 2, and the 2 end vertices plus one vertex not
adjacent to an endvertex again disobey the triple property.

If H is not connected then it is easy to find 3 vertices which do not satisfy the triple
property.

We now look at the problem.
MON 1.

Conjecture. The unique smallest graph is K4 ∪ K3 which has 9 edges.
Comment.
(1) Let G be a minimal graph. If G has two components they must be complete.

(Why?)
(2) K4 ∪ K3 has fewer edges than K5 ∪ K2.



(3) The existence of K4 ∪ K3 shows that if G is the smallest graph on 7 vertices
with the triple property, then |VG| ≤ 9.

Claim 1. If G is smallest, then |EG| > 8.
Proof. We suppose that |EG| ≤ 8 and obtain a contradiction. Now the sum of the

degrees of the vertices of G = 2|EG|. Hence the sum of degrees is less than or equal to
16. Hence there is at least one vertex with degree less than 3. Suppose this vertex is
a1. Then deg a1 ≤ 2 and so there are four vertices a2, a3, a4, a5 in G which are not
adjacent to a1. Now if any two of a2, a3, a4, a5 are not adjacent, these two vertices
along with a1 disobey the triple property.

Hence a1, a6, a7 share at most 2 edges, so 2 of a1, a6, a7 are not adjacent. These
two with one of a2, a3, a4, a5 must then disobey the triple property.

Claim 2. If G is smallest, then |EG| = 9.
Proof. This follows from Claim 1 and the fact that K4 ∪ K3 satisfies the triple

property.

Claim 3. G = K4 ∪ K3 is the unique smallest graph.
Proof. Now |EG| = 9 so suppose there exists H on 7 vertices with the triple

property. Since  deg v = 2|EH| = 18, then there exists a vertex in H with degree
less than 3. Let this vertex be a1 and let A1 be the set of vertices joined to a1 and let
A2 be the remaining vertices.

All vertices in A2 must be adjacent, otherwise a1 along with two non-adjacent
vertices of A2 disobey the triple property. If |A2| ≥ 5, then |EH| ≥ 10. Hence |A2| ≤ 4.

Since  we must have |A1| = 2 and |A2| =4.
By the triple property, if the two vertices of A1 are not joined, then every vertex of

A4 is joined to at least one vertex of A1. But this gives |EH| > 9.
Hence the two vertices of A are adjacent and so H = G.

19. Case 1. Suppose n is even. Let n = 2m. Then G = Km∪Km satisfies the triple
property.

We now show that G is the unique smallest graph with the triple property.
Assume H satisfies the triple property and |EH| ≤ |EG| = m(m – 1). Since  deg

v = 2|EH| ≤ 2m(2m – 1). H contains a vertex of degree ≤ m – 1. Let a1 be the vertex
of minimum degree p say, in H. Let A1 be the vertices adjacent to a1 and let A2 = VH
– ({a1} ∪ A1), with |A1| = 2m – p – 1.

By the triple property (see the argument in Claim 3 of Exercise 18) all vertices of
A2 are joined.

Hence the graph on A2 is Kq. The situation for H so far is shown in the diagram
below.



Now

This last line follows since every vertex in A2 has degree at least q – 1 and Kq has
½ q(q – 1) edges. Given that a1 is the vertex of minimum degree in H, then deg a ≥ p
for all a  A1 Hence 

Hence .
We now note that for 2|EH| to be minimum  and deg b = q – 1 for all

b  A2. Hence the smallest value of |EH| is  In this case deg a = p for
all a  A1, so A1 ∪ {a1} induces a complete graph Kp+1.

Hence H = Kp+1 ∪ Kq, where p +1 + q = 2m.
Claim. Among all graphs Kp+1 ∪ Kq, where p + 1 + q = 2m with the fewest edges

is Km ∪ Km.
Proof. We use a trick here. Since . Let .

Then q = m + a.

Now 
Since  we must have , in which case a = 0 and 

Case 2. Suppose n is odd. Let n = 2m + 1. Then  satisfies the triple
property.

The proof is almost exactly the same as for Case 1.1 think you should be able to do
it for yourself without my help.

20. Using previous arguments we get,
on 7 vertices : K1 ∪ K6, K2 ∪ K5, K3 ∪ K4;
on 8 vertices : K1 ∪ K7, K2 ∪ K6, K3 ∪ K5, K4 ∪ K4;
on 9 vertices : K1 ∪ K8, K2 ∪ K7, K3 ∪ K6, K4 ∪ K5.

21. On n vertices we have  where t is the integral part of ½n. This
has already been proved in Exercise 19.

22. The graphs  where u is the integral part of n,
certainly satisfy the quadruple property and are minimal.

Now show that there are no other minimal graphs. To do this follow the pattern of
Exercise 18. In the quadruple property case, A2 will be Ka ∪ Kb plus perhaps some
extra edges. The number of edges is least if we have just three complete graphs.



The smallest number of edges arises when s, t and n – s – t are as equal as possible
given n.

23. Here we have  where  The usual arguments apply.
The smallest number of edges is achieved when the ai and  are as equal as

possible.
24. If you can't see how to do this straightaway, then try to solve the problem for 7, 8, 9

and 10 vertices. This should lead you to a conjecture.
Claim. The unique minimal graph is K1 ∪ Kn – 1.
Proof. Suppose G is a minimal graph which is not connected. If a1, a2 and b1, b2

are in distinct components of G, then there is no triangle containing any three of these
vertices.

If G is disconnected, then it has two components, one of which is a single vertex, a
say. If b1, b2, b3 are in the other component and b1 is not joined to b2, then the
triangle property is violated. Hence the component containing b1, b2, b3 is complete
and G = K1 ∪ Kn – 1.

Suppose then that G is connected. There do not exist distinct vertices a1, a2, b1, b2
such that a1 is not joined to a2 and b1 is not joined to b2. This is because the triangle
property is not satisfied by {a1, a2, b1, b2} in this case. Hence all edges of EKn – EG
are adjacent to a single vertex. Thus G contains K1 ∪ Kn-1 as a subgraph.

25. See Exercise 24.
26. Those which can be reduced to zeros are (i), (ii), (v).

27. a + d = b + c.
28. You obtain the same answer.
29. The answer you get is still a + d = b + c.

30. 
So the answer is yes. The trick is to know when (and where) to add rather than

subtract.
31. From now on, I will assume that the top left-hand square of the various chessboards

is black. Let Sb be the sum of the numbers on the black squares and let Sw be the sum
of the numbers on the white squares.



Claim. In order for us to be able to reduce all the integers to zero without
introducing negative numbers, it is necessary and sufficient that Sb = Sw.

Proof. The condition Sb = Sw is necessary. Since at each operation we add the
same integer to a black and white square, the sums on the black and white squares are
always changed by the same amount. To end with a total of zero on both the black
and the white square we need to start with Sb = Sw.

The condition Sb = Sw is sufficient. We assume that Sb = Sw and then show how to
reduce all entries to zero. We proceed by induction on n.

Step 1. If n = 1, then there are no white squares so Sw =0. But Sb = Sw = 0, so the
board is already reduced to zeros.

Step 2. Assume that for every 1 × k board, if Sb = Sw then the reduction can take
place.

Step 3. Let n = k + 1. So we assume that Sb = Sw for a 1 × (k + 1) board. Suppose
the board starts

If b1 ≤ w1, then add –b1 to the b1 and w1 squares. This gives a board

Forgetting about the zero, we have a 1 × k board with S'b = Sb – b1 = Sw – b1 = S'w.
By Step 2, this smaller board can be reduced to zeros. Hence we can reduce the 1 × (k
+1) board to zeros. If b1 > w1, then add b1 – w1, to the w1 and b2 squares to give

Now we have the situation of b1 being less than or equal to the new “w1” so we
can use the argument above to reduce this case to zeros.

The fact that Sb = Sw, is therefore sufficient to prove the required result.

32. The necessary and sufficient condition is still Sb = Sw. The necessity follows from
Exercise 31. The sufficiency follows by induction on n.

33. See Exercise 32.
34. The necessary and sufficient condition is Sb = Sw. The necessity follows from

Exercise 31. To prove the sufficiency use induction on mn using at Step 2 the more
powerful version of induction that assumes things can be done for all mn ≤ k. Then
show that the first row (or column) can be reduced to zeros.

35. You should be able to show that if  then every square except one can
be reduced to zero. The only non-zero square will contain S. Further, S will be on a
black square if Sb > Sw and on a white square if Sw > Sb.

36. Really the problem has got nothing to do with integers. We get the same answer for
this question as we do for Exercise 34. Even the proof is the same.



37. 

38. 
39. f (31)= 31.
40. f (2m) = 1. This is easily proved by induction.

Induction should now convince you that f (2m + 1) = 2m + 1. Similarly f (2m – 1) =
2m – 1.

Unfortunately this doesn't count for the fact that f (21) = 21. But we've made some
progress.

41. Various pairs that interchange are (11, 13), (19, 25), (23, 29). In fact for n odd it
looks as if either f (n) = n or (n, f (n)) are an interchangeable pair. So how do we tell
the two apart?

42. The strange thing about 2n is that it's twice n.

43. 
That base 2 column looks flipping interesting.

44. (a) Only you can answer this question. (b) and (c) are yours too.
45. Well up to now maybe you don't, so I had better tell you. The function f converts n to

its binary (base 2) form, then reverses the order of that binary number and then
converts the reordered number to its decimal form.

If you haven't seen this up till now, then go back and check it all out. So look at f
(1). Now  after reversing, which is 1 in base 10. So f (1) = 1.

So f (2n) = (n).

So f (4n + 1) = 2f (2n +1) - f (n).

Hence f (4n + 3) = 3f (2n +1) – 2f (n).



So our “base 2 and reverse” function does satisfy the defining equations of
Problem 6. But is it the only function to do this?

The answer is perhaps not. Whatever some other function g might be which
satisfies the defining equations, it would be such that g(1) = 1 = g(2) and g(3) = 3.
Since all other function values are defined recursively in terms of the images of 1, 2,
3 then any other function g would have to agree with f everywhere. Hence the
function defined is indeed the “base 2 and reverse” one.

After all that, we see that f (n) = n if and only if n is a palindrome in base 2. Since
1988 = (11111000100)2, we only have to count the base 2 palindromes up to this
stage. So we've got 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011,11111,…

There are a total of 92 of these palindromes. You can either list them or find a
simple way to count them all.

46. Isn't it true that every odd number either has f (n) = n or has f(f(n)) = n?
Of course there's no need to worry about even numbers.

47. What did you find?
48. After Problem 6 you should leap onto this problem and destroy it.

The current function is still about base 2. The value of f (n) is the number of ones
in the binary form of n. (Prove this.)

Now 211 = 2048 > 1989 > 1024 = 210. Hence M = 10. There are five solutions of
f(n) = M. They are n = 1023, 1535, 1791, 1919 and 1983.
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